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Abstract

In the Mandelbrot set, the bulbs attached directly to the main
cardioid are called the p/g-bulbs. The reason for this is that the
largest component of the interior of these bulbs consists of c-values
for which the quadratic function Q.(2) = 22 + ¢ admits an attracting
cycle with rotation number p/q. In this paper we give a geometric

method to read off p/q from the geometry of the antenna attached to
the bulb. !

1 Introduction

Our goal in this paper is to describe a geometric method of “reading off”
dynamical information about the orbits of Q.(z) = 2* + ¢ from geometric
information about the parameter plane for this family, the well known Man-
delbrot set. Recall that the Mandelbrot set M is given by the set of complex
c-values for which the orbit of 0 under the quadratic function Q.(z) = 2% + ¢
does not tend to infinity. It is known that many of the components of the
interior of M consist of c-values for which the orbit of 0 is attracted to an
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Figure 1: The Mandelbrot set. Note the many bulbs attached to the main
cardioid. These are the p/q bulbs.

attracting cycle. In particular, this is true of the bulbs directly attached to
the main cardioid in M. In fact, for ¢ inside one of these bulbs, (). features
an attracting cycle with rotation number p/q. See Figure 1.

One of the fascinating and folkloric features of the Mandelbrot set is that
one can often read off p/q directly from the geometry of the corresponding
bulb. For the p/q bulb admits an antenna that consists of a junction point
from which exactly g spokes emanate. One of these spokes is attached di-
rectly to the bulb. This spoke is called the principal spoke. For many of
these bulbs, the “shortest” spoke attached to the junction point is located
exactly p/q turns around the junction point from the principal spoke in the
counterclockwise direction. Also, the “longest” spoke is located exactly p/q
turns from the principal spoke in the clockwise direction. While this fact is
not always true, nevertheless an “expert” in complex dynamics can usually
judge where the shortest and longest spokes should lie and thereby read off
p/q.

For example, in Figure 2 we display the 2/5 bulb. Note the 5 spokes
attached to the junction point and that the shortest spoke is located roughly
2/5 of a turn from the principal spoke in the counterclockwise direction while
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Figure 2: The 2/5 bulb.

the longest is located 2/5 of a turn in the opposite direction. Of course, the
natural question is what is meant by the “shortest” and “longest” spoke. As
in [4], we will use harmonic measure on the boundary of M to determine
the size of these spokes. This measure is determined by the length of the
interval of external rays that land on each spoke. Our goal then is to present
an algorithm for computing exactly the length of this interval. With this
algorithm, we will see that the p/q spoke is indeed the shortest. One can
in fact use dynamical information about the Julia sets drawn from the p/q
bulb to accomplish this. However, we will use a different, more combinatorial
approach, which is more elementary.

As another example, in Figure 3 we display the 3/7 bulb. Here we see
that the shortest spoke is located 3/7 of a turn from the principal spoke.
The longest spoke is more difficult to determine. This illustrates why this
“visual” method is not completely accurate.

2 The Mandelbrot set

In this section we recall some of the remarkable results of Douady and Hub-

bard (see [5]). The Mandelbrot set is given by

M ={c € C1QI0) /> oo},



Figure 3: The 3/7 bulb.

See Figure 1. The following facts are well known. The largest cardioid-
shaped region in M consists of c-values for which ). admits an attracting
fixed point. Along the boundary of this cardioid, (). admits a neutral fixed
point whose multiplier is exp(27i6(c)). As ¢ moves around the boundary of
the cardioid in the counterclockwise direction, starting at the cusp, the value
of (¢) increases monotonically from 0 to 1. In particular, there is a unique
point ¢,/, on the boundary of the cardioid at which (c) = p/q for each
rational in (0,1). The point ¢,/, is called the root point of the p/q bulb. At
the root point, there is a simply connected region in the interior of M which
is attached at this point to the cardioid. This component of the interior of M
is called the p/q bulb in M and is denoted by B(p/q). If we remove the root
point, then M breaks into two pieces; the component of M —¢
the p/q bulb is called the p/q limb.

The main theorem of Douady and Hubbard [5] asserts that there is a
unique uniformizing map ¢ that takes the exterior of the unit circle in the
extended complex plane isomorphically onto the exterior of M, taking oo
to oo and mapping the positive real axis x > 1 onto the line ¢ > 1/4. The
image under ® of the straight ray r exp(2mi) for fixed 6 and r > 1 is called

p/q CONtaining

the external ray with external angle f. Note that we measure these external
angles mod 1.
The Theorem of Douady and Hubbard above states further that each



external ray with rational external angle actually lands at a unique point on
the boundary of M. By this we mean that

11_1?11 O(rexp(2mi0”))

exists when #* is rational. In particular, the O-ray lies along the real axis
and reaches M at the cusp point of the main cardioid at ¢ = 1/4. Moreover,
there are exactly two rays that land at the root point ¢,/, of the p/q bulb.
We denote the angles of these two rays by s = s_(p/q) and s+ = s4(p/q)
where we assume that s_ < s;. We call s_ (resp. s;) the lower (resp. upper)
external angle at c,/,.

Finally, the Theorem also asserts that any external ray that lands at the
root point of a bulb of period ¢ is a rational that has prime period ¢ under
the (angle) doubling map given by D(z) = 2z mod 1. For example, the rays
that land at B(1/3) have angles 1/7 and 2/7, and each of these has period 3

under angle doubling:

1 2 4 1

A A R AR
Similarly, the rays landing at the root point of B(2/5) are 9/31 and 10/31,
each of which have period 5 under D.

One can compute the rays s_ and s, using information about the dy-
namics of (). as ¢ passes from the main cardioid into the p/q bulb through
¢p/q- For cin the main cardioid, (). has an attracting fixed point. As c enters
the p/q bulb, this fixed point becomes neutral as a repelling ¢g-cycle merges
with it. Once inside the p/q bulb, the fixed point becomes repelling while the
cycle becomes attracting. At the fixed point, exactly ¢ dynamical external
rays land, two of which are s_ and s;. In fact, these rays land at this fixed
point for each ¢ inside the p/q limb. From this information, the values of
s— and sy can then be computed using the dynamics of Q.. See [8] or [1]
for details. Rather than describe this algorithm in detail, we will discuss a
different algorithm for computing these angles in the next section.

3 Computing External Angles

In this section we recall some results from [4] which provide an algorithm for

computing upper and lower external angles at ¢ We will give a formula
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for the binary representation of these angles. Since these angles have period
g under angle doubling, their binary representations will be a repeating se-
quence of 0’s and 1’s with length ¢. That is, s_ will be a sequence of the
form

S_ =3157...5,

where s; = 0 or 1. In the sequel we will often denote an infinite repeating
sequence simply by s;...s, when the meaning is clear.

To determine the s;, we let R,/, denote the counterclockwise rotation
map of the circle by p/q turns. That is, R,/,(0) = 0 + p/q mod 1. Note that

o k) (p/q) =p/q

o RV (p/a) =0
o R2(p/q) =1—p/q=—p/q.

Given p/q we define two partitions of the circle as follows. The lower
partition is given by

Iy = (0,1 =p/qland IT = (1 —p/q,1]
and the upper partition by

I =[0,1—p/q) and I§ =[1 — p/q,1).

Note that these two partitions differ only at their mutual endpoints 0 and
1 —p/q. Now given 6 in the circle, we define the lower itinerary of 8, £(0) to
be the sequence sys; ... where

s;=0if R7(0) € Iy

Otherwise we set s; = 1. So £(8) records the position of the orbit of # under
R,,, relative to the lower partition of the circle. We define the upper itinerary
u(@) similarly by using the upper partition. Note that the upper and lower
itinerary of # are both repeating sequences of 0’s and 1’s of length ¢. The
upper and lower itineraries of p/q play an important role below. From the
above observations, we have

Up/q) = s1...8,-201



and
u(p/q) = s1...8,-210.

In particular, {(p/q) and u(p/q) differ in their fundamental blocks only in
the last two digits.

The main result in [4] is that the upper and lower itineraries of p/q give
the binary expansions of the upper and lower external angles of the p/q bulb.

Theorem 3.1 Let p/q € (0,1). Then u(p/q) = sT(p/q) and {(p/q) =
s-(p/q).

For example, in the case p/q = 1/4, then ¢(1/4) = 0001 and u(1/4) =
0010, so that s7(1/4) = 1/15 (= 0001 in binary) and s*(1/4) = 2/15 =
(0010 in binary).

We now turn our attention to the rays landing on the antenna of the p/q
bulb. The junction point in the antenna is a Misiurewicz point, meaning
that the orbit of the critical point at this c-value is eventually periodic.

Proposition 3.2 There is a parameter value w = w,,, in the antenna at-

tached to the p/q bulb thatl has the following properties:

o The orbil of w under z*+w lands on a repelling fized point after exactly
q iteralions.

o Two of the rays landing at w are s_5y and s, 5_.

Proof. We apply the tuning procedure of Douady (see [6]). There is an
orientation preserving homeomorphism that takes the entire Mandelbrot set
into (but not onto) the p/q limb. The homeomorphism takes c-values in M
that are the landing points of the external ray s;sgs3... to c-values in the
p/q limb that are landing points of the ray tilat5 ... where each ¢; is a block
of 0’s and 1’s of length g and {; = s_if s; =0 and t; = sy if s; = 1.
Consider ¢ = —2. This is a Misiurewicz point in M since the orbit of 0
is fixed under )_5 after two iterations. The external ray landing at ¢ = —2
is the 1/2 ray, since ¢ = —2 lies on the negative real axis. This ray has two
binary representations: (01) and (10). Thus ¢ = —2 is mapped to a point
in the p/q limb which is the landing point of the rays s_s; and s;5_-. The
image of ¢ = —2 is the point w. Since w is the landing point of an external
ray that becomes periodic after ¢ binary digits, it follows from [6] that w
becomes periodic after ¢ iterations of (),,. Since the repeating part of these
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Figure 4: External rays landing on the 2/5 bulb.

angles involves s_ and sy, the rays in the dynamical plane that land on the
repelling fixed point, it follows that w must in fact land on the repelling fixed
point alluded to above. [ ]

By the above result, we now have four rays landing on the p/q bulb. In
order, they are
57 < 5_37 < 5.5° < 31

Note that the length of the arc of rays landing between s= and s_37 is at
most 1/2%¢7% since these two rays agree in the first 2¢ — 2 binary digits.
Similarly, the length of the arc of rays landing between 57 and s;5_ is also
at most 1/2%72. On the other hand, the length of the arc of rays landing
between 5= and 55 is exactly 1/(29 — 1) (see [4].) Thus many more rays land
between the two rays landing at w than at other points on the p/q limb. This
fact is illustrated for the 2/5 bulb in Figure 4.

Since there are ¢ external rays landing at the repelling fixed point on
which w lands, it follows that there an additional ¢ — 2 external rays landing
at w. We will show in the next section that each of these rays lies between the
rays s_sy and s;yS_. This indicates that the point w is indeed the junction



point so evident in the above figures.

4 Farey numbers

Given any p/q in (0,1) in lowest terms, recall that there are a pair of rationals
a/ and /4 that serve as the Farey parents of p/q. This means that p/q is
the rational between the Farey parents that has smallest denominator. It is

known (see [7]) that
p_aty
g B+
and that p3 — ga = 1 and pd — ¢y = —1. One can inductively obtain the
sequence of Farey parents. Begin with 0/1 and 1/1. These are the Farey
parents of 1/2 via the above “addition”. Then 0/1 and 1/2 yield 1/3, while
1/2 and 1/1 yield 2/3. Continuing in this fashion produces the Farey tree, a

list of all Farey parents and their progeny.

Proposition 4.1 Suppose p/q has Farey parents a/3,~v/5. Then

p+1
R, (p/q) = W

Proof: Using the fact that pg — ga = 1, we have

1
P/q - 04/5 = %
and so o
n ot — R (a8 = (1P &y = L
Rp/q(p/q) Ra/ﬁ( /5) ( + 1)((] 6) q/@

Since Rg/ﬁ(a/ﬁ) = /3 we obtain

0+1 a 1 1 p+1
R (ply=S 4 - & 2y~ P70
v/aP/4) B3 g3 B q qB q

Proposition 4.2 Given p/q in lowest terms, we have

]il) _ u(}Z)‘

l
( q q



Proof: Note first that the distance between fractions (p + 1)/q and p/q
remains constant under iteration of R,/, since for any integer n > 0
p+1 P pt1 p_1
COLNL S YA N ) Ly A Y

p ) — Rpyy( q) (n+1) p (n+1) il
In particular it follows that the R,,, orbit of (p 4 1)/q is always just ahead
of the orbit of p/q in the counterclockwise direction. Suppose £((p+1)/q) =
tity. .. t, and u(p/q) = s182...8,. We wish to show that sp = ¢ for all
k=1,...,q. Thus we have two cases:

g/q(

o If s, =0 then

- kp P
0< Ryl (p/a) = FRT)
Consequently, 0 < (kp+1)/q < 1 —p/q so that RI;/_ql((p +1)/q) € Iy

and t; = 0.
o If s, =1 then

1-2<prery <1

q p/a q
k 1
-2y C
q q q
so that R];/_ql((p—l- 1)/q) € IT and ¢ = 1. u

Let o denote the shift map of the set of sequences of 0’s and 1’s. That is,
o(s15283...) = (s283...

).
By Proposition 4.1 we have o”({(p/q)) = £((p+1)/q) and by Proposition 4.2
{((p+1)/q) = u(p/q). Thus we have o°({(p/q)) = u(p/q). Furthermore,

Up/q) = o' (L(p/q)) = o°(°(£(p/q))) = o°(u(p/q)).
Therefore we have shown

Proposition 4.3 Suppose p/q has Farey parents a/3 < v/§. Then

o’(s_(p/q)) = s+(p/q) and o°(s4(p/q)) = s_(p/q).
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5 Order of Rays

In this section we determine the external angles of the ¢ rays that land at
the junction point w,/, of the antenna in the p/q limb. Two of these angles
are given by s_s; and s;5_. Since the fundamental blocks of s_ and sy are
adjacent in the ordering of binary blocks of length ¢, it follows that the angles
of the rays that land at w,/, must begin with either s_ or s;. This string
is called the first part of the angle. The second part is the repeating string
corresponding to shifting the digits in si, since these angles correspond to
the periodic rays landing at the repelling fixed point.

Moreover, since sy and s_ only differ in the last two digits, it follows
immediately that o™ (s_) < 0"(s4) for all n with the exception of n mod ¢ =
—1. This exception comes from the fact that

1(81"'Sq_210) = 081 "'Sq_21

-
o7 (510 8,901) = 1815, 90

Lemma 5.1 Given p/q, ils Farey parents o/f < ~/8, and the ray s, =
s+(p/q), we have

o"(s1) = o(s4)
o D(s) = o(s)

Proof: Since we are shifting the ¢ digits in s; in blocks of 3 digits, then
we should consider the composition of iterations mod ¢g. Using the Farey
fraction property p8 — qa = 1, we have pf mod ¢ = (1 4+ ga) mod g which
implies the first equation. Moreover,

(p—1)Bmodg = 1—pFmodg
— 1+(¢- ) modq
= 1+6.

By Proposition 4.3, we have 0%(sy) = s_. Hence o®=18(s,) = o(s_). [ ]

The next proposition provides us with an increasing ordering for the
second part of the angles. Notice that (¢ — p)3 mod ¢ = —1. We claim
that o(@=)%(s,) = 0='(s,) represents an exterior angle that is smaller than
S4. This can be seen comparing the two sequences digit by digit. Let
Sp = 8182...8,-210. Then o7 (s;) = 0s152...8,21 and
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o If sy =1 clearly 07!(s4) < sy4. If not, compare the next two digits
e If s =1 we're done (since s; = 0). If not, keep comparing subsequent
digits
This process ends, for if we reach the last two digits of both itineraries, this
would imply that s,_; = 0 has to be compared to 1. From this it follows that

s_o=PB(s,) < s_33

This means that the external ray s_o(4=7)%(s, ) does not land at the junction
point w.

Proposition 5.2 Given p/q, 3 and s, we have the following ordering under
the shift map:

sy < 0%(sy) <0 (sy) <o < olTPTII(s ),
A T B e T B AU C R

Proof: We wish to compare 0*%(s,) with o*"98(s,). To do this, rewrite
these two itineraries in terms of o(s;) and o(s_) as

O'kﬁ(5+) = J_(p_k)ﬁ(a'pﬁ(S_}_)) = U_(p_k)ﬁ(a-(5+))
and similarly
B 8(5,) = o= (=R (DB (5 )} = (=R (5(s5_)),

Consider the right hand side of the equations above. As we are applying
the shift map —(p — k)58 + 1 times to sy and s_, the inequality

o D(sy) < oM (sy)

holds unless k3 mod ¢ = —1. We claim that this happens precisely when
k= gq— pfor 8 > 1. First, we will show that k3 mod g generates all the
equivalence classes mod ¢. This is true if and only if 3t q. But ¢ =46+ 3
so this condition reduces to show 3t §. This follows easily since the Farey
property 3y — ad = 1 indicates that 3 and 4 are relatively prime. Thus,
the first ordering is achieved for £ = 1,....,¢ — p — 1 while, for the second
ordering, k =q—p+1,...,9— 1, avoiding only the case k = g — p.

When 3 =1 then we simply have to avoid the case when & mod ¢ = —1,
i.e., when £ = —1 or kK = ¢+ 1, but neither of these cases occur above. [ ]

Using this result we are now able to state
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Theorem 5.3 Let w,/, be the junction point of the bulb B(p/q). Then there
exist q preperiodic rays contained in the interval [s_3y,$.5_] thal land on
wp/q- These rays are give in increasing order by:

$_54,8-0%(sy), ..., s_0ler=DB(s ) s, ole=P)B(s,) ... 5,5,

6 Length of Spokes

In this section we identify the shortest and longest spokes of the antenna
»/q- Recall that this means that the gap between the two external rays
landing at w and cutting off this spoke is smallest and largest respectively.

at w

Proposition 6.1 Among the g rays landing at w, the rays which have g-
periodic second part given by o®=V8(s,) and o?%(sy) are closest logether.

Proof: We first show that both rays have the same first part. Recall that
the change in the first part of the angle from s_ to sy occurs when we shift
st exactly (¢ — p)3 times. Thus, if p < ¢—p, then the first part for both rays
is s_. When p > g — p, the worst possible case occurs when p — 1 = ¢ — p,
but then again the first part is s; for both rays.

Now, when p = ¢ — p then p/q = 1/2 and the Farey parents are 0/1 and
1/1. This is a very special case where the list of rays is given simply by
8_84,845_.

Finally, we only need to prove that the difference o?%(s;) — o®=15(s )
is the smallest among consecutive rays. By Lemma 5.1, we know o??(s,) =
Sg -+ 84-210s1 and O'(p_l)ﬁ(8+) = S3---8,-201s;. Thus, the difference be-
tween the blocks of length ¢ is

Upﬁ(s-}-) - J(p_l)ﬁ(s‘}') = 929—2 B 99—1 = 9¢-1"

The difference of the repeating part of the sequences is given by

1 1 1 1
Jpﬁ(5+)—a(73—1)/3(3+) = (%—_2_|_22q—_2_|_...)_(2q__1_|_22q__1_|_...)

o0

= 4 2
- Z okg Z 9kg
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= 2}

k=1
I A
207120 17
Thus, the entire difference is
1 1 1 1
s+0P8(sy) — spa=10(s,) = (22[1—_2 + X7 ) = (22[1__1 + ST 4.
— 4 1 2 1
= (ZQTq o 2q—2) o (ZQTq - Qq—l)
k=1 k=1
I A 1
To20120 ] 201
1 1
20191

since both rays have the same first parts (thus no contribution is made) and
both series start with indices shifted ¢ places.
Now, assume there exists an integer m such that

o™ (s4) — oV (s1) < 0 (s4) — P (sy).

In this case, 0™(s;) and o™ ="8(s,) must differ in the last two digits,
i.e., they are s; and s_ respectively. However, the rays with these two
second parts do not share the same first parts and consequently they are
further apart. This completes the proof. [ ]

Remark. Note that this result verifies the observation in the introduction
that the smallest spoke is located p/q turns in the counterclockwise direction
from the principal spoke in the antenna.

We now identify the longest spoke. From the ordering given by Theo-
rem 5.3, the largest gap between rays must be located when the first part
changes, that is, between the rays s_c(@P=18(s,) and s, 0(4P8(s,). To
compute the length between these rays, first recall that

oIP(s4) = 07" (s4).
On the other hand,

U(q—p—l)ﬁ(5+) — U(q—p)ﬁ(g—ﬁ(3+))

14



= o7'"77(sy)

o™ (0”(s-))
by Proposition 4.3. Thus ¢(477"18(s,) = 671(s_). As above we have

1 — 201

U(q—p)ﬁ(3+) _ J(q—p—l)ﬁ(8+) _ 5

Thus, the largest distance between consecutive rays is given by

5+U(QT’3(5+) - s-a@‘p‘—”ﬁ(m = 5407 1(s84) —s-07(s-)

1 1 =1
- Q_q—I_ZQTq_Zqu-H
k=2 k=1

1 1 -2t 1-—2¢1

A
11
22017

The last computation exhibits an interesting feature of the largest spoke:
since the measure of the bulb is 1/(27—1) (see [4]), the subset of rays that land
on the largest spoke has exactly half the measure of the total set. Similarly,
the subset of rays landing at the shortest spoke is 1/297'th of the total
measure.

Similar calculations allow us to compute the length of any spoke in the
antenna. The proof of the following is therefore left to the reader.

Proposition 6.2 Given any two conseculive rays with the same first parts
and second parts c*%(sy) and oF*=V8(s,), their difference is given by

1 1

520" (s4) — spoF=18(s,) oT+1 97 _ |

where I' = k6 — 1 mod q.

Remark: When & = p in Proposition 6.2, the length of the shortest spoke or,
equivalently, the distance between the rays s1o®~1% and syo?” agrees with
our previous computation as I'(p) = (pd — 1) mod ¢ = (¢y —1) — 1 mod ¢ =
—2mod ¢ = g — 2. In the case of the largest spoke, we have k = g — p. Even

15



though our assumption above regarding equal first parts does not hold in
this case, the formula does, since

I(g—p) = (¢—p)d—1modgq
= —pé—1modgq
= 1l—ga—1modgq
= 1-1=0.
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