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A MYRIAD OF SIERPINSKI CURVE JULIA SETS
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This paper is a survey of the numerous Sierpinski curve Julia sets that arise in the
family of rational maps given by

A
Fx(z) = 2" + —; where n > 2,d > 1.
z

While these Julia sets are all the same from a topological point of view (they are
all homeomorphic), the dynamics on these sets are almost always very different in
the sense that no two maps are topologically conjugate.

1. Introduction

The Sierpinski carpet fractal shown in Figure 1 is one of the most impor-
tant planar, compact, connected sets for several reasons. First of all, it
is a universal plane continuum in the sense that it contains a homeomor-
phic copy of any planar, one-dimensional, compact, connected set. (Here
we mean one topological dimension, not Hausdorff or fractal or any other
dimension.) For example, the complicated curve shown in Figure 2 may
be homeomorphically deformed so that it sits inside the Sierpinski carpet
fractal. Secondly, there is a topological characterization of this set: any
planar set that is compact, connected, nowhere dense, locally connected,
and has the property that any pair of complementary domains are bounded
by disjoint simple closed curves is homeomorphic to the Sierpinski carpet®.
Any set that is homeomorphic to the Sierpinski carpet is called a Sierpinski
curve.

In recent years, we have shown that Sierpinski curves arise as the Julia
sets of certain complex rational functions in a variety of different ways. In
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Figure 1. The Sierpinski carpet.

this paper we shall describe several of these possibilities. What is interesting
here is that, while these Julia sets are always the same from a topological
point of view, the dynamics on these sets are often quite different.

For simplicity, we shall restrict attention to functions of the form

A
Fy(2) =z"+—d wheren >2,d > 1
z

although many other families of rational maps exhibit similar types of Julia
sets. We assume here that n > 2 so that the point at oo is a superattracting
fixed point. Hence there is an immediate basin of attraction of co which
we denote by Bj.

As we show below, even though the maps in this family have high degree,
there really is (up to symmetry) only one “free” critical orbit. As is well
known in complex dynamics, the behavior of this critical orbit plays a
principal role in determining both the topology of and the dynamics on the
Julia sets of these maps. In particular, if the critical orbit eventually enters
By, we have the following result’.

Theorem (The Escape Trichotomy). If the free critical orbit remains
bounded, then the Julia set of Fy is a connected set. However,

(1) If the critical value lies in By, then the Julia set of Fy is a Cantor
set;
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Figure 2. This curve (containing the Sierpinski gasket, the Koch curve, the topologists’
sine curve, and many other things) may be homeomorphically realigned to fit into the
Sierpinski carpet.

(2) If the free critical orbit enters By at the second iteration, then the
Julia set is a Cantor set of simple closed curves;

(8) If the free critical orbit enters By at the third or higher iteration,
then the Julia set is a Sierpinski curve.

Since there is only one free critical orbit, the A-plane is therefore the
natural parameter plane for these families. In Figure 3, we have plotted
these planes in the cases n = d = 2 and n = d = 3. The black points in
this picture correspond to parameter values for which the free critical orbit
does not escape to co. The white regions in this picture represent A-values
for which the critical orbit tends to co. The exterior region corresponds to
parameter values for which the Julia set is a Cantor set; we call this set
the Cantor set locus. The small white region in the center of the picture
corresponds to parameter values for which the Julia set is a Cantor set of
simple closed curves. We call this region the McMullen domain. We remark
that it is known!! that McMullen domains exist if and only if 1/n+1/d < 1.
All other white regions in this picture correspond to parameters for which
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the free critical orbit escapes after three or more iterations so the Julia set
is a Sierpinski curve. These regions are called Sierpinski holes. It is known*
and'® that there are infinitely many such regions in each parameter plane.
Hence the Julia set of F) is a connected set for all A-values except those
in the Cantor set locus and the McMullen domain. So we call this set of
parameters the connectedness locus.
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Figure 3. The parameter planes for the cases n =3 and n = 4.

It turns out that there are many other ways that the Julia set of F can
be a Sierpinski curve besides case 3 in the Escape Trichotomy. The goal of
this paper is to give a sketch of the proof of the following results:

Theorem. Let vy denote the image of one of the free critical points of F).

(1) If F¥(vy) lands on a repelling periodic point of Fy that does not lie
in the boundary of By, then the Julia set is a Sierpinski curve;

(2) If X lies in the main cardioid of certain “buried” Mandelbrot sets
with base period k in the parameter plane, then again the Julia set
of F is a Sierpinski curve;

(3) If, as in the Escape Trichotomy, F¥(vy) with k > 1 is the first
point in the orbit of vy that lies in By, then the Julia set of F is a
Sierpinski curve.

The dynamical distinctions between these cases are given by:
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Corollary. If A1 and Ay are any parameter values arising from different
cases of this result, then the dynamics on the corresponding Julia sets are
not topologically conjugate to one another. Even if these parameter values
arise from the same case, but the corresponding k-values are different, then
again the dynamics of the two maps are not topologically conjugate.

This result follows immediately from the fact that, in each case, the
behavior of the critical orbits is very different, but a conjugacy between
two such maps must preserve this behavior.

2. Preliminaries

In the dynamical plane, the object of principal interest is the Julia set of
F which we denote by J(Fy). The Julia set is the set of points at which
the family of iterates of F, {F}'}, fails to be a normal family in the sense
of Montel. It is known that J(F)) is also the closure of the set of repelling
periodic points for F as well as the boundary of the set of points whose
orbits escape to oo under iteration of F. As a consequence, J(F)) is the
regime where F\ behaves chaotically. The complement of the Julia set is
known as the Fatou set. Here the dynamical behavior is quite tame.

Note that By and all of its preimages must lie in the Fatou set. Since
the point at oo is a superattracting fixed point for Fy, it is well known!?
that F) is conjugate to z — 2™ in a neighborhood of co in B). There is also
a pole of order d for F) at the origin, so there is a neighborhood of 0 that is
mapped into By by Fy. If this neighborhood is disjoint from B), then we
denote the preimage of B) that contains 0 by T’. So the only preimages of
B), are By and T. We call T, the trap door since any orbit that eventually
enters the immediate basin of co must “fall through” T enroute to Bj.

One computes easily that there are n 4 d critical points for F\ and that
all of them assume the form w¥c) where ¢y is one of the critical points
and w = exp(27i/(n + d)). We call these points the free critical points.
Similarly, the critical values vy are arranged symmetrically with respect to
2z — wz, though there need not be n + d of them. There are n + d prepoles
at the points (—\)/(n+d)

The proof of the following Proposition is straightforward.

Proposition (Dynamical Symmetry). Suppose w = exp(2wi/(n + d)).
Then Fy(wz) = w™F)\(2).

As a consequence of this result, the orbits of points of the form w’z all
behave “symmetrically” under iteration of F\. For example, if F} (z) — oo,
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then F}(w*z) also tends to oo for each k. If F}(z) tends to an attracting
cycle, then so does Fi(w*z). We remark, however, that the cycles involved
may be different depending on k and, indeed, they may even have different
periods. Nonetheless, all points lying on these attracting cycles are of the
form w’zy for some 29 € C. For example, when n = 2,d = 1, there are
parameters for which some of the critical points tend to an attracting fixed
point zp on the real line, whereas wz, and w2z lie on an attracting 2-cycle
which attracts other critical points.

3. Escape Sierpinski Curve Julia Sets

In this section we assume that the third or higher iterate of the critical
point is the first that enters By. We then give a complete proof that, in
this case, the Julia set is a Sierpinski curve. In later sections we merely
sketch the somewhat similar proofs that the Julia sets in other cases are
Sierpinski curves.

In Figure 4, we display four Julia sets drawn from the family where
n = d = 2. All of these sets are Sierpinski curves, and all have different
dynamics since the number of iterates it takes for the critical orbit to reach
B, is different in each case.

We first observe that, unlike most connected Julia sets of polynomials,
for A-values in the connectedness locus, the complement of the closure of
B, consists of a single open component. We do not have Julia sets in this
case like the well-known Douady rabbit or basilica Julia sets from quadratic
dynamics.

Proposition. Suppose that the free critical orbit tends to oo, but the critical
values do not lie in By U Ty. Then the set C — By has a single open,
connected component.

Proof: Suppose first that C— By has more than one connected component.
Let Wy be the component of C— By that contains the origin. Note that all
of T\ must lie in W,. We claim that at least one of the prepoles also lies in
Wy. Suppose this is not the case. By symmetry, all of the prepoles either
lie in the same component of the Fatou set or else they all lie in distinct
components. In the latter case, this means that each Fatou component
containing a prepole is mapped one-to-one onto Wy. Therefore there must
be n + d of these components. Now there are no critical points in the
Julia set by assumption, so every point in the boundary of Wy has n + d
preimages, one in each of the boundaries of these components. But there
are also d preimages of any such point in the boundary of the trap door
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A=-0.01

A=—1/4 A = —0.001

Figure 4. The Julia sets for various values of A when n =d = 2.

which is contained inside Wy and mapped to the boundary of By. Since
the boundary of T’ cannot equal the boundary of Wy, this yields too many
preimages for any point in the boundary of Wy. Therefore all of the prepoles
lie in the same component of the Fatou set, and this component must
surround the origin and separate By from W. This, however, is impossible,
since the boundary of W is contained in the boundary of By. Hence one
and therefore all n + d of the prepoles lie in W, and so F isn+d to 1 on
Wo. Therefore all of the preimages of points in Wy must also lie in Wy.
Now suppose that there is a second component W; in C— By. There are
no points in W; that map into Wy. Consider a point on the boundary of Wy



September 27, 2005 14:39 Proceedings Trim Size: 9in x 6in myriad

that does not also lie on the boundary of Wy and choose a neighborhood of
this point that does not meet Wy. By Montel’s Theorem, the forward im-
ages of this neighborhood map over points in Wy. But this cannot happen,
since all preimages of points in W) lie in Wy. This proves that W; does not
exist.

d
Proposition. The Julia set of F\ is compact, connected, locally connected,
and nowhere dense.

Proof: Since we are assuming that all of the critical orbits eventually
enter the basin of 0o, the Fatou set consists of the union of By and all of its
preimages. Hence we have that the Julia set is given by C—UF,’ J (By). That
is, J(F)) is C with countably many disjoint, open, simply connected sets
removed. Hence J(F)) is compact and connected. Since J(Fy) # C, J(F))
cannot contain any open sets, so J(F)) is also nowhere dense!3. Finally,
since the critical orbits all tend to oo and hence do not lie in or accumulate
on J(F)), standard arguments show that J(F)) is locally connected!®. [

Thus we have shown that J(F)) possesses four of the five defining prop-
erties of a Sierpinski curve. It suffices to show that the boundaries of the
complementary domains are bounded by simple closed curves that are dis-
joint. This is a little more difficult.

Proposition. The boundary of By, OBy, as well as all of the preimages of
B), are simple closed curves. These boundary curves are pairwise disjoint.

Proof: By the previous Proposition, J(Fy) is locally connected, so it fol-
lows that 0B, is also locally connected. Now recall that, near oo, F) is
analytically conjugate to z — 2™. That is, there exists an analytic home-
omorphism ¢y : By = C — D where I is the open unit disk in the plane.
The map ¢, satisfies

P 0 Fa(z) = (oa(2))".

The preimage under ¢y of the straight ray with argument § in C — D is
called the external ray of angle 6 and denoted by «(6). Since the boundary
of By is locally connected, it is known'® that all of the external rays land
at a point in the boundary of By. Thus, to show that this boundary is a
simple closed curve, it suffices to prove that no two external rays land at
the same point.

To see this, first recall that W, denotes the component of C — By that
contains the origin, and that W is both connected and simply connected.
Suppose that there exists p € 0By such that y(¢1) and y(t2) both land on
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p. Since these rays together with the point p form a Jordan curve, we have
that Wy lies entirely within one of the two open components created by
this Jordan curve. Let (1, t2) denote the union of all of the external rays
whose angles lie between ¢; and ¢» (where we assume that the angle between
these two rays is smaller than 7). Without loss of generality, assume that
W is such that Wo N (t1,t2) = @ (so Wy is “outside” the sector 7(¢1,t2)
between v(t;) and v(t2))-

We claim that there exist positive integers ¢ and m such that the region

+1
v (2, ar- ) Cy(t1,t2)
m

m

and neither of the external rays g/m nor (¢ + 1)/m land on 0Wy. If this
were not possible, then all rays in v(¢1,t2) would land at p. This gives a
contradiction because the set of angles 8 € R/Z such that the landing point
of the ray with angle 6 is p has measure 03.

So suppose we have such g and m. As above, let v(q/m, (g + 1)/m)
denote the union of the external rays contained between ¢/m and (g+1)/m.
After m iterations y(q/m, (¢g+1)/m) is mapped over all of By. In particular,
if the external ray of angle # lands on 9(C — B)), then there is a ray
of angle ¢ € v(¢/m, (¢ + 1)/m) whose image under F* is (). Since
¢ € v(g/m, (g+1)/m) we have that v(¢) does not land on 0W,. Hence there
exists a neighborhood Ny of v(¢) such that Ny N Wy is empty. However,
since F{"(v(¢)) lands on the boundary of Wy we know that F{*(Ny) N Wo
is not empty. This is a contradiction since points not in Wy never enter
Wpy. Hence, we can never have two rays landing at the same point on 0By,
implying that 0B, is a simple closed curve.

It follows that all of the preimages of B) are also bounded by simple
closed curves. We claim that no two of these curves can intersect. To see
this, suppose first that there exists a point 29 € 9By N dT. Then there
exists an external ray < in B landing at z9. In T), there also exists a
preimage, 1, of an external ray that connects 0 to zyp. But the images of n
and ~y are the same external ray, and so it follows that zg is a critical point.
But this contradicts our assumption that all critical orbits tend to oo. So
OB), and 0T, are disjoint simple closed curves.

Now suppose that two earlier preimages of 0B), intersect, say one preim-
age in F) "(0B)) and one in Fy ™(9B,). If n # m, then by mapping these
preimages forward, we see that OB, and 0T also meet, which cannot hap-
pen. If n = m, then this intersection point must again be a critical point,
so this cannot occur either.
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O
This shows that the Julia set is a Sierpinski curve when it takes three
or more iterations for the critical orbit to enter By. To see that there
are infinitely many such sets that are dynamically distinct, note that the
number of iterations that it takes for the critical orbit to enter B) is a
dynamical invariant: a conjugacy between any two such sets must map
the invariant boundaries of the basin of co to each other. Hence the jt"
preimages of the basins must be mapped to each other by the conjugacy.
But the only preimages of the basin on which the maps are not one-to-one
are those that contain the critical points. Hence, in order for these maps to
be conjugate, the critical orbits must all take the same number of iterations
to enter the basin.

4. Buried Sierpinski Curves

In this section, we discuss an infinite collection of dynamically distinct
Sierpinski curve Julia sets for the family F) where the Fatou components
are quite different than those described in previous sections. Instead of
being just a single superattracting basin at oo and its preimages, the Fatou
set in these examples consists of a collection of finite attracting basins
together with the basin at 0o as well as all of their preimages. As before, the
dynamics on these Julia sets are all distinct from one another as well as from
those mentioned above, but again, all of these Julia sets are homeomorphic.

Figure 5. The Julia sets for F)(z) = 22 + \/z where A = —0.327 and A = —0.5066.
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For simplicity, we shall restrict attention in this section to the special
family Fy(2) = 22 + A\/z with A € R~. The examples we give arise in all of
the other families, though their construction is a little more complicated in
the general case.

In Figure 5, we display the Julia set of F), when A = —0.327. For this
map, there are superattracting basins of period 3 and period 6 together
with the basin at co. We also display the case where A = —0.5066 for
which there are three different superattracting basins of period 4 together
with the basin at co. The basins of the finite cycles in these pictures are
displayed in black.

For X real and negative, the graph of F () shows that there is a positive
real fixed point for Fy which we denote by p()). Also, c(\) = (A/2)'/3 is a
critical point on the real line and

v(\) = 22‘%%’/3
is the corresponding critical value.

Let A* = —16/27. Straightforward calculations show that p(A\*) = 4/3
and p(A\*) is repelling. Furthermore, the real critical point ¢(A*) = —2/3 is
pre-fixed, i.e., Fy«(c(A*)) = 4/3 = p(A*). For A-values slightly less negative
than A*, the real critical value lies to the left of p(\) and hence subsequent
points on the orbit of the critical value begin to decrease. Graphical itera-
tion shows that there is a sequence of A-values tending to A* for which the
critical orbit decreases along the positive axis and then, at the next itera-
tion, lands back at ¢()). See Figure 6. Thus, for these A-values, we have
a superattracting cycle. Straightforward analysis® of the real dynamics of
these functions shows:

Theorem. There is a decreasing sequence A, € R~ for n > 3 with
An = A* = =16/27 and having the property that F, has a superattracting
cycle of period n given by x;(A,) = Fx, (®j—1(A\n)), where

(1) zo(An) = 2n(An) = ¢(An), and
(2) 20 <0< Zp_1 <Tp_a < <z =0(A\p) <p(Ap).

Now fix a particular parameter value A = A, for which F) has a su-
perattracting periodic point x( lying in R~ as described in the previous
theorem. We say that a basin of attraction of F) is buried if the boundary
of this basin is disjoint from the boundaries of all other basins of attraction
(including B)). Note that, if the basin of one point on an attracting cycle
is buried, then so too are all forward and backward images of this basin, so
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Figure 6. The graphs of F)\(z) = 22 + A\/x where A = A4 and A = Ar.

the entire basin of the cycle is buried. As in the previous section, standard
arguments show that these Julia sets are compact, connected, locally con-
nected, and nowhere dense. We need only show that the all of the basins
of attraction are bounded by disjoint simple closed curves. The case of
the basin at oo follows as in the previous section. For the finite basins, a
different argument is necessary. We refer to® for the details. We have:

Theorem. For the sequence of parameter values A\, € R, all of the basins
of F\, are buried and so J(F)) is a Sierpinski curve.

As discussed earlier, any two Sierpinski curves are homeomorphic.
Hence J(F),) is topologically equivalent to J(F),,) for any n and m. How-
ever, each of these Julia sets is dynamically distinct from the others since
the periods of the superattracting cycles are different.

5. Structurally Unstable Sierpinski Curves

In this section we turn our attention to the case where the critical orbit
eventually lands on a repelling periodic point of F)\ that does not lie in 0B
Here again the Julia set is a Sierpinski curve and the dynamical behavior
on this set is very different from the previous cases.

For simplicity, we shall restrict attention in this section to the case
n =d = 2, i.e., the family
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and specifically to the case when ) is negative. In Figure 7 we display the
parameter plane for this family. By the results of McMullen!!, there is

Figure 7. The parameter plane for the family 22 + A/22.

no McMullen domain for this family. Indeed, the large white region near
the center of this picture is a Sierpinski hole. If we examine the parame-
ter plane along the negative real axis, it appears that there are infinitely
many Sierpinski holes. In Figure 8, we display several magnifications of
the parameter plane along the negative real axis. In each case we see a
large Sierpinski hole flanked by a pair of smaller Serpinski holes which, in
turn, are each flanked by a pair of even smaller Sierpinski holes. It appears
that the parameter plane along the negative real axis consists of a Cantor
set where the removed intervals are the intersections of R~ with Sierpinski
holes. Indeed, this is the case. In fact, along the negative real axis we
actually have a Cantor necklace.

To define a Cantor necklace, we let I" denote the Cantor middle thirds set
in the unit interval [0, 1]. We regard this interval as a subset of the real axis
in the plane. For each open interval of length 1/3™ removed from the unit
interval in the construction of I', we replace this interval by an open disk
of diameter 1/3™ centered at the midpoint of the removed interval. Thus
the boundary of this open disk meets the Cantor set at the two endpoints
of the removed interval. We call the resulting set the Cantor middle-thirds
necklace. See Figure 9. Any set homeomorphic to the Cantor middle-thirds
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Figure 8. Two magnifications of the parameter plane for the family 22 + \/2z2 along
the negative real axis. In the first image, —0.4 < ReA < —0.06 and, in the second,
—0.2 < ReX < -0.15

necklace is then called a Cantor necklace. We do not include the boundary
of the open disks in the Cantor necklace for the following technical reason:
it is sometimes difficult in practice to verify that these bounding curves in
the parameter plane are simple closed curves.

O'OlDQOOlO -OOOOQ.

Figure 9. The Cantor middle-thirds necklace.

Cantor necklaces also appear in the dynamical plane. To construct such
sets when A € R, we first observe that the intersection of J(F)) and the
real line is an invariant Cantor set that we call I'y. To see this, note that
the graph of the real function F shows that F\ maps the interval [—py, pa]
in two-to-one fashion over itself, where py is the fixed point for F on the
positive real axis and on the boundary of By. See Figure 10. The fact that
such a Cantor set exists follows easily in the case where |F}(z)| > 1 for all
x € [—pa,pr]. Unfortunately, this is not always the case, since, as A — 0,
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the graph of F approaches the graph of 22. Nonetheless, techniques from
complex dynamics involving the Poincaré metric and similar to those used
in the case of 22 + ¢ give this result!. Well known facts from dynamics also
show that this Cantor set varies continuously as A varies and that the set
of repelling periodic points in I'y is dense in I'y. In standard fashion we
may also associate an itinerary s(\) = (ss182...) consisting of 0’s and 1’s
to each point in I'y. Finally, the open intervals in the complement of T'y in
[—px, pa] contain points that eventually map into By. These intervals lie
in simply connected open sets that are preimages of B), and so the union
of these disks together with I'y produces the Cantor necklace.

Dx

Figure 10. The graph of F) on the real line for A < 0. The points ¢ bound the trap
door on the real axis.

Now consider the second iterate of the critical points. All four of these
critical points lie off the real line, but a straightforward calculation shows
that the second images of the critical points are all the same and are given by
4X+1/4. Let G(A) =4X+1/4. So G(X) € R when X is negative and G(\)
decreases as A\ decreases along this axis. A straightforward computation
shows that we have G(0) > 0 but G(A) < —py for A sufficiently negative.
It follows that there is at least one A-value for which G(A) = s()\) for each
possible itinerary. In fact, it is known® that there is a unique such A on
the real line for each itinerary and that, in fact, this set of A-values is a
Cantor set in parameter plane. This is the Cantor set portion of the Cantor
necklace in the parameter plane.

Now choose a A-value for which G(\) lands on a periodic point in T’y
that is not equal to py (or an eventually periodic point that does not land on
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pa)- These are the “buried” cycles in the Cantor set since they do not lie on
the boundary of any complementary interval. For such a A-value, the Julia
set is also a Sierpinski curve. Indeed, the only components of the Fatou set
are the basin at oo and all of its preimages since all of the critical orbits
are eventually periodic. As above, these preimages are again bounded by
disjoint simple closed curves. Moreover the Julia set is compact, connected,
nowhere dense, and locally connected (this last property follows since we
are in the analogue of the Misiurewicz point case for rational maps!'?).
Notice that in any neighborhood of such a A-value, we have infinitely many
other parameters for which the critical orbit also lands on a periodic or
eventually periodic point in the Cantor set that does not lie in 9B, and
whose period is different from the original cycle. Hence the Julia sets for
these parameters also are Sierpinski curves, and the dynamics on them are
always different provided that the periods of the cycles are different. In
addition, there are infinitely many intervals that lie in the complement of
I'y in any such neighborhood, so these yield infinitely many dynamically
distinct escape Sierpinski curve Julia sets in this neighborhood as well.
We have shown:

Theorem. Suppose that the critical orbit of F\ lands on a point in the Can-
tor set I'y that is periodic or eventually periodic and that this orbit does not
lie in OB)y. Then the Julia set of F) is a Sierpinski curve. Moreover, in any
neighborhood of A € R™, there are infinitely many other parameter values
whose Julia sets are Sierpinski curves of this type as well as infinitely many
other escape Sierpinski curves. All of these parameters have dynamical be-
havior that is different from that of F).

Since we have such vastly different dynamical behavior in any neighbor-
hood of such a A-value, such a map is structurally unstable at that point.

As a remark, if the critical orbit eventually lands on the fixed point pj,
then the Julia set is what we call a “hybrid” Sierpinski curve. The only
difference between this type of set and a Sierpinski curve is that infinitely
many of the complementary domains have boundaries that now touch at
exactly two points, while infinitely many others have boundaries that are
disjoint from all the other bounding curves.

6. Final Comments and Conjectures

While we have shown that there exist infinitely many dynamically different
types of Sierpinski curve Julia sets in these families, much more remains to
be done. Here are some open problems and conjectures.
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We have shown that if two maps have critical orbits that escape to oo,
then their Julia sets are Sierpinski curves. If the escape times of these
critical orbits are different for these two parameters, then these maps are
not conjugate on thier Julia sets. So the question is: what happens if we
have two such maps whose escpae times are the same?

Conjecture. Excluding any pair of symmetrically located Sierpinski holes
in the parameter plane, the maps corresponding to parameter values drawn
from different Sierpinski holes are always dynamically different.

To prove this result, one needs to find a dynamic invariant for these maps
that is different from the escape time. We anticipate that the invariant
Cantor necklaces described in the previous section will play a role in this.

In the previous section, we discussed the case where the critical orbit
eventually lands on a repelling cycle in the Cantor set I'y. But it is known
that there is a unique parameter value for which the critical orbit lands
on any point in this Cantor set. For example, there are uncountably many
parameters for which the critical orbit lands on an orbit which never cycles.
For these maps, the Julia set is again a Sierpinski curve. But here we no
longer have the period of the cycle on which the critical orbit lands as a
dynamical invariant. Nonetheless, we expect that any two such parameters
will have distinct dynamics.

Conjecture. Suppose the critical orbit lands on a point in Ty for which
the itinerary is neither periodic nor eventually periodic. Then the dynamics
of F is distinct from any other parameter value for which the critical orbit
lands on a point in Ty with o different itinerary.

Besides invariant sets that are Cantor sets, we have shown recently that
there are parameter values for which the Julia sets contain a Cantor set
of invariant circles. This is not the McMullen domain case, as the critical
values of these maps do not lie in 7). Rather, for these parameters, the
Julia set is connected. We suspect that, just as in the previous section,
one can find unique parameter values for which the critical orbit lands on
a particular point in this invariant set. This would produce a similar set in
the parameter plane.

Conjecture. There is a Cantor set of simple closed curves in the pa-
rameter plane for which the critical orbits eventually land on the invariant
set of circles in dynamical plane. For these parameters, the Julia sets are
again Sierpinski curves, and we conjecture that all of these maps (excluding
symmetric cases) have distinct dynamics.
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We expect that the curves alluded to in this conjecture would actually

contain many of the parameters in the Cantor set produced in the previous
section. This would produce a much huger array of dynamically distinct
Sierpinski curve Julia sets.
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