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1 Introduction

In this paper we consider the family of complex rational maps of the form
Fi(z) =2"+ 2

where the parameter A € C and n > 2. We will primarily consider the case

where |)| is small, so these maps may be regarded as singular perturbations

of the well understood map z +— z". For this map, it is known that the Julia

set (the chaotic set) is the unit circle. But when A # 0, the degree of this

map increases and consequently the Julia set changes dramatically.

Our goal is to show that, as A approaches the origin along n — 1 special
rays in the parameter plane, the Julia set of F, converges as a set to the unit
disk, not to the unit circle. This is an interesting phenomenon since it is well
known that, if a Julia set contains an open set, it must necessarily be the
entire Riemann sphere. So here we have the situation where Julia sets can
converge to a set that contains an open set but is not the entire sphere.

For example, in Figure 1, we display several Julia sets drawn from the
family 22 + \/z. Colors in these pictures indicate how quickly the orbit of
the point enters the immediate basin of oo, with red points escaping most
quickly, followed by orange, yellow, green and blue. So the colored points
are not in the Julia set in these examples. Black points lie in the Julia set,
though the black points are difficult to see since an open and dense set of
points are known to escape in the cases depicted; basically, the Julia sets lies
at the points where there is an abrupt change of color. Note how the red
regions shrink in size in these pictures as || decreases.

This paper continues a study begun in [3] concerning the family
no A
G )\(Z) =z + ;

where n,d > 2. In that paper it was shown that, if n = d = 2, then, as A — 0,



Figure 1: Julia sets for 22+ \/z where A = —0.1, —0.05, and —0.025. Reddish
shaded regions contain points that escape to oo, so these points form the
complement of the Julia set.



the Julia set of G tends to the unit disk no matter what the direction of
approach to the origin. On the other hand, when n,d > 2 (but not both equal
to 2), the Julia set does not converge to the unit disk. Indeed, in this case, it
is known that the Julia set is a Cantor set of simple closed curves (when ||
is sufficiently small). Moreover, as A — 0, there is always a “round” annulus
of some specific width that lies between some of these curves but does not

lie in the Julia set.

2 Preliminaries

Let
no A
F)\(Z) =z + -
z
where A € C and n > 2. The map F) has critical points at

C\ = ()\/TL) L/nt) .

We call these points the “free” critical points. The point at oc is also a
critical point of order n — 1. Hence we have an immediate basin of oo which
we denote by B,. There is a neighborhood of 0 that is then mapped to B,.
We call this set the trap door and denote it by T). It is known [1] that B,
and T are disjoint if |A| is sufficiently small.

In this paper we shall be primarily interested in the structure of the Julia
set of F\. The Julia set of F), denoted by J(F)), has several equivalent
definitions [6]:

1. J(F)) is the closure of the set of repelling periodic points;

2. J(F)) is the boundary of the full basin of attraction of oo;

3. J(F)) is the chaotic regime in the sense that any neighborhood of a
point in J(F)) is eventually mapped over the entire Riemann sphere,

excluding at most two points.



The complement of the Julia set is called the Fatou set. The dynamical
behavior on the Fatou set is usually quite simple: most often, all orbits in
the Fatou set simply tend to one of finitely many attracting cycles.

The behavior of the free critical orbit often determines the structure of

of the Julia set. For example, the following Theorem was proved in [4].

Theorem (The Escape Trichotomy).

1. If one and hence all of the critical values of Fy, lie in By, then the Julia

set of Fy is a Cantor set;

2. If one and hence all of the critical values lie in Ty, then the Julia set

15 a Cantor set of simple closed curves;

3. If the critical values all lie in preimages of Ty under Fg for some j > 0,

then the Julia set is a Sierpinski curve.

A Sierpinski curve is a planar set that is characterized by the following
five properties: it is a compact, connected, locally connected and nowhere
dense set with two or more complementary domains that are all bounded
by simple closed curves that are pairwise disjoint. It is known from work of
Whyburn [9] that any two Sierpinski curves are homeomorphic. In fact, they
are homeomorphic to the well-known Sierpinski carpet fractal. From the
point of view of topology, a Sierpinski curve is a universal set in the sense
that it contains a homeomorphic copy of any planar, compact, connected,
one-dimensional set. The first example of a Sierpinski curve Julia set was
given by Milnor and Tan Lei [7]. In Figure 1, all of the Julia sets depicted
are Sierpinski curves.

We remark that case 2 in the above theorem does not occur in the family
2" + \/z; it does occur in the more general family of maps 2" + \/z¢ where

n,d > 2 (but not both equal to 2).



There is an (n + 1)-fold symmetry in the dynamical plane. Let w be an

(n 4+ 1)** root of unity. Then we have
Fy(wz) = w"F\(2) = w™ ' Fy(2).

It follows that points that are symmetric under z — wz have orbits that also
behave symmetrically. Hence if one such orbit escapes to oo, all of the n+1
symmetrically arranged points have this property. Similarly, if one such orbit
tends to an attracting cycle, then all of the symmetrically arranged orbits also
tend to such a cycle, though, as we shall see, the periods of these symmetric
cycles may be different. Therefore J(F)) is symmetric under rotation by w.
As a consequence, we really have only one free critical orbit since the orbits of
¢ all behave symmetrically. Thus we can paint the picture of the parameter
plane for this family by following the orbit of any of the n + 1 free critical
points.

There are several symmetries in the parameter planes for these maps.
First of all, the parameter plane is symmetric under complex conjugation
since we have

F\(2) = Fx(2).

n—1

Secondly, let « satisfy "~ = 1. Then we have

FQQI\(al/"Hz) = al/"“Ff(z).

So the second iterate of F) is conjugate to the second iterate of Fy, and
hence the parameter plane is symmetric under A — a. Incidentally, we use
the second iterate in the above conjugacy because it is not true that the first
iterates of these maps are conjugate. For example, consider the case where
n = 3. One checks easily that, for example, when A = 3/16, this map has
a pair of superattracting fixed points at +1/2 and a superattracting 2-cycle
at +7/2. The dynamical behavior of the map F,, is a little different. This
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map has a pair of superattracting 2-cycles, one given by 7'/2/2 and /2 /2 and
the other given by the negatives of these two points. Note that the second
iterates of both of these maps have four superattracting fixed points, so the
conjugacy works for the second iterates of the maps but not for the first.

For the first iterates of F, we have
Fpz(az) = aF)\(z).

So F,2) ~ F\. Consequently, when n is even, F\ =~ F,,, but when n is odd,
there are two distinct conjugacy classes of maps of the form F;,.

We will be primarily concerned with parameters that lie along the n — 1
dividing rays in the parameter plane. The dividing rays are the straight rays

given by
(2k + 1)m

Arg ) = p—]
for k=0,1,...,n—1. So, when n = 2, the only dividing ray is the negative
real axis, and when n = 3 the dividing rays are the positive and negative
imaginary axes. In Figures 2 and 3, we display the parameter planes in the
cases n = 2,3,4 and 5. Note the large black regions surrounding the origin.
These regions contain parameters for which F) has attracting fixed points
and/or attracting cycles, and these regions are separated from one another

by the dividing rays. More precisely, we have

Proposition. The set of parameters for which F\ has a neutral fized point

with derivative € is given by the curve

i 41 2/n—1 i
\O) = e’ + n—e .
n—+1 n—+1

These curves bound the regions in parameter plane for which the correspond-

ing maps have (at least one) attracting fized point and so all of the critical

orbits tend to an attracting cycle. Moreover, each of these regions approaches



Figure 2: The parameter planes in the cases n =2 and n = 3.

the origin tangentially to a pair of adjacent dividing rays in the parameter

plane.

Proof: The neutral fixed points of F) are determined by the equations

z = 2"+ -
z
) A
0 n—1
e” = nz ~ 2
so that "
n — e
A= \0) =22 )
() ? (n+1>
Therefore -
0 1 n—
z=2z2(0) = (6 + ) :
n+1

Inserting the formula for z into the equation for A yields the formula for A(#).

As 6 — +£m, we have

el +1 T
A — +—.
rg(n+1) 2



Figure 3: The parameter planes in the cases n =4 and n = 5.

From the formula for z(f), we then have that, as § — =+,

T . 2k
2(n—1) n-—1

Argz(0) — +
for k=0,1,...,n— 1. But, as § — £, Arg \(§) — 2Arg z(f) so that

4k
Arg\ — + T + T
n—1 n-1

But this set of rays is the same as the set of rays given by

T 2km
_|_

Arg )\ = —_—
'8 n—1 n-—1

i.e., the set of dividing rays.

3 The Main Theorem

Our goal in this section is to prove the following result:



Figure 4: On the left is the double-cusped “cardioid” in the parameter plane
for n = 2. The maps corresponding to parameters inside this region each
have an attracting fixed point and an attracting 2-cycle. On the right is the
cardioid in the parameter plane for n = 3 containing parameters with two
attracting fixed points and an attracting 2-cycle.

Theorem. J(F)) converges as a set to the closed unit disk as A tends to 0

along each of the dividing rays in the parameter plane.

When we say that J(F)) converges as a set to the unit disk, we mean
convergence in the Hausdorff topology. To be precise, let B(z) denote the
ball of radius € about z and let D denote the closed unit disk in C. Then
J(F)) converges as a set to D if, given any € > 0, there exists A* such that,

for all A with 0 < |A| < A*, we have:
1. each z with |z| > 1+ € lies in By and so not in J(F));
2. for each z € D, J(F)y) N Bc(z) # 0.

Thus, for each such A, any point in the Julia set of F) is within € of D, and
any point in D is within € of J(F)).

Proof: Given € > 0, we first prove that, if |\| < e and z satisfies |z| > 1 +¢,
then z € By. (Note that we do not need A to lie on the dividing rays for this
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part of the proof.)
We have

2" = L2 = [2P([e"7 = 1) 2 [z (n = 1)e > [oPe > e > |A].

Therefore we have

A
o= Pl g,
]
Hence
A A
F()] = |+ —\ s = L)
: ]

Therefore z lies in By so z € J(F)).
Now we turn to the second requirement for convergence as a set to D. For

simplicity, we shall first consider the case where n = 2, so

F(s) =2+ 2.

z

At the end of the proof, we discuss the straightforward modifications needed
for the case where n > 2.

When n = 2, the dividing ray in the parameter plane is the negative
real axis, so we assume that A € R™. We now have two symmetries in the
dynamical plane. First, let w be the cube root of unity lying in the upper
half plane, and recall that F)(wz) = w?F)(z). So the Julia set is symmetric
under z — wz. Second, since A\ € R™, we now have Fj(Z) = Fy(z). So the
Julia set is also symmetric under complex conjugation.

Since A is real, the real line is invariant under F). By the z — wz
symmetry, it follows that F) interchanges the two straight lines wR and w?R.
We call the three lines R, wR, and w?R the symmetry lines in the dynamical
plane.

Now assume that J(F)) does not converge to D as A — 0 along R .

Therefore, given any € > 0, we may find a sequence of parameters \; € R~

10



with A; — 0 and a sequence of points z; € D such that .J(Fy;)NBa(2;) = 0 for
each j. Since D is compact, there is then a subsequence of the points z; that
converges to some point 2* € . For each parameter \; in the corresponding
subsequence with j sufficiently large, we then have J(F),) N Bc(z*) = 0.
Hence we may assume at the outset that we are dealing with a subsequence
Aj = 0 such that J(F);) N Be(z*) = 0, provided ), is close enough to 0.

We first claim that z* # 0. To see this, suppose |A| < 1/8. Then, if z lies

on the circle of radius |A|'/? centered at the origin, we have
[FA(2)] < 20A° < A2 =[],

So this circle is mapped strictly inside itself. It follows that the boundary of
T, lies within this circle for each such A and hence 0T) tends to 0 as A — 0.
So, for |A| small, there are points in the Julia set arbitrarily close to 0 and
hence inside B(0). Consequently z* # 0.

Now consider the circle of radius |z*| centered at the origin. This circle
meets B¢(z*) in an arc vy of whose argument has total length ¢. Choose k
so that 28/ > 27. Since A\; — 0, we may choose j large enough so that
|F};J_(z) — 22| is very small for 1 < i < k, provided z lies outside the circle of
radius |2*|/2 centered at the origin. In particular, it follows that F' fj (v)is a
curve whose argument increases by approximately 27, i.e., the curve F )’fj ()
wraps at least once around the origin.

As a consequence, the curve v meets all three of the symmetry lines in
the dynamical plane. By the z — Z symmetry, it follows that F)’fj (B(2%))
contains an annulus that lies in the Fatou set and surrounds the origin. Let
U; be the component of the Fatou set that contains this curve. By the No
Wandering Domains Theorem [8], the set U; must eventually map onto a
component of the Fatou set that is periodic. Call this component V;. But

the points in U; that lie on the three symmetry lines remain on these lines
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for all iterations. Hence these points cannot converge to a finite attracting or
neutral cycle, so V; cannot be a basin of attraction of a finite cycle. Similarly,
V; cannot be a Siegel disk or a Herman ring. It follows that V; must be B,,.
Therefore the preimage of V; is the trap door and the second preimage of
B,, is a Fatou component that contains an annulus that surrounds the origin.
Call this component W;.

Since T}, is a disk and W) is not simply connected, it follows that W; must
contain at least one critical point of F),. By symmetry, W; must therefore
contain all of the free critical points. But then, by the Riemann-Hurwitz
formula, W; must in fact be an annulus that is mapped n + 1 to one onto
Ty;-

We claim that this cannot happen. Let A; denote the open annulus that
lies between the trap door and the immediate basin of co. The annulus W;
separates A; into two annuli, an outer annulus A;’-“t, and an inner annulus
AP, Fy; maps A% n to 1 onto Aj;, while F; maps A one-to-one onto A;.
Hence we have

mod A; = mod A;-“.

Since the inner boundaries of A; and Aij“ are the same, this leaves no room
for A;?“t and hence we have a contradiction. Thus we cannot have such a disk
B(z*) in the Fatou set when n = 2.

For the case n > 2, we need to produce similar symmetry lines. To do
this, first assume that n is even. In this case, the negative real axis is one
of the dividing lines. By the symmetry in the parameter plane, we therefore
only need to deal with this case. So we assume that A € R™. We claim
that the straight lines through the origin with arguments jz/(n 4+ 1) and
7w — (jw/(n + 1)) are mapped to themselves by the second iterate of F.

These give the symmetry lines in this case.
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To see this, suppose that

g
A = .
rg 2 n T
Then '
njm
Arg 2" =
rg 2 ]
and
A j 1—7
Arg—:— jﬂ— +7T:u_
z n+1 n+1
Therefore

1)7 — 1
Arg s — Arg ) = (P DI = (1)
z n+1

So, depending on j, either z" and A\/z lie on the same ray or on opposite

= (—1)m.

rays, but at least these points lie on the same straight line passing through

the origin and containing the ray whose argument is
(n+1—j)m j
— =7 —- ——T.
n+1 n—+1
A similar argument then shows that points that lie on the line through the

origin containing the ray with argument

n+17r

is mapped to the original line, i.e., the line passing through the origin that
contains the ray with argument jw/(n + 1). So we have a similar situation
to the case where n = 2 and the above proof then carries over to this case.

When n is odd, the situation is a little different. The negative real axis is
no longer a dividing line. However, the ray with argument given by 7/(n—1)
is one of these lines. So similar arguments as the above, using parameters on
this ray, show that the symmetry lines are now given by
=

In this case there is no fixed symmetry line; rather a pair of these lines are

Argz =

always interchanged by F). We leave these details to the reader. O
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