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1 Introduction

Our goal in this paper is give a somewhat quirky introduction to the field of
complex dynamics. Usually, in the many introductions to this field that have
appeared in the past twenty years or so, the main emphasis is on polynomial
(in fact, quadratic polynomial) or rational dynamics. In this paper, we will
take a slightly different tack; while we will of course discuss the polynomial
case (and, yes, the Mandelbrot set), our main emphasis will be on entire
functions and, most often, the complex exponential function.

There are several reasons for taking this approach. First, as mentioned
above, there are many other papers and books where the emphasis is on
polynomials ([Bea|, [Bl], [CG], [McM], [Mil], [Ste]). Second, the dynamics
of entire functions has experienced a tremendous surge of interest in recent
years. And third, there are many very interesting connections between tran-
scendental dynamics and planar topology. Indeed, one of our main subthemes
in this paper is to highlight many of the very interesting types of sets from
a topological point of view that arise as the Julia sets of entire functions.

In this paper, we asume that the reader is familiar with the basic ideas of
discrete dynamical systems, general topology, and complex analysis. We will
then use these fields as the foundation for our discussion of complex dynamics.
This paper should be readable by people who have a background in discrete
dynamics. Readers familiar with the basic ideas of complex dynamics dealing
with polynomials or rational functions should also get something out of this
paper, as we shall empahsize many of the topics that are differnt when entire
functions are considered.

We will not provide all of the proofs: these can be found in the books
cited above or in the research literature. We will, however, provide at least
one proof in each section (or, at least, a somewhat detailed sketch), just to
give the reader a sampling of how things are worked out in complex dynamics
as well as the interplay between the background fields.

It is a pleasure to thank Killer Devaney, who digested this entire article
and returned many highly stylized comments; all errors that remain are due
to her.



2 Basic Notions

Our goal in this section is to introduce some of the basic definitions and
tools used in complex dynamics. These are drawn from the fields of discrete
dynamical systems theory and complex analysis. In later sections we will
specialize the discussion to entire transcendental functions.

2.1 Preliminaries from Dynamics

Suppose that F' : C — C is complex analytic. As in discrete dynamics, we
are interested in the dynamics of F', so we are concerned with iteration of F'.
Given zy € C, the orbit of zy is the sequence

20, F(20), F(F(20)), ...

For simplicity, we write F" for the n-fold composition of F' with itself. Then
the main question in dynamics is: can we predict the fate of orbits. That is,
what happens to the sequence {F™(zp)} as n tends to co?

There are many different types of orbits for a typical function. Perhaps
the most important are the fized points zo for which F(z5) = 2. Next in
importance are the periodic points of period n (also called cycles of period
n or n-cycles): they are points that satisfy F™(z9) = zp. The period of the
cycle is the least n > 1 for which F™(z9) = 2. The point zq is an eventual
fixed point (or cycle) if zq is not itself fixed (or periodic), but F"(z) is fixed
(or periodic) for some n > 1. Other important orbits are those that tend to
a fixed point or periodic orbit, or those that tend to oo.

Example. Let D(z) = z2. The orbits of 0 and 1 are fixed. The orbits of —1
and =+ are eventually fixed since these orbits land on the fixed point at 1
after several iterations. If |z5| > 1, then D"(25) — 0o as n — oo. If |z] < 1
then D"(2) — 0 as n — oco. The points z; = €?™/3 and 2z, = ¢*/? lie on
a cycle of period 2 for D. In fact, 2™ /9 ig periodic if both p and ¢ are
integers with ¢ odd. If zy lies on the unit circle, then the entire orbit of zj
remains on this circle.

Example. Let E(z) = (1/e)e*. We have E(1) = 1 and E'(1) = 1. If
z € Rand z < 1, then E™(zy) tends to the fixed point at 1. If zy > 1, then

E™(x9) — o0 as n — oo. This can be shown using the web diagram as shown
in Figure 1.



Figure 1: The graph of E(z) = (1/e)e”.

Example. Let S(z) = sinz. Then 0 is a fixed point for S. If zy € R, then
either S(zg) = 0 (so the orbit is eventually fixed), or S"(zy) — 0. On the
other hand, points on the imaginary axis have orbits that tend to oo since
sin(iy) = isinh(y).

Example. Let C(z) = cos z. Then C has a real fixed point at o = 0.7390. ..
and the orbit of any x € R either lands on or tends to x,.

2.2 Types of fixed or periodic points

In this section we will assume that z; is a fixed point for F'. If z, lies on an
n-cycle, then everything below goes through using F™ instead of F.

Definition 2.1 The fized point zy is:
1. attracting if 0 < |F'(2)| < 1;
2. superattracting if F'(zy) = 0;
3. repelling if |[F'(z0)| > 1;

4. neutral or indifferent if F'(zy) = e*™% . If 0y is rational, then 2z, is ra-
tionally indifferent or parabolic, otherwise zy is irrationally indifferent.



Note that there are no fixed points of saddle type for complex functions
as we have just one “eigenvalue” for the derivative, namely F'(zp), not two
distinct eigenvalues.

The dynamical behavior of F' near attracting, repelling or superattracting
fixed points is completely understood, as we discuss below. In the neutral
case, the behavior near certain irrationally indifferent fixed points is still not
completely understood.

Suppose F' and G are two analytic functions. We say that F' is (analyt-
ically) conjugate to G if there is an (analytic) homeomorphism h : C — C
such that ho F' = G o h. We also define local conjugacy on subsets of C in
the natural manner.

The reason why analytic functions are easy to understand near attracting
fixed points is given by the following theorem.

Theorem 2.2 Linearization Theorem. Suppose zy is an attracting fized
point for F and F'(zy) = A with 0 < |A| < 1. Then there is a neighborhood U
of zo and an analytic map h: U — {z | |z| < 1} such that ho F(z) = X- h(z).
That s, F is analytically conjugate to the linear map z — Az on U.

In the repelling case, we use the Inverse Function Theorem to conjugate
the branch of the inverse of F' that fixes z5 to a linear map of the form
z — A7z with |A| > 1. Then F is locally conjugate to z — Az.

Finally, if z, is superattracting, then there is a neighborhood U of z; and
n > 1 such that F' is analytically conjugate to z — 2" on U, where h takes
values in some disk {z | |z| <7 < 1}.

As we mentioned above, the dynamics near neutral fixed points is ex-
tremely complicated, and we will not go into details here. But there are two
cases that are completely understood. The first is the case of a rationally
indifferent fixed point. In this case the Fatou Flower Theorem [Mil| asserts
that, for some k£ > 0, there are k attracting and k repelling petals meeting
at zp. Roughly speaking, an attracting petal is an open set U bounded by a
simple closed curve v passing through z; that has the property that

1. F(U) C UU{z}

2. F(7) Ny = {2}

It can be shown that all orbits within U tend to 2z, under iteration.
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Figure 2: The plane Re z < 1 is an attracting petal for E(z) = (1/e)e?.

Example. Let E(z) = (1/e)e*. Then z; = 1 is a neutral fixed point with
E'(zy) = 1. Consider the vertical line segment Rez = 1. Let U = {#| Rez <
1}. Then U is an attracting petal for F (not worrying too much about the
fact that the boundary of U is not a closed curve, though it is if we consider
the Riemann sphere). Indeed, E maps U to the interior of the unit circle in

C and so E(U) meets Rez =1 only at zp = 1. Thus it follows that all orbits
of E in the half plane Re z < 1 tend to 1 under iteration. See Figure 2.

A repelling petal is simply an attracting petal for F' !, which exists locally
near zp since F’'(zp) # 0. In the above example, the preimage of the circle of
radius 1 centered at z = 2 on the real axis (under the branch of the inverse
of E that fixes zp = 1) and its interior form a repelling petal. Note that any
orbit in the repelling petal must eventually leave the petal (except, of course,
the neutral fixed point). See Figure 3.

Example. Let S(z) = sinz. Then 0 is a rationally indifferent fixed point.
There are now two attracting petals, both straddling the real axis. Orbits
on the imaginary axis leave a neighborhood of 0. Indeed, on the imaginary
axis, as we saw earlier, we have sin(iy) = i sinh(y), so orbits tend to co along
this axis. See Figure 4.

Now suppose that zq is an irrationally indifferent fixed point with F'(zy) =
e?™% We will deal only with the case that 6, is a Brjuno number. To define
these irrationals, we make a brief digression to consider continued fractions.



Figure 3: Four Fatou flowers for a rationally indifferent fixed point.

Figure 4: There are two attracting petals S for sin z and two repelling direc-
tions.



Since 6, is irrational, it has an infinite continued fraction expansion of

the form
1
Oy = ag + — T

Gt
ag + —

where each a; is a positive integer (and ay may be 0). The convergents of 6
are defined to be the rational numbers

1

n a +

“ta
It is known that the convergents of 6, are the closest rational approximants
of By (in the sense that there are no rationals p/q between 6, and p, /g, with
q < qn).

The rational number 6, is said to be a Brjuno number if the series

o0

Z log(Qn—f—l )

n=1 Qn

converges. For example, all diophantine numbers are Brjuno, so the Brjunos
are dense in the reals. Recall that # is diophantine if § is “far” from rationals
in the sense that there are constants ¢ > 0,k > 2 such that

c

7

for all rationals p/q. Unfortunately for dynamical systems, the complement
of the Brjunos in the irrationals is also dense. The Brjuno numbers form a
set, of full measure however.

The natural question is when is a nonlinear function conjugate to an
irrational rotation. As stated, this question clearly cannot depend on the
rotation angle 6y, as we can always conjugate the irrational rotation z —
e?™% 2 by an analytic function to obtain a nonlinear function that acts like

an irrational rotation. So the question is: are there any irrationals 6, for
which every nonlinear function of the form

‘9—73‘>
q

2 — ¥y a2+

for a given 6 is conjugate to an irrational rotation? The following theorem
answers this question.



Theorem 2.3 Yoccoz’ Theorem. The function z — >z + a2 + ...
is locally conjugate to z — ¥z (independent of any higher order terms)
if 0 is a Brjuno number. If 6 is not a Brjuno number, then the quadratic
polynomial

z s 20, 4 52

has a fized point at the origin which is not linearizable.

Suppose F'(zy) = €?™ where 6, is Brjuno. By Yoccoz’ Theorem, there
is a neighborhood U of 2 such that each orbit in U — {2y} is dense on an
invariant simple closed curve surrounding zy,. The maximal simply connected
open set, about zy with this property is called a Siegel disk after C. L. Siegel
who first proved that maps of the form

2= ¥, 4 ap2? + ...

are linearizable if # is diophantine.

2.3 Preliminaries from Complex Analysis

The main reason that one dimensional complex analytic dynamics is so spe-
cial is that all of the tools of complex analysis are available. In this section
we review some of the most basic results from this field that we will use over
and over again.

One of the most important tools is the:

Theorem 2.4 Riemann Mapping Theorem. Let U be an open, simply
connected subset of C and suppose that U is not equal to C itself. Let zo € U.
Then there is an analytic map ¢ taking U onto the unit disk D in one-to-
one fashion and satisfying ¢(zy) = 0. Moreover, if we normalize so that
@' (z9) > 0, then the map ¢ is unique.

The importance of this result is that, whenever we encounter some dy-
namical behavior on an open simply connected set, we may transfer the
dynamics to the unit disk D via the Riemann map ¢. Many of the important
theorems in complex analysis are stated in terms of maps of the disk. A
principal example of this is the:

Theorem 2.5 Schwarz Lemma. Suppose F' : D — D is analytic and
F(0) =0. Then |F'(0)| <1 and, moreover, either |F(z)| < |z| for all z # 0,
or else F(z) = e - z for some 6 € R.



Note that, if F' is not a rotation, the condition |F(z)| < |z| guarantees
that all points in D move closer to 0 at each application of F' and so all orbits
in D tend to 0 under iteration of F'. Therefore the importance of this result
is the fact that either F' : D — D is either a rotation, or else all orbits in D
tend to the fixed point at 0.

We will often invoke the following modification of this result.

Corollary 2.6 Suppose U s a simply connected open set not equal to C

itself. Suppose further that F(U) C U. Then F has a fized point in U and,
moreover, all orbits of F' tend to this fixed point.

This is true since there is a fixed point in U by the Brouwer Fixed Point
Theorem. Then we can conjugate F' to a map of the disk via the Riemann
map ¢, and we may assume that the fixed point is sent to 0. Since the map
¢ o F o ¢! is analytic on D and fixes 0, the Schwarz Lemma applies. Since
F(U) C U, it follows that ¢ o F o ¢! cannot be a rotation, and so F must
have a globally attracting fixed point.

This is one of the principal differences between real and complex dy-
namics. In real dynamics we can have all sorts of dynamics inside a simply
connected region. For example, the classical horseshoe map may be defined
inside a simply connected region. For complex maps however, this is never
the case. We may only have a globally attracting fixed point or a rotation
domain in such a region. This is one of the reasons that complex dynamical
systems are so well understood.

There is another way to view this. On D, there is a very special metric
called the Poincaré metric. If F : D — D is analytic, then it turns out
that either F'is a strict contraction in the Poincaré metric, or else F' is an
isometry. This is often referred to as the Schwarz-Pick Lemma. Thus, by
the Riemann Mapping Theorem, we can transfer the Poincaré metric to any
simply connected domain in (but not equal to all of) C.

Perhaps the most important types of orbits are those that lie in the Julia
set which is named for the French mathematician Gaston Julia who first
studied these orbits around 1918. To define the Julia set, we need to make
a digression into the theory of normal families of functions. Let {G;} be a
family of analytic functions in C. Often, but not always, the G; will be the
iterates of a given function.

Definition 2.7 The family of functions {G;} is a normal family on an open
set U C C if every sequence of the G;’s has a subsequence that either



1. converges uniformly on compact subsets of U, or

2. converges uniformly to oo on compact subsets of U.

Recall that, in case 1, the subsequence converges to a function on U that
necessarily is analytic. By the Arzela-Ascoli theorem, the G; form a normal
family on U if the G; are equicontinuous (in the spherical metric) on compact
subsets of U. Another main tool from complex analysis is:

Theorem 2.8 Montel’s Theorem. Suppose the {G;} are a family of ana-
lytic functions on C and that there are two distinct values z, and z9 in C that
are never assumed by the G;. Then {G;} is a normal family of functions.

Example. Let D(z) = 22. Then the family of iterates of D, {D"} is
1. normal on any open subset of {z]|z| < 1};
2. normal on any open subset of {z]|z] > 1};

3. not normal on any open set that intersects the unit circle.

Indeed, in case 1, the D™ converge uniformly on compact subsets to 0. In
case 2, the D" converge uniformly on compact subsets to co. But in case 3,
there are open sets in U on which the D" converge either to 0 or to oo, and
hence this sequence does not converge to an analytic function.

Definition 2.9 A function E : C — C is entire if E(z) # oo for any z €
C and E is not a polynomial. Sometimes such functions are called entire
transcendental functions.

Our main goal in this paper is to study the dynamics of entire functions,
but we will occasionally deal with polynomials in order to contrast these
two cases. With the exception of Section 10, we will not treat meromorphic
functions, i.e., functions with poles.

One of the main differences between polynomials and entire functions is
the behavior at oco. For a polynomial P, we may extend P to the entire
Riemann sphere by defining P(00) = co. We have P'(c0) = 0, so that oo
is a superattracting fixed point. This can be seen by conjugating P via
#(z) = 1/z. The fixed point at oo is sent to 0 and then one calculates that

(¢oPog)(0)=0.

10



For an entire function E, we cannot extend F to oo continuously, never
mind analytically. Indeed, the behavior of E near oo is quite complicated.
This is illustrated by the:

Theorem 2.10 Great Picard Theorem. In any neighborhood of oo an
entire function assumes all values in C infinitely often with the possible ex-
ception of one value.

Example. Let E(z) = e*. A neighborhood of oo contains a region of the
form {z| |z| > r} for some r. This region contains infinitely many strips
of the form k7 < Im z < (k + 2)m, and each of these strips is mapped in
one-to-one fashion onto C — {0}.

For the record, oo is called an essential singularity of the entire function.

2.4  Role of the Singular Values

For entire functions, there are two types of singular values that play an im-
portant role in determining the dynamics. These are the critical and asymp-
totic values. A critical value is an image of a critical point, i.e., F'(zy) where
F' (Z()) =0.

Definition 2.11 The point zo € C is an asymptotic value of E if there is a
curve y(t) satisfying lim; , v(t) = 00 and limy_,o E(7(t)) = 2.

Example. The omitted value 0 is an asymptotic value for Ey(z) = \e?
since any curve 7(t) that satisfies lim; ,o, Re (7(t)) = —oo also satisfies
lim; , o, E(y(t)) = 0. Also, the point at oo is also an asymptotic value.

One of the main reasons that singular values are important is the fact
that any attracting fixed point must have a singular value in its immediate
basin of attraction; indeed, this is one of the major features that distinguishes
complex dynamics from other branches of discrete dynamical systems. The
basin of attraction of zy is the set of all points whose orbit tends to z.
The tmmediate basin of attraction of z; is the component of the basin that
contains zy. Basins of attraction for attracting n-cycles are defined using F"
instead of F.

Theorem 2.12 Role of the Singular Values Theorem. Suppose the
analytic function F has an attracting fived point or cycle. Then there is at
least one singular value in the immediate basin of attraction of this point.

11



Proof. To see why the immediate basin of the fixed point z, contains a
singular value, we argue by contradiction. We may assume that F'(z) # 0
for otherwise we are done. Let Uy be a bounded neighborhood of zy contained
in the immediate basin of zy and satistying F'(Uy) C Up. We can find such a
Uy using the linearization result for attracting fixed points.

We may assume also that F'is one-to-one on Uy. Now we pull back by a
branch of F~!: let U; be the preimage of U, that contains Uy. Now if U is
unbounded, we may find a curve (t) C U; with y(t) — 0o as ¢ — oo and
F(v(t)) approaching a limit in Uy. This yields an asymptotic value in Uy,
so it follows that U; must be bounded. Also, F'|U; must be one-to-one for
otherwise there would be a critical point in U; and therefore a critical value
in U().

Continuing in this fashion we construct U,,.; D U, for each n > 1 with
U,+1 bounded and F' : U, 1 — U,. Let W be the union of the U,. W is an
open set in C and we have F : W — W is one-to-one. Hence F~': W — W
is well-defined and analytic.

Now W # C for otherwise F' would be a Mobius transformation and
hence not entire. Also, there are (many more than) two points not in W,
since the other preimages of Uy do not lie in W. As a consequence, the
family of functions {F~"} is a normal family on W. Therefore the F~"
has a subsequence that converges to an analytic function on W. But each
F~" fixes zy whereas F~"(z) tends to the boundary of W as n — co. As a
consequence, the limit function is not even continuous. This contradiction
establishes the result.

O

Corollary 2.13 Suppose F' has at most n singular values. Then F' can have
at most n attracting cycles.

Example. The exponential function E)(z) = Ae* has no critical values and
only one asymptotic value, 0. Hence E) can have at most one attracting
cycle. If 0 < A < 1/e, the graph of E lies below that of Ey/, and so Ej
has a real attracting fixed point. Figure 5 shows that 0 is attracted to this
attracting fixed point.

Example. The sine family S)(z) = Asinz has no asymptotic values and
infinitely many critical points but only 2 critical values, £A. When |A| < 1
the origin is an attracting fixed point which must attract one critical value.
Since S, is odd, in fact 0 attracts both critical values, and so for these A-
values, 0 is the only attracting cycle.

12



A=1/e

A<1/e

Figure 5: The graphs of E) for A =1/e and A < 1/e.

2.5 The Julia Set

The most important orbits in a complex dynamical system lie in the Julia
set, named for Gaston Julia, who initiated the study of these sets in 1918.

Definition 2.14 Let F' : C — C be complex analytic. The Julia set of F,
denoted J(F'), is the set of points at which the family of iterates {F™} fails
to be a normal family.

Points in J(F') have orbits that are sensitive to initial conditions. If z €
J(F) and U is any neighborhood of z, then by Montel’s Theorem, UF™(U)
contains all points in C, with at most one exception. We think of this as
meaning that the Julia set is the chaotic regime for F', because orbits here
are extremely sensitive to initial conditions.

Example. For D(z) = 2%, J(D) is the unit circle. If U is a neighborhood
of z with |z| = 1, then we may always find a smaller neighborhood U’ of U
satisfying

U ={z]0; < Argz < 05,0 <71y < |2| <719}

It is then easy to see that [ D"(U’) covers C — {0}.
Note that repelling cycles always lie in the Julia set. To see this suppose

that F™(zy) = zo and |[(F™)'(20)| = A > 1. Then the sequence of analytic

13



functions F** cannot converge to oo in any neighborhood of z, since each
FF fixes zp. Also, F** cannot converge to an analytic function on any
neighborhood of zy since |(F¥7)'(2)] = A — oo as k — oo. So any limit
function would be nondifferentiable at zg.

Rationally indifferent periodic points also lie in the Julia set. Inside
the attracting petals, iterates of the map tend toward the cycle, but in the
repelling petals orbits move away. Hence we cannot have uniform convergence
of iterates in any neighborhood of the periodic point.

Example. The fixed point zg = 1 for E(z) = (1/e)e? is neutral with E'(zy) =
1. The web diagram shows that if z < 1, the orbit of x tends to 1, but if
x > 1, the orbit tends to co. Hence 1 € J(E). See Figure 1.

Example. The fixed point 0 for S(z) = sin z also satisfies S’(0) = 1. Orbits
on the real axis tend to 0 (or are eventually fixed at 0), but nonzero orbits on
the imaginary axis tend to oo. Again, we cannot have uniform convergence
in any neighborhood of 0.

Theorem 2.15 Properties of the Julia Set. The Julia set is
1. closed;
2. nonempty;
3. forward invariant (i.e., if z € J(F), then F(z) € J(F));
4. backward invariant;

b. equal to the closure of the set of repelling cycles of F.

The fact that J(F') is nonempty is surprisingly not so easy to show, at
least as far as I am aware. Properties 1, 3, and 4 are straightforward exercises.
Property 5 gives a more dynamical definition of the Julia set, so let’s prove
this part. We will prove this under the simplifying assumption that F' has a
repelling periodic point. Every example considered in this paper has such a
point, and indeed every analytic function has infinitely many such points.

Proof: By definition, the family of functions {F™} is not normal at any
point in J(F'). So we will show that there is a repelling periodic point in any
neighborhood of a point where {F™} fails to be normal. Toward that end,

14



suppose {F™} is not normal at p and let W be a neighborhood of p. We will
produce a repelling periodic point in .

Under our assumption, there exists a repelling periodic point zy some-
where. We may assume that z; is a fixed point for F'. Using the linearization
around this fixed point, there is a neighborhood Uj of 2z, such that F' : Uy — C
is a diffeomorphism onto its image which we may assume contains U,. Hence
F~! is well-defined on Uy and maps Uy inside itself. Let U; = F~(U,) and
note that U; 1 C U; and NU; = {2}

Since {F™} is not normal at p, there is a point z; € W and an integer n
such that F"(z;) = z,!. Similarly, since {F"} is not normal at z;, there is a
point z; € Uy and an integer m such that F™(z3) = 2z;. Hence F™1"(z5) = 2.

We now make the simplifying assumption that (F™™)(z5) # 0. If 25 is
a critical point for F™*" then some modifications to the following argument
are necessary. We leave these details to the reader. Since (F™™)'(z) # 0,
there is a neighborhood V' of z5 which is contained in Uy and that is mapped
diffeomorphically onto a neighborhood of z, by F™*". By adjusting V, we
may assume that F™(V) C W and that F™™ maps V diffeomorphically
onto U; for some j. It follows that F™*"*J is a diffeomorphism mapping
V onto Uy. Consequently, this map has an inverse which contracts Uy onto
V. There is a fixed point for F™*"+J in V which, by the Schwarz lemma,
must be repelling. The orbit of this repelling periodic point enters W, since
F™(V)) C W. This completes the proof.

|

One of the most interesting topological facts about Julia sets is the fol-

lowing:

Proposition 2.16 FEither the Julia set of F' is nowhere dense in the plane,
or else J(F) = C.

Indeed, if J(F') contains an open set U, then UF™(U) covers the whole
plane (except at most one point) and, by forward invariance, this set is
contained in J. We can exclude that nasty “except one point” too since
J(F) is closed.

As a remark, if F' is a polynomial, then J(F) can never be the entire
plane since all orbits in a neighborhood of oo tend to oo (so {F"} is normal
there). But we will see that there are many examples of entire functions for

120 cannot be the “exceptional point” (that is, the point not hit by F) since it is easy
to see that such a point has no preimages and so is a superattracting fixed point.

15



which J = C. Indeed, one of the most interesting aspects of entire dynamics
is the abrupt transition from nowhere dense Julia sets to Julia sets that are
the whole plane.

2.6 The Fatou Set

The complement of the Julia set is called the Fatou set (or stable set). At-
tracting cycles and their basins of attraction always lie in the Fatou set since
iterates here tend to the cycle and thus form a normal family.

If zo is a fixed point (or cycle) for which we have a Siegel disk, then z,
(and any point in the rotation domain) also lies in the Fatou set. To see this,
recall that F™ is conjugate in a neighborhood U of z; to z — €*™% for some
irrational fy. A subsequence F™ is then conjugate in U to irrational rotation
by 27n;6,. We think of 27n,;6, as a sequence of points on the unit circle.
As such, this sequence must have a limit point. Then the corresponding F™
tend to a map that is conjugate to rotation by this limiting angle.

Another type of region that lies in the Fatou set is a wandering domain.
This set is a component of the Fatou set that is never periodic or eventually
periodic, that is, this domain wanders forever.

Example. Let G)\(z) = z + Asinz where X\ is chosen as follows. The real
graph of G,(z) has infinitely many critical values, and we may choose A so
that there is an orbit that consists entirely of critical points and tends to
oo as shown in Figure 6. If x( lies on this orbit of critical points, then we
may choose a disk U about zy so that G(U) C U + 2x. It follows that the
orbit of any point in U tends to co. Thus U is a wandering domain provided
G%(U) lies in a different component of the Julia set for each n. This follows
from the following exercise.

Exercise. The vertical lines Re z = 2k7 for z € Z lie in the Julia set of G,.

Another type or region in the Fatou set is a Baker domain or domain at
oo. This is a set that is forward invariant and in which all orbits tend to oco.

Example. Let H(z) = z+ 2+ e *. Then any point in the half plane Re
z > 0 has orbit tending to oo. This is true since z + 2 moves z two units
to the right, but adding e™® moves z + 2 at most one unit in any direction.
Hence Re H(z) > Re z + 1 for Re z > 0. Therefore Re z > 0 is a domain at
0.
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Figure 6: The graph of G,(z) = z + Asin z.

Note that each example of a wandering domain and Baker domain features
a function with infinitely many singular values.

Finally, basins of attraction of parabolic periodic points also lie in the
Fatou set. These basins consist of all points whose orbits eventually enter an
attracting petal.

Example. For E(z) = (1/e)e*, we have seen that the half plane Re z < 1 is
mapped inside itself and that 1 is a neutral fixed point. Consequently, this
region (and all its preimages) lies in the basin of attraction of 1.

We now describe one of the fundamental theorems in complex dynamics,
the “No Wandering Domains” Theorem, due to Dennis Sullivan [Su|. The
version we will use is an extension to the entire case due independently to
Goldberg and Keen [GK] and Eremenko and Lyubich [EL]. This theorem
really should be called the:

Theorem 2.17 Classification of Stable Domains. Suppose E is an en-
tire function that has only finitely many singular values. Then every compo-
nent of the Fatou set is eventually periodic. Moreover, if U is a component
of the Fatou set that is periodic, then U is one of the following:

1. the basin of attraction of an attracting or superattracting cycle;

2. the basin of attraction of a rationally indifferent cycle;
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3. a Siegel disk.

And that’s it! There are no wandering domains, domains at infinity, or
any other type of Fatou set for entire functions with finitely many singular
values. Clearly, these kinds of maps deserve a name.

Definition 2.18 An entire function that has only finitely many singular val-
ues 1s called critically finite.

Luckily, everyone’s favorite entire functions are critically finite. This
includes the exponential (\e?), sine (Asinz), and cosine (\cosz) families,
where A € C.

3 Quadratic Dynamics

In this chapter we present a review of some well known (and a few not-so-well-
known) results involving the family of quadratic polynomials Q.(z) = 22 +c.
Our primary goal is to introduce the external rays in both the dynamical
and parameter planes and to show how these can be used to understand
some of the complicated structures that live in these planes. We will see the
“remnants” of these rays, the so-called hairs, when we look at Julia sets and
parameter planes for entire functions.

3.1 The Filled Julia set

For the quadratic family, the only singular value is the critical value ¢ = @Q.(0)
since 0 is the only critical point. Polynomials never have (finite) asymptotic
values.

Definition 3.1 The filled Julia set of Q., denoted K., is the set of points
whose orbits are bounded.

It is easy to check that the boundary of K, in C is the Julia set J(Q.).
Furthermore, oo is a superattracting fixed point for @)., so K, is compact
and we can use the linearization theorem to show that (). is conjugate to
Qo(z) = 2% in a neighborhood of co. That is, we can find a closed disk U
about co in C and an r > 1 together with an analytic homeomorphism

¢ : U = {z|[z] 27}
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such that ¢. o Q. = (¢.(2))?.

Now suppose that the orbit of 0 under (). is bounded. Then we can
extend the conjugacy ¢. to the entire exterior of K.. Here is how to do this.
Each point in U has exactly two preimages in @, (U). Similarly, each point
in {z||z] > r} has exactly two preimages under 2? (in {z||z| > /r}). Using
continuity, we can extend ¢, analytically to @;'(U) in a unique fashion.
The only impediment to this would be if ¢ € U. Then there would be only
one preimage of the critical value ¢ and therefore no way to extend ¢, as a
function.

So, as long as c lies in the filled Julia set we can continue this procedure
infinitely often and thus we have a conjugacy with 22 defined on the exterior
of K. and taking values in {z | |z| > 1}.

3.2 The Fundamental Dichotomy

These facts allow us to prove the following important result for quadratic
maps.

Theorem 3.2 The Fundamental Dichotomy. Suppose 0 € K.. Then
K, is connected. If 0 ¢ K., then K. is a Cantor set.

For the connectedness portion of this result, we have that, for each n,
Q."(U) is a closed disk in the Riemann sphere. Its complement is therefore
an open, simply connected subset of C. The closure of these subsets are
nested as n increases and hence their intersection is a closed, connected set.
Clearly, this intersection is K..

Now suppose Q7(0) — oco. We may assume (by pulling our original U
back enough times), that ¢ lies on the boundary of U. Now we pull back
once more. Every point in U (with the exception of ¢) has two preimages
symmetrically located about 0. The critical value has only one preimage,
namely 0, so the boundary of the complement of Q;*(U) is topologically a
closed figure eight curve.

Now the complement of Q_!(U) consists of two open, simply connected
regions which we denote by I, and I;. Each I; is mapped in one-to-one
fashion by @, onto the complement of U which we call V. Hence Q.(I;) =
V' D (o U I;) in its interior.

It follows that if z € K., then the entire orbit of z lies in Iy U I;. Thus
we can assign a sequence of symbols 0 and 1 to each z in the usual way:

S(z) = sos189 - - -
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where each s; is 0 or 1 and s; = 0if QI(z2) € Iy, s; = 1 if Q¥(z) € I,.
Another way to say this is as follows. Let P; be the inverse of ). on V'
that takes its values in I;. So Py maps V onto Iy and P, maps V onto I;.
We may then say that
S(z) = sps159.- -

if
z€ (| PyoPs,0...0F (V).
n=0

In fact, z = N2, Ps, 0...0 P, (V) since each P; is a strict contraction in the
Poincaré metric on V.

This then gives a one-to-one mapping from K. onto the space of sequences
of 0’s and 1’s. Standard arguments show that this map is continuous with
continuous inverse. Since the space of sequences is homeomorphic to a Cantor
set, we're done.

3.3 The Mandelbrot Set

The Fundamental Dichotomy is really quite amazing. It tells us that, for
quadratic maps, there are only two types of filled Julia sets: those that are
connected and those that are totally disconnected. There are no Julia sets
that consist of 2 or 20 or 200 disjoint pieces. Moreover, it is the orbit of the
critical value that determines which case we have. This leads to the definition
of the well-known Mandelbrot set.

Definition 3.3 The Mandelbrot set M 1is the set of all c-values for which
the orbit of 0 under Q). does not tend to co. FEquivalently, M 1is the set of
c-values for which the Julia set of Q. is connected.

The image of the Mandelbrot set has become somewhat of an icon in
complex dynamics. See Figure 7.

The visible bulbs in M correspond to c-values for which (). has an at-
tracting cycle of some given period. For example, the main central cardioid
in M consists of c-values for which ). has an attracting fixed point. This
can be seen by solving for the fixed points

P te=z
that are attracting

|Qe(2) = [22] < 1.
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Figure 7: The Mandelbrot set.

Solving these two equations simultaneously, we see that the boundary of this
region is given by
c=z—2°

where z = 2e?™. That is, the function
1., 1,
c(f) = _6271'10 _ _647r10
0) =35 1

parametrizes the boundary of the cardioid. At c(f), Q) has a fixed point
that is neutral; the derivative of Q) at this fixed point is e

For each rational value of #, there is a bulb tangent to the main cardioid
at ¢(f). For c-values in the bulb attached to the cardioid at ¢(p/q), Q. has
an attracting cycle of period q. We call this bulb the p/q bulb attached to
the main cardioid and denote it by B, /,.

It is known that, as ¢ passes from the main cardioid, through ¢(p/q), and
into B,/,, Q. undergoes a p/g-bifurcation. By this we mean: when c lies in
the main cardioid near ¢(p/q), Q. has an attracting fixed point with a nearby
repelling cycle of period ¢. At ¢(p/q) the attracting fixed point and repelling
cycle merge to produce the neutral fixed point with derivative e>*®/9. When
c lies in By /4, Q). now has an attracting cycle of period ¢ and a repelling fixed
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point. We will discuss these bulbs in more detail below, but first we pause
to take up one of the most important subjects in complex dynamics.

3.4 External Rays

Suppose K. is connected. We now have a conjugacy ¢. from the exterior of
K. to the exterior of the unit disk. In the language of the Riemann Mapping
Theorem, this map is the exterior Riemann map. The map ¢. conjugates
Q. in the exterior of K, to Qy(z) = 2% in {z]| |z| > 1}. In particular, since
2? preserves the straight rays # = constant, it follows that . preserves the
preimages of these rays.

Definition 3.4 The external ray of angle 0 is the preimage of the straight
ray 1> with r > 1 under ¢..

Thus we see that the action of (), in the exterior of K, is the same as the
action of doubling on the straight rays outside the unit circle. Of course, we
understand doubling completely (if not, see the Appendix to this section),
so the conjugacy implies that we understand the dynamics of (). completely
as well, at least outside of K..

Certain of the external rays “land” on the boundary of K.. That is, for
certain # values

: -1 2710
Lim ¢, (re™™)

exists. We call this point in J(Q.) the landing point of the external ray with
angle 6.

It is known that if J(Q.) is locally connected, then all rays actually land.
(This is a consequence of Carathéodory theory, since @), actually gives the
uniformization of the exterior of K,..) In this case, the conjugacy with 22
shows that Q.| J(Q.) is effectively a quotient of the squaring map.

The major importance of the external rays, however, does not lie in the
“dynamical plane.” Rather, the amazing results of Douady and Hubbard al-
low us to extend the exterior Riemann map to the exterior of the Mandelbrot
set. Define ®(c) = ¢.(c) for ¢ ¢ M. Then it is known [DH] that ® is an
analytic map that takes the exterior of the Mandelbrot set onto the exterior
of the unit disk in one-to-one fashion. In particular, the preimages of the
straight rays under ® are the external rays for M. We will discuss how these
rays land in a subsequent section.
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Figure 8: The 2/5 bulb.

3.5 Some Folk Theorems.

Now let’s pause to have some fun. Strictly speaking, the following sections
have nothing to do with our main topic, but they do at least illustrate the
power of the external rays of M. One of our major thrusts later will be to
develop a similar theory for the more difficult exponential case.

As we described above, the Mandelbrot set consists of a basic cardioid
shape (the attracting fixed point region) from which hang numerous “bulbs”
or “decorations.” The bulbs directly attached to the cardioid are the p/q
bulbs B(p/q).

One of the surprising folk theorems we discuss below is that we can rec-
ognize the p/g-bulb from the geometry of the bulb itself. That is, we can
read off dynamical information from the geometric information contained in
the Mandelbrot set.

For example, the 2/5 bulb is displayed in Figure 8. For any c-value in the
largest disk in this figure, (). has an attracting cycle with rotation number
2/5 about a central repelling fixed point. Note that the 2/5 bulb possesses an
antenna-like structure that features a junction point from which five spokes
emanate. One of these spokes is attached directly to the 2/5 bulb; we call this
spoke the principal spoke. Now look at the “smallest” of the non-principal
spokes. Note that this spoke is located, roughly speaking, 2/5 of a turn
in the counterclockwise direction from the principal spoke. This is how we
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Figure 9: The 3/7 bulb.

geometrically identify this bulb as the 2/5-bulb.

As another example, in Figure 9 we display the 3/7 bulb. Note that this
bulb has 7 spokes emanating from the junction point, and the smallest is
located 3/7 of a turn in the counterclockwise direction from the principal
spoke. This then is the folk theorem: You can recognize the p/q bulb by
locating the “smallest” spoke in the antenna and determining its location
relative to the principal spoke. Of course, the word “smallest” needs some
clarification here; later in this section we will make this notion precise. As
an additional disclaimer, this folk theorem is only about 80% true using the
Euclidean notion of “smallness” or Lebesgue measure. Our goal is to provide
a somewhat different framework in which this result is always true.

There is more to the story of interplay between the geometry of the Man-
delbrot set and the corresponding dynamics. In Figure 10, we display the
1/2 and 1/3 bulbs. The 1/2 bulb is the large bulb to the left; the 1/3 bulb
is the topmost bulb. In between these two bulbs are infinitely many smaller
bulbs, but the largest we recognize as the 2/5 bulb. Now note that 2/5 can
be obtained from 1/2 and 1/3 by “Farey addition”:

1 1 2

29375
That is, to obtain the largest bulb between two given bulbs (in a particular
ordering), we simply add the corresponding fractions just the way we always
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Figure 10: % $) % = %
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wanted to add them, namely by adding the numerators and adding the de-
nominators. This is the second of the folk theorems we discuss below. In
particular it follows that the size of bulbs is determined by the Farey tree.
For a discussion of the basic properties of the Farey tree, see the appendix
in this section.

As a second example, note that

and that the 5/12 bulb is the largest between the 2/5 and 3/7 bulbs. See
Figure 11.

Figure 11: %EB % = %

While we will not give complete proofs of each of these folk theorems in
this paper, we will indicate some of the combinatorial arguments involved in
making the statements precise. For more folk theorems and complete proofs,
we refer to [DM1].
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3.6 Landing Points of External Rays

Now we can begin to make precise the folk theorems mentioned above. In
order to do this, we will use some well known facts about both the Farey tree
and angle doubling mod 1. See the appendix to this section for more details
about these prerequisites.

Let O denote the exterior of the unit circle in the plane, i.e.,

O ={z] |2| > 1}.

As mentioned above, there is a unique analytic homeomorphism ® mapping
the exterior of the Mandelbrot set to O. The mapping ® takes positive reals
to positive reals. This mapping is the uniformization of the exterior of the
Mandelbrot set, or the exterior Riemann map.

The importance of ® stems from the fact that the image under ® ! of
the straight rays # = constant in O have dynamical significance. In the
Mandelbrot set, we define the external ray with external angle 6y to be the
image of =, under ®~'. It is known that an external ray whose angle 6,
is rational actually “lands” on M. That is

lim ®~'(re i)

r—1

exists and is a unique point on the boundary of M. This c-value is called
the landing point of the ray with angle 6.

For example, the ray with angle 0 lies on the real axis and lands on M
at the cusp of the main cardioid, namely the parameter ¢ = 1/4. Also, the
ray with angle 1/2 lies on the negative real axis and lands on M at the tip
of the “tail” of M which can be shown to be ¢ = —2.

Consider now the interior of M. The interior consists of infinitely many
simply connected regions. A bulb of M is a component of the interior of
M in which each c-value corresponds to a quadratic function which admits
an attracting cycle. The period of this cycle is constant over each bulb. In
many cases, a bulb is attached to a component of lower period at a unique
point called the root point of the component.

The important result of Douady and Hubbard [DH] is:

Theorem 3.5 Suppose a bulb B consists of c-values for which the quadratic
map has an attracting q-cycle. Then the root point of this bulb is the landing
point of exactly 2 rays, and the angles of each of these rays have period q
under doubling.
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Figure 12: Rays landing on the Mandelbrot set.

Thus, how the angles of the external rays of M are arranged determines
the ordering of the bulbs in M. For example, the large bulb directly to the
left of the main cardioid is the 1/2 bulb, so two rays with period 2 under
doubling must land there. Now the only angles with period 2 under doubling
are 1/3 and 2/3, so these are the angles of the rays that land at the root
point of By ;.

Now consider the 1/3 bulb atop the main cardioid. This bulb lies “be-
tween” the rays 0 and 1/3. There are only two angles between 0 and 1/3
that have period 3 under doubling, namely 1/7 and 2/7, so these are the rays
that land at the root point of Bys.

The 2/5 bulb lies between the 1/3 and 1/2 bulbs. Hence the rays that
land at this root point must have period 5 under doubling and lie between
2/7 and 1/3. The only angles that have this property are 9/31 and 10/31,
so these rays must land at the root point. See Figure 12.

These ideas allow us to measure the “largeness” or “smallness” of portions
of the Mandelbrot set. Suppose we have two rays with angles #_ and 6, that
both land at a point ¢, in the boundary of M.

28



Then, by the homeomorphism @, all rays with angles between #_ and 6,
must approach the component of M —{c,} cut off by 6_ and 6,. (We remark
that it is not known that all such rays actually land on M — indeed, this is
the major open conjecture about M.) Thus it is natural to measure the size
of this portion of M by the length of the interval [0_, 6, ].

The root point of the p/q bulb of M divides M into two sets. The
component containing the p/q bulbs is called the p/q limb. We can then
measure the size of the p/q limb if we know the angles of the two external
rays that land on the root point of the p/q bulb. This is the subject of the
next section.

3.7 Rays landing on the p/q bulb

In order to make the notion of “large” or “small” precise in the statement of
the folk theorems, we need a way to determine the angles of the rays landing
at the root point of By, We denote the angles of these two rays in binary

by s+(p/q), where s (p/q) < si(p/q). We call s (p/q) the lower angle of
By, and 5. (p/q) the upper angle.

As we will see, s+(p/q) is a string of ¢ digits (0 or 1) and so s+(p/q)
denotes the infinite repeating sequence whose basic block is s.. Douady and
Hubbard [DH] have a geometric method involving Julia sets to determine
these angles. Our method is more combinatorial and resembles algorithms
due to Atela [A], LaVaurs [Lav], and Lau and Schleicher [LS].

To describe this algorithm, let R,/,, denote rotation of the unit circle
through p/q turns, i.e.,

Rp/q(g) — 627ri(0+P/Q)_

We will consider the itineraries of points in the unit circle under R using two
different partitions of the circle.

The lower partition of the circle is defined as follows. Let I; = {#]0 <
0 <1-p/q}and I} ={0|1—p/q <O < 1}. Note that the boundary point 0
belongs to I; and —p/q = 1 — p/q belongs to I, . We then define s_(p/q) to
be the itinerary of p/q under R,, relative to this partition. We call s_(p/q)
the lower itinerary of p/q. That is, s_(p/q) = s1...s, where s; is either 0 or
1 and the digit s; = 0 iff R;f,/_q1 (p/q) € Iy . Otherwise, s; = 1.
For example, s_(1/3) = 001 since

I, = (0,2/3]
I = (2/3,1]
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and the orbit % — % —1— % liesin Iy, Iy, I;, respectively.
Similarly, s_(2/5) = 01001 since

Iy = (0,3/5]
I = (3/51]

and the orbitis 2 » 2 1 53 50— 2. ..
We also define the upper partition I and I as follows

I = [0,1-p/q)
I' = [1-p/g1).

The upper itinerary of p/q, s+(p/q), is then the itinerary of p/q relative
to this partition. Note that I and I3 differ from I; and Ij only at the
endpoints.

For example, s,(1/3) = 010 since the orbit is s =2 — 0--- and

Iy = [0,2/3)
I = [2/3,1).

This orbit starts in I, hops to I, and then returns to I before cycling.
For 2/5, we have

Iy = [0.3/5)
Ir = [3/5,1)

and s, (2/5) = 01010.

The following theorem provides the algorithm for computing the angles of
rays landing at the root point of the p/q bulb. For a proof, we refer to [DH]
or [DM1].

Theorem 3.6 The two rays landing at the root point of the p/q bulb are
s—(p/q) and s.(p/q).

Note that si(p/q) differ only in their last two digits (provided ¢ > 2).
Indeed we may write

s_(p/q) = s1...54201
s+(p/q) = s1...84210
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The reason for this is that the upper and lower itineraries are the same except
at RZ/_qZ(p/q) = —p/q and Rg/_q1 (p/q) = 0, which form the endpoints of the
two partitions of the circle.

We now define the size of the p/q limb to be the length of the interval
[s_(p/q),s+(p/q)]- That is, the size of the p/q limb is given by the “number”
of external rays that approach this limb. We may compute size of these bulbs

explicitly by using the fact that si(p/q) differ only in the last two digits.

Theorem 3.7 The size of the p/q limb is 1/(2? — 1). That is

1
29 — 1°

s+(p/a) —s-(p/q) =

To see this, just write the binary expansion of the difference in the form

1 1 1 11 1
sl =s-0/0) = G+ matmat (% + o7 + 3 +)
1 2 120
20-1 201 20 201
1

20 —1°

As we see in Figure 13, the visual size of the bulbs does indeed correspond
to the size as defined above.

3.8 The Size of Limbs and the Farey Tree

In this section we relate the size of a p/q limb to the size of the limbs corre-
sponding to the Farey parents of p/q. The following Proposition relates the
upper and lower itineraries of p/q and its Farey parents.

Proposition 3.8 Suppose

@ 7
0<-<<-x1
g 6

are the Farey parents of p/q. Then the lower itinerary s_(p/q) consists of the
first q digits of the upper angle s, (a/3) of the smaller parent, and the upper
itinerary s1(p/q) consists of the first q digits of the lower angle s (v/6) of

the larger parent.
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Figure 13: Size of the 2/5 and 1/3 limbs of M.

For a proof, we refer to [DM1].
In case one of the Farey parents are 0 or 1, we must modify the above
proposition.

Proposition 3.9 Suppose that a Farey parent of p/q is 0. Then the q digits
in the lower itinerary of p/q are given by

s_(p/q)=0...01.

If a Farey parent of p/q is 1, then we have
sy(p/q) =1...10.
We now sketch the proof of one of the folk theorems mentioned earlier.
Theorem 3.10 Suppose o/ < v/§ are the Farey parents of p/q. Then the

size of the p/q limb is larger than the size of any other limb between the o/
and v/§ limbs.
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Proof: Assume first that neither of the parents are 0 or 1. By the previous

Proposition, we have that s_(p/q) and s, (a/f) agree in their first ¢ digits.
Using these binary representations, we have

I - 5 alB < o

Similarly
1

s-(7/0) = s+(p/0) < -
This implies that the arc of rays between the p/q limb and either of its
parents’ limbs has length no larger than 1/27. Thus any limb between them
has size smaller than 1/29.

From the previous section, we know that

1
20 —1°

s+(p/q) — s-(p/q) =

As this quantity is larger than 1/27, it follows that the p/q limb attracts the
largest number of rays between its two parents.

In case one of the parents of 1/g is 0, then we have that the size of the 1/¢
bulb is 1/(27 — 1) as above while the gap between 0 and s_(p/q) = 0...01
is also 1/(29 — 1). But then any limb between the 1/¢ limb and the cusp of
the cardioid must have size strictly smaller than 1/(2¢ — 1), again showing
that the 1/¢ limb is the largest. The gap between the limbs of 1/¢ and its
other Farey parent 1/(¢ — 1) is handled as above. The case of Farey parent

1 is handled similarly.

3.9 Further Remarks

The technique of measuring the size of certain portions of the Mandelbrot
set by the length of the interval of rays that land on that portion provides
justification for other folk theorems involving the size of M. For example,
this is the same technique that is used to identify the p/q bulb using the
“lengths” of the spokes in its antenna. Once we know these rays, we can
easily compute the lengths of the various spokes.

As an example of this, it can be shown that the two rays that land at the
junction point of the antenna adjacent to the principal spoke are given by
s 53 and s;5_ where we have dropped the p/q for clarity. These two rays
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are therefore given by preperiodic binary sequences that begin to repeat only
after the gth entry.

This fact shows that the vast majority of rays that land on the p/q limb
actually approach the spokes of the antenna. For we have the following
ordering of the rays landing on the p/q bulb:

3 < 5_57 < 8,5- < 5.
It is easy to check using the above techniques that the length of the arc of
rays approaching the antenna between s_s; and s,.5_ is

1 2

20-1  24(20-1)

This number is much larger than the length of the arc between 5— and s_s
or between 5 and s;5_, each of which has length

1
24(20°1)

We can also use these two rays separating the principal spoke from the
rest of the antenna to determine a list of the ¢ rays that land on the junction
point. Then using the techniques above we can determine that the shortest is
located p/q turns in the counterclockwise direction from the principal spoke.
See [DM1] for details.

So the moral of the stories in this section is: there is a way, using some
simple geometry and dynamics, to understand large portions of the parameter
plane for quadratic polynomials. We shall see similar stories unfold for the
exponential map, though the dynamics will no longer be quite so simple.

3.10 Appendix: The Farey Tree

We recall here a few facts about the Farey tree. The Farey tree is a tree con-
taining all of the rationals between 0 and 1. At each stage of its construction,
the Farey tree consists of a finite list of rationals. Adjacent rationals in this
list are called Farey neighbors. The inductive step in the construction of the
tree is: Each pair of Farey neighbors produces a Farey child, which is the
rational between the two whose denominator is the smallest. Naturally, the
rationals that produce a Farey child are called its Farey parents.
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One of the most intriguing features of the Farey tree is that we obtain
Farey children by Farey addition. That is, the fraction between the Farey
neighbors o/ and /4 is given by

o+ 7y
B+6

o Y
BY5 T
That is, to obtain the fraction between two Farey neighbors whose denomina-
tor is the smallest, we simply add the numerators and add the denominators
of the parents to obtain the child.

We begin the construction of the tree with the pair of rationals 0 and 1
which we write as 0/1 and 1/1. Their child is 1/2, so the second stage of the

construction gives the list
0o 1 1

1 2 1
At the next stage we obtain two new Farey children

0 1 1 2 1

1 3 2 3 1

At generation four we find

1213231
3 5 2 5 3 4 1

= o
B |

It is a fact that the Farey tree contains all rationals. See [GT] or [F] for more
details.

One other fact about the Farey tree is that a./ and «/d are Farey neigh-
bors if and only if ad — y8 = +1. Consequently, we have

a v, 1
|B—5|—%-

This is easily proved by induction.

3.11 Appendix: Angle Doubling

In order to use the fundamental results of Douady and Hubbard [DH] re-
garding the Mandelbrot set we recall in this appendix some facts about the
doubling function. The doubling function is defined on the circle considered
as the reals modulo one and is given by D(#) = 26 mod 1.
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We need two facts about D:

Fact 1: The angle 6 is periodic under D iff  is a rational of the form p/q
(in lowest terms) with ¢ odd.

For example, the D-orbit of 1/3 is

1 2 1
__)__>_...
3 3 3

which has period 2. The rational 1/7 has period 3 under doubling:

1
J— _) — _) — _) — e e
(A Y R
while 1/5 has period 4:
1 N 2 _} 4 N 3 N 1
5 5 5 5 5
The rationals with even denominator are eventually periodic but not pe-
riodic. For example, 1/6 lies on an eventual 2-cycle
1 1 2 1
J— _) — _) — _) — e e .
6 3 3 3
and 1/8 is eventually fixed:
1 1 1
- -—=-=1—=1.--
8 4 2
A second important fact about doubling is that we can read off the binary
expansion of # by noting the itinerary of # in the circle relative to D. To
define the itinerary, we denote the upper semicircle 0 < 6 < 1/2 by I, and
the lower semicircle 1/2 < 6 < 1 by I;. Given 6, we attach an infinite string
of 0’s and 1’s to @ as follows: The itinerary of 6 is B(#) = (sps152...) where
s; is either 0 or 1 and s; = 0 if D(0) € Iy, s; = 1 if D¥(0) € I,. That is, we
simply watch the orbit of # in the circle under doubling and assign 0 or 1 to
the itinerary whenever D7(f) lands in the arc I or 1.

Fact 2: The itinerary B() is the binary expansion of 6.
For example, if § = 1/3, then 0 € I, while D(0) € I, and D*(9) = 6.

Hence B(1/3) is the repeating sequence 01, which of course is the binary
expansion of 1/3. Similarly, B(1/7) = 001 while B(1/5) = 0011.
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4 Exponential Dynamics

In this chapter we begin the study of the most important entire function, the
complex exponential F)(z) = Ae®. Our goal is to begin to paint the picture
of the parameter plane or bifurcation diagram for this family, the analogue
of the Mandelbrot set for the quadratic family. First seen around 1984 [BR],
[D3], [EL], this set and the Mandelbrot set are very different.

4.1 Computing the Julia set

One of the principal differences between quadratic and exponential dynamics
deals with orbits that tend to oo. For polynomials, any orbit that tends to
oo is necessarily in the Fatou set as the point at oo is a superattracting fixed
point. This is not the case for E:

Theorem 4.1 Suppose EY(z) — oo. Then z € J(Ey). In fact, J(E)) is the
closure of the set of points that escape to oc.

Proof. If the orbit of z lies in the Fatou set, then the classification of stable
domains says that the orbit of z must eventually enter an attracting basin
or a Siegel disk. Thus, escaping orbits do not lie in the Fatou set.

Now there must be at least one escaping orbit for E,, since, roughly
speaking,many points in the far right half plane are mapped further to the
right. Thus, given any z € J(F)), and any neighborhood of z, by Montel’s
Theorem the iterates of Ey map this neighborhood over C—{0}. In particular,
there is a preimage of the escaping orbit in this neighborhood, and so the
escaping points are dense in the Julia set of F).

O

Remark. In general, escaping points for entire functions do not lie in the
Julia set, as our earlier examples of wandering domains and domains at
infinity show. But critically finite entire functions do have this property.

This fact gives us a method to compute the Julia sets for complex expo-
nentials. If the orbit of z tends to oo, then it must do so with Re E}(2) — oo.
Hence we paint the picture of a Julia set using the following algorithm.

Algorithm

1. Compute the orbit of z up to N iterations.
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2. If the orbit of z enters the region Rez > 50 at iteration j < N, then
“color” z with a color corresponding to j. Then z € J(E)).

3. If the orbit never enters this half plane, then color z black and declare
that z ¢ J(E)).

It is interesting to note that this very crude algorithm actually yields quite
accurate pictures of the Julia set. See [Du]. As we will see later, “most” of
the points in the Julia set actually have orbits that tend to co. Since €% is
quite large, we capture at least some of these escape orbits by tracking them
into the half plane Re z > 50.

4.2 Explosions

The complex exponential family has only one singular value, namely the
asymptotic value at 0. Just as in the quadratic case, we use the orbit of this
point to paint the picture of the parameter plane for F,. We do not get as
sharp a dichotomy in the exponential case, as the topology of the Julia sets
for E\ do not fall neatly into two distinct categories as in the quadratic case.
However, the Classification of Stable Domains Theorem does allow us to say
something depending upon the fate of the orbit of 0.

Theorem 4.2 1. Suppose the orbit of 0 tends to oo under E). Then
J(E,) =C.

2. Suppose the orbit of 0 under E is preperiodic. Then J(E)) = C.

3. Suppose that E\ has an attracting or neutral periodic orbit. Then J(E))
is a nowhere dense subset of C. In fact, J(E)) is confined to a half-
plane of the form Rez > v for some v € R.

Proof. In the first two cases, the Classification of Stable Domains shows that
the Fatou set must be empty, as any stable domain must absorb a singular
value. In the final case, the orbit of 0 tends to the attracting or neutral
periodic orbit. Hence there is a far left half-plane that is mapped into the
basin of this cycle, so J(E)) must lie to the right of this plane.

O

Example. As we have seen, F) has an attracting fixed point if 0 < A < 1/e.
When )\ = 1/e, this fixed point turns rationally indifferent. When A\ > 1/e,
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Figure 14: The Julia sets for A = 1/e and A\ = 0.4

there are no fixed points on the real axis and the orbit of 0 tends to oo.
Hence J(E)) is nowhere dense if A < 1/e while J(E,) = C when A > 1/e. In
fact, as we will see shortly, J(FE)) is contained in the half-plane Re z > 1 for
0 < A < 1/e. So we have an ezplosion when X passes through 1/e: Suddenly
the Julia set changes from occupying a small portion of the plane to filling
the entire plane! See Figure 14. In these images, the black region is the
Fatou set. (In the case of A = 0.4 we see some black only because we iterated
only 50 times to produce these images.) Also, it appears that the Julia set
for A < 1/e contains open sets. This, of course, is not the case. We will
discuss this artifact of our computing algorithm in Chapter 5.

The explosion in the Julia set is really quite remarkable. We know that
repelling periodic points are dense in J(E)). As A passes through 1/e, all
repelling periodic points move continuously, and only one new repelling pe-
riodic point is born. Yet, when A < 1/e, all of these periodic points occupy
a (rather small subset of) the right half plane, but when A > 1/e, they are
dense in C. Julia sets for Fy, may change in an interesting manner as A varies.

The explosion in J(E)) is a global consequence of a relatively simple
complex bifurcation, the saddle-node bifurcation. As A approaches 1/e from
below, an attracting and a repelling fixed point come together and merge
to form the neutral fixed point at A = 1/e. When A\ becomes larger than
1/e, two new fixed points emerge, both of which are repelling with complex
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A<le A=1lle A>1/e

Figure 15: The local saddle-node bifurcation at A = 1/e.

derivatives. The local picture of this bifurcation is shown in Figure 15. We
will see that similar “global” bifurcations almost always accompany simple
bifurcations like the saddle-node or period-doubling.

4.3 Misiurewicz Points

In case the orbit of 0 is preperiodic, J(E)) = C and we say that X is a
Misiurewicz point. For example, A = 2kni is a Misiurewicz point if £k € Z
since

0 +— 2kmi — 2kmi - -.

Similarly, A = (2k + 1) is also a Misiurewicz point since
0— (2k + V)mi — —(2k + 1)mi — —(2k + 1)mi.

Misiurewicz points play the same role in the parameter plane for F, as
the junction points in the Mandelbrot set.

4.4 Hyperbolic Components of Period 1-3

Clearly, when FE) has an attracting cycle, there is an open set about A in
the bifurcation diagram in which all of the corresponding exponentials have
an attracting cycle of the same period. The maximal such open connected
region in the A-plane is called a hyperbolic component.
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Figure 16: The attracting fixed point region C}.

The set of A-values for which E) has an attracting fixed point is, as in
the case of the quadratic family, cardioid-like. For E, has an attracting fixed
point if

E\(z) = X =2z

Ei(z) = X =(
where |(| < 1. These equations yield

A=¢eS, I¢ < 1.

This region is a cardioid C} in the plane as depicted in Figure 16.

Note that, as A\ traverses the boundary of C;, the multiplier ( wraps
once around the unit circle. Hence we expect period-n bifurcations to occur
whenever ( is an n* root of unity just as in the case of the Mandelbrot set.
Indeed, when A =1/e, ( =1 and we have the saddle node bifurcation.

Exercise. Show that when A = —e, the exponential family undergoes a
period doubling bifurcation.

We now turn to the attracting period 2 region, C5. This region occupies
a large region in the left half plane. For each v < 0,1 > 0, define

Zyy={A€C|ReX <v,|[Im) <n}.
Zy,n is a closed half strip in the left portion of the parameter plane.

Proposition 4.3 For each n € R, there is v = v(n) < 0 such that if
A€ Z,, then
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[

Re z =Re A/2

Figure 17: E3(W)) C Wj.

1. E) has an attracting two-cycle, and

2. Wy ={z | Re 2 < Re(\/2)} is contained in the basin of attraction of
the two-cycle.

Proof. Fix n > 0 and suppose that [Im A\| < 7. Define
c=c(\) = |\ exp(Re (\/2)).
Note that |Alc(A) — 0 and |Re A|c(A) — 0 as ReA — —oo since |[Im }| is
bounded.
We may choose v = v(n) such that, if A € Z,,,, then
|A|ce® < (|Re A| +n)ce® < |ReA|/4

since (|Re A| + n)ce® tends to 0 as Re A — —oc.
We claim that E3 maps W, inside itself. To see this, first note that
E\(W,) is a punctured disk of radius ¢ centered at 0. On this disk

|EA(2)| = |Ex(2)] = Al exp(Re 2)
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which is at most |A|e€. Clearly, E,(0) = A, so points z € E,(W)) are mapped
a maximum distance of

[Ex(2) = Al 2= 0] max |E(z)|

2EEX\(W))
|Ale€ - ¢

<
< |Re Al/4.

away from A under E), and thus well to the left of the line Rez = Re \/2.
See Figure 17.

As a consequence, F%(W,) is contained in the interior of Wy provided
A € Z,,. By the Schwarz lemma, E? has an attracting fixed point in W)
and, moreover, each point in W), tends to this point under iteration of F3.
This fixed point gives an attracting 2-cycle for E).

O

Now we turn to the period three regions. Unlike C; and C5, the set Cj
has infinitely many components.

Let i = a + 47 with a sufficiently large. We claim that the map E, has
an attracting cycle of period 3. To see this, we first note that the real part
of E/,(0) satisfies

ReE,(0) = a
ReEZ(O) ~ —ae’

Thus
\Ez(O) | ~ ae™ "

which is very close to 0 when a is large.

Let Bjs denote the ball of radius ¢ centered at the origin. Then EJ(B;)
contains a ball whose radius is on the order of ad centered at y = E,(0) if
j = 1; on the order of ae® - ad centered at Eﬁ(O) if j = 2; and on the order
of ae™*" - ae® - ad centered at Ej(0) if j = 3. One checks easily that this
latter radius is much smaller than ¢ for 0 on the order of 1/a. Moreover, the
distance from E3(0) to 0 is much smaller than ¢. Consequently, E3 maps Bs
inside itself, and so E,, has an attracting cycle of period 3.

Exercise. Consider v = a + (2k + 1)mi for a large and k € Z. Show that E,
has an attracting cycle of period 3.
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Figure 18: The parameter plane for ).

Consequently, there are open sets that contain the portions of the hor-
izontal line Im z = (2k + 1)7 in the far right half plane that give A-values
for which F) has an attracting cycle of period 3. In fact all of these sets are
distinct.

Thus the bifurcation diagram or parameter plane for the exponential fam-
ily is quite different from that of the quadratic map. See Figures 20 and 21.
The small cardioid in the center of Figure 18 is ('}, the large region to the
left is C5; and the large horizontal black regions tending to infinity in the
right half plane make up components of C's. A portion of C; is magnified in
Figure 19, and further zooms are in Figures 20 and 21.

4.5 Hyperbolic Components with Higher Periods

Suppose zy = zp(A) is an attracting periodic point for E). We write z; =
Fi(z). Let Cj denote the set of A\-values for which Ey has an attracting
cycle of period £ > 3. We claim that each component of C is unbounded
and simply connected. To prove this, we first need a lemma.

Lemma 4.4 Let U C C) be open with U compact and 0 ¢ U. Then there
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Figure 20: A zoom into the previous figure just above C}.
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Figure 21: A further zoom.

ezists constants c1,co such that, if A € U, then ¢ < |zj(A)| < ¢ for j =
... k—1.

Proof. Suppose some |z;(A)| = 0o as A — Ag. Let D, (Ag) denote the ball of
radius 7 about \g in the parameter plane. For each A € D,()\g) N Cy, there
is at least one z;(\) for which |z;(\)| < 1. This follows from the Chain Rule
and the fact that F’(z;) = 241 for all . Then

cz = _max A B3 ()]

is the required upper bound. Similar arguments give a lower bound.
O

On Cy we have the “multiplier map.” This is the function x : Cy, — D
where D is the open unit disk and

X(A) = Ex(z()-

Proposition 4.5 Fach component of Cy is simply connected.

46



Proof. Let G,,(A\) = E}(0); {G,} is a family of entire functions. Let C be
a component of Cy,y C C, a simple closed curve bounding a region D, and
U, a small neighborhood of v in C. We will show that D C C.

Since U C C, the functions {G,x} converge to the periodic point zy(\)
on U. By the Lemma, |2()\)| < ca < 0o on U, so it follows that the {Gx}
converge on all of D, and the limit function determines a period & periodic
point z(A) for all A. By the maximum principle, [x(A)| < 1 on D, where
X(A) is the multiplier.

O

Proposition 4.6 If k > 2, each component of Cy is unbounded.

Proof. Let C be a relatively compact component of C. We know that x(\)
is bounded away from 0. Therefore, if \; A € C — C, then |x()\)| = 1.

In order to see that x(C) is closed, we take a sequence of points in this
set and see that they have a limit point in the set. Consider the sequence
x(A;). If we look the sequence of )\;, it will have limit \ either in C — C or
C. In the former case, we will have z;(\;) — 2j()). Then, E%(z}) = 2. The
eigenvalue map at A cannot lie inside the unit circle (otherwise, z; would be
attracting, and hence A € C). In the latter case, x(\) lies inside the unit
circle. Thus, x(C) is a relatively closed set in D.

But since x is analytic on C, the image of C is also open. Hence x(C) =
D, but x(\) # 0if £ > 2, since x(A) is bounded away form zero.

O

We remark that the period two region is unique in that it is the only
period other than one for which there is a unique component in Cy. All
larger periods have infinitely many components.

Problem. Does each component of Cj have only one boundary component?

One may actually say quite a bit more about the eigenvalue map y: Cy —
D when k > 2. The proof of the following Theorem involves one of the
main tools in complex dynamics, the measurable Riemann Mapping Theorem
[Ahl].

Theorem 4.7 Let C' be a connected component of Cy with k > 2. Let D be
the open unit disk in the plane. Then x:C — D* = D — {0} is a universal
covering.
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Figure 22: The Julia set for A = 1/e.

5 Cantor Bouquets

For quadratic polynomials, as we have seen, there are basically two types
of Julia sets: Cantor sets and Julia sets that are connected. For critically
finite entire functions there is a similar dichotomy: either the Julia set is the
entire plane or else it is nowhere dense and contains Cantor bouquets. In
this section we will sketch the construction of a simple Cantor bouquet for
the exponential map F(z) = Ae* where ) is real and satisfies 0 < A < 1/e.
This construction is easily extended to the case of general \. Much of the
work in this section was done in collaboration with Clara Bodelon, Michael
Hayes, Michal Krych, Gareth Roberts, Lisa Goldberg, and John Hubbard
[Bol]. [Bo2].

In Figure 22, we display the Julia set for E;/. The complement of the
Julia set is displayed in black. It appears that this Julia set contains large
open sets, but this in fact is not the case. The Julia set actually consists of
uncountably many curves or “hairs” extending to oo in the right half plane.

Each of the “fingers” in this Figure seems to have many smaller fingers
protruding from them.

As we zoom in to this image, we see more and more of the self-similar
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Figure 23: Magnification of the Julia set for A = 1/e.

structure, as each finger generates more and more fingers. In fact, each of
these fingers consists of a cluster of hairs that are packed together so tightly
that the resulting set has Hausdorff dimension 2 [McM1].

5.1 The Idea of the Construction

Here is a rough idea of the construction of a Cantor bouquet. We will “tighten
up” some of these ideas in ensuing sections.

Let F(z) = (1/e)e*. As we have seen, E has a neutral fixed point at 1
on the real axis, and E'(1) = 1. The vertical line Re z = 1 is mapped to the
circle of radius 1 centered at the origin. In fact, F is a contraction in the
half plane H to the left of this line, since

1
|E'(2)| = ;exp(Re z) <1

if z € H. Consequently, all points in H have orbits that tend to 1. Hence
this half plane lies in the Fatou set. We will try to paint the picture of the
Julia set of £ by painting instead its complement, the Fatou set.
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Figure 24: The preimage of H consists of H and the shaded region.

Since the half plane H is forward invariant under F, we can obtain the
entire Fatou set by considering all preimages of this half plane. Now the first
preimage of H certainly contains the horizontal lines Im z = (2k + 1)m, Re
z > 1, for each integer k, since E maps these lines to the negative real axis
which lies in H. Hence there are open neighborhoods of each of these lines
that lie in the Fatou set. The first preimage of H is shown in Figure 24. The
complement of E~'(H) consists of infinitely many “fingers.” The fingers are
2kmi translates of each other, and each is mapped onto the complementary
half plane Re z > 1.

We denote the fingers in the complement of E~!(H) by C; with j € Z,
where C; contains the half line Im 2 = 2j7, Re 2z > 1, which is mapped
into the positive real axis. That is, the C; are indexed by the integers in
order of increasing imaginary part. Note that C; is contained within the
strip —5 +2jm < Im 2 < § + 2j7.

Now each C} is mapped in one-to-one fashion onto the entire half plane
Re z > 1. Consequently each C; contains a preimage of each other Cj. Each
of these preimages forms a subfinger which extends to the right in the half
plane H. See Figure 25. The complement of these subfingers necessarily lies
in the Fatou set.

Now we continue inductively. Each subfinger is mapped onto one of the
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Figure 25: The second preimage of H in one of the fingers C;.

original fingers by E. Consequently, there are infinitely many sub-subfingers
which are mapped to the C;’s by E?. So at each stage we remove the com-
plement of infinitely many subfingers from each remaining finger.

This process is reminiscent of the construction of the Cantor set in Sec-
tion 3.2. There we removed the complements of pairs of disks; here we remove
the complement of infinitely many fingers. As a result, after performing this
operation infinitely many times, we do not end up with points. Rather, the
intersection of all of these fingers is a simple curve extending to oo.

This collection of curves forms the Julia set. £ permutes these curves
and each curve consists of a well-defined endpoint together with a “hair”
that extends to co. It is tempting to think of this structure as a “Cantor set
of curves,” i.e., a product of the set of endpoints and the half-line. However,
this is not the case as the set of endpoints is not closed.

Note that we can assign symbolic sequences to each point on these curves.
We simply watch which of the C;’s these orbit of the point lies in after each
iteration and assign the corresponding index j. That is, to each hair in the
Julia set we attach an infinite sequence sys;s,... where s; € Z and s; = k
if the ;' iterate of the hair lies in C;. The sequence sys;sy. .. is called the
itinerary of the curve.

For example, the portion of the real line {z |z > 1} lies in the Julia set
since all points (except 1) tend to oo under iteration, not to the fixed point,
and this hair has itinerary (000...).

Another temptation is to say that there is a hair corresponding to ev-
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ery sequence SypsiSs.... This, unfortunately, is not true either, as certain
sequences simply grow too quickly to correspond to orbits of F. It is known
[Dev| that a sequence (sgs15 . ..) is allowable in the sense that it corresponds
to a point in J(E)) if and only if there exists 2 € R such that |27s;| < E’(z)
for each j. Here, E(z) = €*.

So this is a rough picture of J(F): a “hairy” object extending toward oo
in the right-half plane. We call this object a Cantor bouquet. We will see
that this bouquet has some rather interesting topological properties as we
investigate further.

5.2 Cantor N-Bouquets

In this section we begin the construction of a Cantor bouquet. We first
construct a Cantor set on which E) is conjugate to the shift map on 2N +1
symbols.

The graph of E) (see Figure 26) shows that E) has two fixed points on
the real axis, an attracting fixed point at ¢, and a repelling fixed point at
P, With 0 < ¢, < py. Note that gy < —log A < p, since

E\(qx) < 1= Ej(=log ) < E}\(py)-

Fix a real number 7, satisfying —log A < ¢, < p, and observe that, if Re
z > /), then
|EL(2)| = AeReZ > Aeb > > 1

for some constant p > 1. Thus E), is “expanding” in the half plane Re z > /.

Note also that £, maps the half plane Re z < ¢, inside itself, in fact to
the disk of radius E\(£,) centered at 0, since E\(¢)) < ¢5. Now E) has a
fixed point in this half plane, namely ¢,. See Figure 27. It follows from the
Corollary to the Schwarz lemma that all orbits in this half plane tend to ¢y,
and so the Julia set of E) is contained in the right-half plane Re z > /,.

We will now construct a collection of invariant Cantor sets for E in the
right-half plane Re z > ¢, on which E) is conjugate to the one-sided shift
map on 2N + 1 symbols. Fix an integer NV > 1. Consider the rectangle By
bounded as follows:

1. on the left by Re z = ¥,;

2. above and below by Im z = £(2N + 1)7;
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A=1/e

A<1/e

Figure 26: The graphs of E) for A=1/e and A < 1/e.

Figure 27: E) maps the half plane Re z < /¢, inside the disk.
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Figure 28: Construction of the R;

3. on the right by Re z = r) where r satisfies Ae™ > r) + (2N + 1)7.

The inequality in part 3 guarantees that F, maps the right-hand edge of
the rectangle to a circle of radius \e™ centered at 0 that contains the entire
rectangle By in its interior. Note also that E) maps By onto the annular
region {z | Ae® < |z| < Xe™} and that By is contained in the interior of this
annulus.

For each integer ¢+ with —/N <7 < N, consider the subrectangle R; C By
defined by ¢y < Re z < 7y and (2i — 1)7 < Im 2z < (2 + 1)m. Note that
E\ maps each R; onto the annular region above, and that |E(z)| > u > 1.
Moreover, if we restrict E, to the interior of R; we obtain an expanding
analytic homeomorphism that maps the interior of R; onto a region that
covers all of By. See Figure 28. As a consequence, we may define an analytic
branch of the inverse of E), L,;, that takes By into R; for each 7. Clearly,
L, ; is a contraction for each 7. In particular, there is a constant v < 1 such
that |L) ;(z)| < v for all i and all z in By.

Now define

Ay = {z € By|Ei(z) € By for j =0,1,2,.. .},

that is, Ay is the set of points whose orbits remain for all iterations in By.
Let ¥y denote the space of infinite sequences s = (s¢s152...) where each s;
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is an integer, —N < s; < N. Endow Xy with the product topology. For
each s € X, we identify a unique point in Ay via

¢(8) = ,,,}i_{{.lo LA;‘SO © LA:SI 00 LA;Sn (Z)

where z is any point in By. The fact that ¢(s) is a unique point follows from
the fact that each L, ;, is a contraction in By. In fact ¢(s) is independent of
z, and ¢ defines a homeomorphism between ¥y and Ay. Moreover, ¢ gives
a conjugacy between the shift map on the sequence space ¥y and E,|Ay.

Since |E}(2)| > p > 1forall z € Ay, it follows that Ay is a hyperbolic set.
Moreover, we have an increasing sequence of these Cantor sets Ay C Ay C .. ..
Since each point in Ay lies in the complement of the basin of attraction of
q», it follows that Ay C J(E)). We have proved:

Theorem 5.1 Suppose 0 < A < 1/e. Then the set of points Ay whose orbit
remains for all time in the rectangle By is a Cantor set in J(E\). The action
of Ex on this Cantor set is conjugate to the shift map on 2N + 1 symbols.

We next claim that each point z; = ¢(s) in one of the A; comes with
a unique “hair” attached. This hair is a curve associated with a natural
parametrization
hys:[1,00) = C

that satisfies
1. hys(1) = zg;
2. hy s is a homeomorphism;
3. If t # 1, then Re E}(hys(t)) — oo as n — oo
4. For each t, hy4(t) lies in the horizontal strip

(2s9 — ) < Im 2z < (259 + 1)
5. Ex(has(t)) = hao(s)(E1/e(t)) where o(s) denotes the shift applied to
the sequence s.

By condition 3, the orbit of ) 4(¢) tends to co. Hence this point does not
lie in the basin of attraction of ¢, and as a consequence each point on a hair
also lies in the Julia set.
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To define hy, recall that E,/, has a unique fixed point at 1 and that
Eije:[1,00) — [1,00). If ¢ > 1, then E7, (f) — oo as n — oco. Recall
that L, ,, is the branch of the inverse of E, that will now take values in the
horizontal strip given by

(2s; — )w < Im 2z < (28; + 1).

Then define
has(t) = nh_{{}o Lysoo...0Lxs, , (E{L/e (t))-

It can be shown that h, , has all of the properties listed above. See [DK].
Thus, for each N > 1, we have a map

Hy: Xy X [1,00) — C.

This map is also a homeomorphism. We call the image of Hy a Cantor
N-bouquet and denote it by B n.

These Cantor N-bouquets form the skeleton of the Julia set. Indeed,
every repelling periodic point has bounded itinerary, and hence lies in some
By n for some N. In particular, such a point lies at the endpoint of a hair
in some Cantor N-bouquet (and hence any M-bouquet for M > N). This
means that the N-bouquets are dense in the Julia set. So

J(E\) = Closure of UY_; By n-

We call the closure of the union of the N-bouquets a Cantor bouquet.

Now there are points in the Cantor bouquet that do not lie in By 5 for
any N. Indeed, there are many points whose itineraries are unbounded. To
understand these points, we need to introduce the notion of a straight brush.
This is the topic of the following section.

5.3 Straight Brushes

To describe more completely the structure of a Cantor bouquet, we introduce
the notion of a straight brush due to Aarts and Oversteegen [AO].

To each irrational number {, we assign an infinite string of integers
noning ... as follows. We will break up the real line into open intervals
Inony..n, Which have the following properties
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]-' Inonk o Ino...nk+1;

2. The endpoints of I, ,, are rational;

Now there are many ways to do this. We choose the following method
based on the Farey tree. Inductively, we first define I, = (k,k + 1). Given
Ing..n, We define I, ,, ; as follows. Let

a v
Ino...nk = <E’ 5) :

Let po/qo = (a+7)/(B + 9), the Farey child of «/8 and 7/§. Let p, /g, be
the Farey child of p,_1/¢,—1 and /6 for n > 0, and let p,—1/¢,—1 be the
Farey child for o/ and p,, /¢, for n < 0. We then set I,,,. »,; to be the open

interval (p;/qj,Pj+1/qj+1)-
Example. I, = (0,1). The Farey child of 0/1 and 1/11is 1/2, so po/qo = 1/2.

Then pi /g1 = 5B 1 =2/3,p2/ee =31 =2, and pp/gn =n+1/n+2 for
n > 0.

For the remaining n we have

/ B 0@1_1
b-1/4—1 = 1 5= 3
/ _ 0@1_1
P—2/q—2 = 1 371
1
Pn/Qn = ——

Therefore, if n > 0,

I _(n+1 n+2)
T \n+2'n+3

and if n <0,

1 1
IOn:< ) )
—n+2 —n+1

See Figure 29. Note that we exhaust all of the rationals via this procedure,
so each irrational is contained in a unique I, ...

We now define a straight brush.
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Figure 29: Construction of Iy,.

Definition 5.2 A straight brush B is a subset of [0,00) X N, where N is a
dense subset of irrationals. B has the following 3 properties.

1. B is “hairy” in the following sense. If (y,a) € B, then there exists
@ Yo < y such that (t,) € B iff t > yo. That is, the “hair” (t, o)
15 contained in B where t > y,. Yo is called the endpoint of the hair
corresponding to a.

2. Given an endpoint (Yo, o) € B there are sequences B, T a and v, | «
in N such that (yg,,0n) = (Ya, @) and (Yy,,Yn) = (Ya,«). That is,
any endpoint of a hair in B is the limit of endpoints of other hairs from
both above and below.

3. B is a closed subset of R?.

Exercise. For any rational number v and any sequence of irrationals o, € N
with «,, — v, show that the hairs [y,, , a,] must tend to [0o,v] in [0, 00) X R.

Exercise. Show that condition 2 in the definition of a straight brush may
be changed to: if (y,«) is any point in B (y need not be the endpoint of
the a-hair), then there are sequences (3, 1T a, 7, | « so that the sequences

(Yg,s Bn) = (y, @) and (Yy,,7n) = (v, @) in B.

Exercise. Let (y,«) € B and suppose y is not the endpoint y,. Prove
that (y, @) is inaccessible in R? in the sense that there is no continuous curve
v :[0,1] — R? such that () ¢ B for 0 <t < 1 and v(1) = (y, a).

Exercise. Prove that (y,, @) is accessible in R?.

These exercises show that a straight brush is a remarkable object from
the topological point of view. Let’s view a straight brush as a subset of the

98



Riemann sphere and set B* = B U 00, i.e., the straight brush with the point
at infinity added. Let £ denote the set of endpoints of B, and let £* = £Uoo.
Then we have the following result, due to Mayer [Mal:

Theorem 5.3 The set £* is a connected set, but £ is totally disconnected.

That is, the set £* is a connected set, but if we remove just one point
form this set, the resulting set is totally disconnected. Topology really is a
weird subject!

The reason for this is that, if we draw the straight line in the plane (v, t)
where v is a fixed rational, and then we adjoin the point at infinity, we find
a disconnection of £. This, however, is not a disconnection of £*. Moreover,
the fact that any non-endpoint in B is inaccessible shows that we cannot
disconnect £* by any other curve.

Remark. Aarts and Oversteegen have shown that any two straight brushes
are ambiently homeomorphic, i.e., there is a homeomorphism of R? taking
one brush onto the other. This leads to a formal definition of a Cantor
bouquet.

Definition 5.4 A Cantor bouquet is a subset of C that is homeomorphic to
a straight brush (with oo mapped to o).

Our main goal in this section is to sketch a proof of the following result:
Theorem 5.5 Suppose 0 < A < 1/e. Then J(E)) is a Cantor bouget.

Proof. To construct the homeomorphism between the brush and J(FE)) we
first introduce symbolic dynamics. Recall that E has a repelling fixed point
px > 0 in R and that the half plane Re z < p, lies in the Fatou set. Similarly
the horizontal strips

g+2k7r<1mz<g+(2k+1)7r

are contained in the Fatou set since E, maps these strips to Re z < 0 which
is contained in Re z < p,.
We denote by Sy the closed halfstrip given by

Rez > py and —g—f—ZkWSIszg—f—Zlm.
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e

Figure 30: The itinerary of z is 0,1, —1,.. ..

2
El(z).

Note that these strips contain the Julia set since the complement of the strips
lies in the Fatou set.
Given z € J(E)), we define the itinerary of z, S(z), as usual by

S(z) = s98189 - - -

where s; € Z and s; = k iff E{(z) € Sy. Note that S(2) is an infinite string
of integers that indicates the order in which the orbit of z visits the S;. We
will associate to z the irrational number given by the itinerary of z (and the
decomposition of the irrationals described above). This will determine the
hair in the straight brush to which z is mapped. See Figure 30. Thus we
need only define the y-value along this hair. This takes a little work.

We will construct a sequence of rectangles Ry(j) for each j,k > 0. The
point EJ(z) will be contained in Ry(j) for each k > 0. And we will have
Ry.1(j) C Rg(j) for each j and k. Each Ry(j) will have sides parallel to the
axes and be contained in a strip S,. Finally each Ry(j) will have height .
Since the Ry(j) are nested with respect to &, the intersection 3, Ry (j) will
be a nonempty rectangle of height 7 that contains EJ(z). We then define
h(z) to be the real part of the left hand edge of this limiting rectangle.
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Figure 31: Construction of Ry(0) and Ry(1).

To begin the construction, we set Ro(j) to be the square centered at
Ef\(z) with sidelength 7 and contained in the appropriate strip S,. Observe
that E\(Ry(j)) D Ro(j +1). Indeed, the image of Ry(j) is an annulus whose
inner radius is e=™/?|F{*'(2)| and outer radius e™/?|F{*'(2)|. Now e™/? > 4
and e ™2 < 1/4 so the image annulus is much larger than Ry(j + 1). See
Figure 31.

It follows that we may find a narrower rectangle R;(j) strictly contained
in Ry(j) having the property that the height of R;(j) is 7 and the image
E\(R1(j)) just covers Ro(j + 1). That is, R;(j) is the smallest rectangle in
Ry(j) whose image annulus is just wide enough so that Ry(j + 1) fits inside.
See Figure 32. Note that E4(z) € Ry(j).

Continue inductively by setting Ry (j) to be the subrectangle of Ry_;(j)
whose image just covers Ry_1(j + 1). The Ri(j) are clearly nested for each
fixed j.

Example. Suppose z = p,. We have that Ry(j) is the square bounded by
Re z = py = 7/2 and Im z = +7/2 for each j. One may check that, for each
J, N2y Ry (j) is the strip bounded by Re z = p, and Re z = ( where the
circle of radius \e¢ passes through ¢ & iw/2. See Figure 33.
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Figure 32: Construction of R;(0).
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Figure 33: The intersection of R;(0).

62



Suppose z has itinerary S(z) = s¢s152.... Let I(S(z)) denote the irra-
tional number determined by the sequence S(z) as above. Then set ¢(z) =
(h(2),1(S(2))). Then, as shown in [AO], ¢ is a homeomorphism onto a
straight brush.

5.4 Connectedness Properties of Cantor Bouquets

We call the set of endpoints of a Cantor bouquet the crown. Since a Cantor
bouquet is homeomorphic to a straight brush with the points at co coinciding,
it follows that any Cantor bouquet has the amazing connectedness property
that the crown together with co is connected, but the crown alone is to-
tally disconnected. Note also that the bouquet is nowhere locally connected
(except at 00).

It can be shown that the construction above works for any exponential
for which there exists an attracting or neutral periodic point. However, in
the general case, some of the hairs in the Cantor bouquet may be attached
to the same point in the crown. We will discuss this phenomenon in detail
in Section 8.

McMullen [McM] has shown that the Hausdorff dimension of the Cantor
bouquet constructed above is 2 but its Lebesgue measure is zero. This ac-
counts for why figures 22 and 23 seem to have open regions in the Julia set.
Also, Viana [V] has shown that each of the hairs in the Cantor bouquet is
actually a C'*° curve.

Cantor bouquets arise in many critically finite entire maps. In order to
see this, suppose all singular points of F' lie in some disk B, of radius r
centered at the origin. Consider the preimage F!(C — B,) and let U be any
component of this set. Now F' maps U analytically onto C — B, without
singular values, so F' must be a universal covering. As such, F' acts like an
exponential map. If, in fact, U is disjoint from C — B, and F has sufficient
growth in U, it can be shown (see [DT]) that there is an invariant Cantor
bouquet for Fin U. For a specific example dealing with the complex standard
map z — z + w + esin z we refer to [Fa].

Exercise. Construct a similar Cantor bouquet for the map Sy(z) = Asin z
when 0 < A < 1. Hint: The rectangles will now be arranged vertically and
there will be two bouquets: one in the upper half plane and one in the lower.
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5.5 Uniformization of the Attracting Basin

The basin of attraction {2, of F is an open, dense, and simply connected sub-
set of the Riemann sphere. Hence the Riemann Mapping Theorem guarantees
the existence of a uniformization ¢,: D — ). Given such a uniformization,
it is natural to ask if the uniformizing map extends to the boundary of D.

In order to extend ¢, to the boundary, we need that the image of a
straight ray re? where 6 is constant under ¢, converges to a single point
as r — 1. It is known that if the boundary of the uniformizing region is
locally connected, then in fact ¢, does extend continuously to D. On the
other hand, if the boundary of the region is not locally connected, then not
all rays need converge (though a full measure set of them must converge).
In our case, the boundary of €2, is nowhere locally connected (except at co).
However, it is a fact that all rays do converge. In fact, they land at precisely
the endpoints of the Cantor bouquet. See [DG|. This means that we can
induce a map on the set of endpoints, but that map is necesarily nowhere
continuous [Pi].

Exercise. Show that if we normalize the Riemann map ¢, so that 0 is
mapped to 0, then the induced map ¢, 1 o E\ o ¢, on the unit disk is given

>y (T
T,(z) =exp (z (1—}——2)> :

Here p is a parameter that lies in the upper half plane and depends upon A.
Exercise. Discuss the dynamics of 7}, on the boundary of the unit disk.

Remark. While the Cantor bouquets constructed in this exercise are home-
omorphic to those for E), McMullen has shown [McM1] that the Lebesgue
measure of the Cantor bouquet in the exponential case is zero whereas it is
infinite in the case of the sine function. The rough reason for this is, in the
case of sine, we have two Cantor bouquets, so most orbits tend to infinity
by jumping back and forth between these two bouquets. So there are lots
of additional itineraries. In the exponential case, orbit that tend to infinity
just do so by heading to the right.

We have seen that a Cantor bouquet is a very interesting object from the
topological point of view. But there is more to this story. For Karpinska has
shown the following remarkable result [Kar]:

Theorem 5.6 The Julia set of E) with 0 < A\ < 1/e divides into two dis-
joint subsets: the “small” set consisting of the endpoints and the “large” set
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consisting of all the other points, i.e., the stems without the endpoints. The
Hausdorff dimension of the set of stems is 1, but the Hausdorff dimension of
the “smaller” set of endpoints is 2!

6 Indecomposable Continua

As we have seen, the Julia set of the exponential function E,(z) = Ae* is
a rich structure from the topological point of view. For many values of A,
the Julia set contains Cantor bouquets. For other values of A, the Julia
set is the entire plane. Now it might appear that this type of Julia set,
while quite chaotic dynamically, is “tame” topologically. As we will see in
this section, this is far from the truth: There are invariant sets for £ that
are homeomorphic to complicated sets known as indecomposable continua.
Specifically, we will investigate in this section the dynamics of E when A is
real and A > 1/e. As we have seen, the Julia set of E) is the entire plane in
this case.
Consider the horizontal strip

S={z|0<Im 2z <7}

(or its symmetric image under z — Z). The exponential map F) takes the
boundary of S to the real axis and the interior of S to the upper half plane.
Thus, E) maps certain points outside of S while other points remain in S
after one application of E). Our goal is to investigate the set of points whose
entire orbit lie in S. Call this set A. The set A is clearly invariant under FE.
There is a natural way to compactify this set in the plane to obtain a new
set I'. Moreover, the exponential map extends to I' in a natural way. Our
main results in this section include:

Theorem 6.1 I' is an indecomposable continuum.

Moreover, we will see that A is constructed in similar fashion to a family
of indecomposable continua known as Knaster continua.

As we will show in Section 6.2, the topology of A is quite intricate. Despite
this, we will show that the dynamics of £ on A is quite tame. Specifically,
we will prove:

Theorem 6.2 FE) has a unique repelling fized point wy € A, and the a-limit
set of all points in A is wy. On the other hand, if z € A, z # w,, then the
w-limit set of z 1s either
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1. the point at oo, or

2. the orbit of 0 under E\ together with the point at oo.

Thus we see that E) possesses an interesting mixture of topology and dy-
namics in the case where the Julia set is the whole plane. When J = C, the
dynamics of E) are quite chaotic, but the overall topology is tame. On our
invariant set A, however, it is the topology that is rich, but the dynamics are
tame.

6.1 Topological Preliminaries

In this section we review some of the basic topological ideas associated with
indecomposable continua. See [Ku] for a more extensive introduction to these
concepts.

Recall that a continuum is a compact, connected space. A continuum is
decomposable if it is the union of two proper subcontinua (we emphasize the
fact that these subcontinua are not disjoint but rather overlap). Otherwise,
the continuum is indecomposable. One famous example of an indecomposable
continuum is the Knaster continuum, K. One way to construct this set is to
begin with the Cantor middle-thirds set sitting on the real axis in the plane
between £ = 0 and £ = 1. Then draw the semi-circles lying in the upper half
plane with center at (1/2,0) that connect each pair of points in the Cantor
set that are equidistant from 1/2. Next draw all semicircles in the lower half
plane that have, for each n > 1, centers at (5/(2-3"), 0) and pass through
each point in the Cantor set lying in the interval

2/3" <z <1/3"7%

The resulting set is partially depicted in Figure 34.

For a proof that this set is indecomposable, we refer to [Ku]. Dynamically,
this set appears as the closure of the unstable manifold of Smale’s horseshoe
map (see [Bal, [Sm]).

Note that the curve passing through the origin in this set is dense, since it
passes through each of the endpoints of the Cantor set. It also accumulates
everywhere upon itself. Such a phenomenon gives a criterion for a continuum
to be indecomposable, as was shown by S. Curry. See his paper [Cu] for a
proof.

66



Figure 34: The Knaster Continuum.

Theorem 6.3 Suppose X is a one-dimensional nonseparating plane contin-
uum which is the closure of a ray that limits upon itself. Then X is inde-
composable.

Another view of the Knaster continuum which is intimately related to our
own construction is as follows. Begin with the unit square Sy in the plane.
Next remove a “canal” C; from Sy whose boundary lies within a distance
1/3 of each boundary point of Sy as depicted in Figure 2. Call this set S;.
Next remove a new canal C5 from S;. This time the boundary of Cy should
be within 1/9 of the boundary of S; as depicted in Figure 35. It is possible
to continue this construction inductively in such a way that the resulting set
is homeomorphic to the Knaster continuum.

6.2 Construction of A

Recall that the strip S is given by {z | 0 < Im (z) < 7w}. Note that E) maps
S in one-to-one fashion onto {z | Im z > 0} — {0}. Hence E}* is defined on
S — {0} and, in fact, E, " is defined for all n on S — {orbit of 0}. We will
always assume that E," means E) " restricted to this subset of S.
Define
A ={z| E}(z) € S for all n > 0}.
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Figure 35: A different construction of the Knaster Continuum.

If z € A it follows immediately that E}(z) € S for all n € Z provided z does
not lie on the forward orbit of 0. Our goal is to understand the structure of
A. Toward that end we define L,, to be the set of points in S that leave S at
precisely the n'® iteration of Ey. That is,

L,={2€ S| Ei(z) € Sfor0<i<nbut E}(z) ¢ S}.

Let B, be the boundary of L,,.

Recall that E, maps a vertical segment in S to a semi-circle in the upper
half plane centered at 0 with endpoints in R. Either this semi-circle is com-
pletely contained in S or else an open arc lies outside S. As a consequence,
L, is an open, simply connected region which extends to co toward the right
in S as shown in Figure 36. There is a natural parametrization v;: R — B;
defined by

E\(1(t)) =t +im.

As a consequence,
lim Re v (t) = oc.

t—£o0

If ¢ > 0 is large, the segment Re z = ¢ in S meets S — L; in two vertical
segments v, and v_ with Im v_ > Im v,. E) maps v_ to an arc of a circle in
SN{z|Re z < 0} while E\ maps vy to an arc of a circle in SN{z|Rez > 0}.
As a consequence, if ¢ is large, v, meets Ly in an open interval. Since
Ly = E;'(Ly), it follows that L, is an open simply connected subset of S
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Figure 36: Construction of the L,,.

that extends to oo in the right half plane below L, at least in the far right
half-plane.

Continuing inductively, we see that L, is an open, simply connected sub-
set of S that extends to co toward the right in S. We may also parametrize
the boundary B, of L, by v,:R — B,, where

E?(ya(t)) =t +im

as before. Again
lim Re v,(t) = oo.

t—+oo

Since each L, is open, it follows that A is a closed subset of S.
Proposition 6.4 Let J, = U2, B;. Then J, is dense in A for each n > 0.

Proof. Let z € A and suppose z € B; for any ¢. Let U be an open connected
neighborhood of 2. Fix n > 0. Since Ei(z) € S for all 4, we may choose a
connected neighborhood V' C U of z such that Ei(V) C S fori=0,...,n.

Now the family of functions { E%} is not normal on V| since z belongs to
the Julia set of E\. Consequently, U, E% (V) covers C — {0}. In particular,
there is m > n such that ET*(V') meets the exterior of S. Since ET'(z) € S,
it follows that EY'(V) meets the boundary of S. Applying E,™, we see that
B, meets V.
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In fact, it follows that for any z € A and any neighborhood U of z, all but
finitely many of the B,,, meet V. This follows from the fact that F\ has fixed
points outside of S (in fact one such point in each horizontal strip of width
2m—see [DK]), so we may assume that E{*(V') contains this fixed point for
all sufficiently large m. In particular, we have shown:

Proposition 6.5 Let z € A and suppose that V' is any connected neighbor-
hood of z. Then ET (V') meets the boundary of S for all sufficiently large
m.

Proposition 6.6 A is a connected subset of S.

Proof. Let G be the union of the boundaries of the L; for all 7. Since A is
the closure of G, it suffices to show that GG is connected. Suppose that this
is not true. Then we can write GG as the union of two closed and disjoint sets
A and B. One of A or B must contain infinitely many of the boundaries of
the L;. Say A does. But then, if b € B, the previous proposition guarantees
that infinitely many of these boundaries meet any neighborhood of b. Hence
b belongs to the closure of A. This contradiction establishes the result.
We can now prove:

Theorem 6.7 There is a natural compactification I' of A that makes I' into
an indecomposable continuum.

Proof. We first compactify A by adjoining the backward orbit of 0. To do
this we identify the “points” (—oc,0) and (—oo,7) in S: this gives E;*(0).
We then identify the points (co,7) and lim;_,_o i (t). This gives E;?(0).
For each n > 1 we identify

lim ,, (¢)

t—o0
and

Jim v (2)

to yield F, "~1(0). This augmented space I' may easily be embedded in the
plane. See Figure 37. Moreover, if we extend the B; and the lines y = 0 and
y = m in the natural way to include these new points, then this yields a curve
which accumulates everywhere on itself but does not separate the plane. See
the proposition above. By the theorem of S. Curry [Cul, it follows that T is
indecomposable.
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Figure 37: Embedding I" in the plane.

O

As a consequence of this theorem, A must contain uncountably many

composants (see [Ku], p. 213). In fact, in [DK] it is shown that A contains
uncountably many curves.

6.3 Dynamics on A

In this section we describe completely the dynamics of Ey on A.

Proposition 6.8 There ezists a unique fized point wy in S if A > 1/e.
Moreover, wy, is repelling and, if z € S—orbit of 0, E\"(z) = wy as n — 00.

Proof. First consider the equation
eVt siny = y.

Since ycoty — 1 as y — 0 and Ae > 1, we have \e?““*Ysiny > y for y
small and positive. Since the left-hand side of this equation vanishes when
y = m/2, it follows that this equation has at least one solution y, in the
interval 0 < y < /2.

Let ), = y,coty,. Then one may easily check that wy = x, + iy, is a
fixed point for F) in the interior of S. Since the interior of S is conformally
equivalent to a disk and E) ! is holomorphic, it follows from the Schwarz
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Lemma that w) is an attracting fixed point for the restriction of E;' to S
and that E\"(z) — w, for all z € S.

Remarks.

1. Thus the a-limit set of any point in A is w,.

2. The bound A > 1/e is necessary for this result, as we have seen that F)
has two fixed points on the real axis for any positive A < 1/e. These fixed
points coalesce at 1 as A — 1/e and then separate into a pair of conjugate
fixed points, one of which lies in S.

We now describe the w-limit set of any point in A. Clearly, if z € B,, then
E}*(2) € R and so the w-limit set for z is infinity.

Theorem 6.9 Suppose z € A and z # wy, z & B, for any n. Then the
w-limit set of z is the orbit of 0 under E\ together with the point at infinity.

We first need a lemma.

Lemma 6.10 Suppose z € A, z # wy. Then EY(z) approaches the boundary
of S as n — oc.

Proof. Let h be the uniformization of the interior of S taking S to the open
unit disk and wy to 0. Recall that E5' is well defined on S and takes S inside
itself. Then g = ho E5' o h™! is an analytic map of the open disk strictly
inside itself with a fixed point at 0. This fixed point is therefore attracting
by the Schwarz Lemma. Moreover, if |z| > 0 we have |g(z)| < |z|. As a
consequence, if {z,} is an orbit in A, we have |h(2,41)| > |h(2,)|, and so
|h(25,)| = 1 as n — oo. This completes the proof of the lemma.
O
The remainder of the proof is essentially contained in [DK] (see pp. 45-
49). In that paper it is shown that there is a “quadrilateral” @) containing a
neighborhood of 0 in R as depicted in Figure 5. The set ) has the following
properties:

1. If z € A—U, B, and z # w,, then the forward orbit of z meets @
infinitely often.

2. @ contains infinitely many closed “rectangles” Ry, Ryi1, Rgyo, ... for
some k > 1 having the property that if z € R;, then E(z) € @ but
Fi(z) ¢ Qfor 0 <i<j.
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Figure 38: The return map on Q).

3. If z ¢ Uj2, Rj, then z € L, for some n.

4. E{(Rj) is a “horseshoe” shaped region lying below R; in () as depicted
in Figure 3.

5. lim;_,, E{(R;) = {0}.

As a consequence of these facts, any point in A has orbit that meets the
UR,; infinitely often. We may thus define a return map

O: AN (UjRj) — UjRj NnA

by .
®(2) = E{(2)

if z € R;. By item 4, ®(z) lies in some R, with k£ > j. By item 5, it follows
that
" (2) » 0

for any z € AN Q. Consequently, the w-limit set of z contains the orbit of 0
and infinity.

For the opposite containment, suppose that the forward orbit of z accu-
mulates on a point q. By the Lemma, ¢ lies in the boundary of S. Now the
orbit of ¢ must also accumulate on the preimages of ¢q. If ¢ does not lie on
the orbit of 0, then these preimages form an infinite set, and some points in
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this set lie on the boundaries of the L,. But these points lie in the interior of
S, and this contradicts the Lemma. Thus the orbit of z can only accumulate
in the finite plane on points on the orbit of 0. Since the “preimage” of 0 is
infinity, the orbit also accumulates at infinity. This completes the proof.

O

6.4 Final Comments and Questions

A very interesting result of Lyubich [Ly| asserts that the exponential map
e?, though quite chaotic, is not ergodic. Indeed, a full measure set of points
have orbits that accumulate only on the orbit of 0 together with the point
at oo.

Douady and Goldberg [DoG] have shown that if A,y > 1/e, then E)
and E, are not topologically conjugate. Each such map possesses invariant
indecomposable continua Ay and A, in S, and the dynamics on each are
similar, as shown above. However, we conjecture:

Conjecture: If \,u > 1/e, XA # p, then Ay and A, are not homeomorphic.

We expect that each A, yields a different Knaster-like continuum (when
suitably compactified).

There are many other ways that indecomposable continua arise in the
dynamics of the exponential family. For example, in [DJ], it is shown that,
for 0 < A < 1/e, the set of points that correspond to uncountably many
other itineraries are also indecomposable continua. These itineraries consist
on infinitely many blocks of all zeroes whose length grows quickly. These
sets are no longer invariant and all orbits in them accumulate on the orbit
of 0 together with oo.

In [DJM] other kinds of indecomposable continua were shown to exist in
the case of a Misiurewicz parameter value, for example, when A\ = 274. In the
Julia set for this map, there are indecomposable continua for which a pair of
“hairs” accumulate on one another. There are also other instances where the
set of points that share the same itinerary is an indecomposable continuum
together with a separate hair that accumulates on this continuum.

7 The Parameter Plane

In this chapter, we continue to paint the picture of the parameter plane for
the exponential family. Thus far we have concentrated on the hyperbolic
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components Cy in this picture, the A-values for which E) has an attracting
cycle of period k. Here we concentrate on the structure of the set of A-values
for which E%(0) — oo, so that J(E,) = C. First recall the following facts
about the parameter plane from section 4:

1. The attracting fixed point region C' is a cardioid-shaped region sur-
rounding the origin.

2. (5 is a simply connected region filling a large portion of the left half
plane.

3. When k£ > 3, Cy consists of infinitely many components, each of which
is simply connected and extends to oo in the right half plane.

4. The portion of the real axis (1/e,00) consists of A-values for which
E}(0) — oo, so that J(E,) = C.

Thus we have two different types of regions in the parameter plane: the
hyperbolic components where the Julia set is a nowhere dense collection of
tangled hairs (usually), and the line (1/e,00) C RT. Our goal in this section
is to showthat there are uncountably many other “hairs” in the parameter
plane like (1/e,00) on which the Julia set is the entire plane, and that,
moreover, these hairs and the hyperbolic components are arranged in a rather
interesting manner.

7.1 Structural Instability

In order to underscore the complexity of the parameter plane of \e?, we first
describe the dynamics of E) when A lies off R but very close to 1. That
is, we consider perturbations of e* within the exponential family. We shall
show that, in every neighborhood of A = 1, there are parameters for which
FE)\ has an attracting cycle of period n for infinitely many different values of
n, and there are also infinitely many other parameters for which the orbit of
0 is preperiodic of different periods (so J(E,) = C). As a consequence, the
parameter plane for E) is extremely complicated near this parameter, and,
in particular, e® is (highly) structurally unstable.

As we have seen, it is the orbit of 0 that determines much of the dynamics
of E,. If F) has an attracting periodic orbit, 0 is attracted to this orbit. If
E?(0) — oo or if 0 is preperiodic, then J(E)) = C. So let us consider the
orbit of 0 for each A\ = €? with # > 0 and small. Intuitively, multiplication
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Figure 39: The orbit of 0 under Ejy, A = e%.

by € gives successive points on the orbit of 0 a slight counterclockwise twist
after each application of the exponential function. So we expect the orbit of
0 to “climb” in the imaginary direction when 6 # 0. That being the case, it
is entirely possible that, for certain #’s, the orbit of 0 will land on the line
Im z = w. If this occurs, then the next iterate lands in the far left hand
half plane, and one more iterate carries 0 back extremely close to itself. See
Figure 39.

We emphasize that 0 comes back extremely close to itself, for the real
parts of the orbit of 0 form a sequence which is approximately given by

0,1,e,e%e%,...,EM " 1(e), —E"(e), e i)
and, of course, e~¥"() is extremely small. We also observe that it should be
possible to select values 6,, of the parameter with n sufficiently large so that
0 hops to the far left half plane precisely at iteration n.

Let us make all of this a little more more precise. We will write FE, = FEjy,
with 0 < 6 < 7/2. Let S be the strip determined by Re 2 > 2, 0 < Im z < 7.
Let zg = x¢ + 1yg. We write

2z = 21(0) = z1 + iy1 = Ep(2).

Lemma 7.1 There exists 0; with 0 < 0; < 7/2 such that, if 0 < 6§ < 0, and
both zy,z, € S, then

1. 21(0) > 2z9 + 1,

2. y1(0) > 2yo.
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Proof. First let § = 0. Then e*siny, < 7, so that siny, < me 2.

cos yg > 0.8. Therefore,

Hence

1 = e" cosyy > 0.8e™ > 2z + 1.5.

Also,
Y1 = e*sinyy > e®yo/2 > yoe? /2 > 3y,.

So (i) and (ii) certainly hold for Ey. Now, for 6 # 0, we note that Ey(z) =
e Ey(z). If z, Eg(z) € S, then it follows that Ey(z) € S as well. Hence it
suffices to find 6; such that, if 8 < 6;, then

(1) 0 < Re(w — e"w) < 1/2,

(2) Im(e?w) > Tm(w)

for all w € S such that ew € S. (2) clearly holds if 8, < /2. For (i), we
observe that if e?w € S, then Re w < 7/ sin . Therefore,

0 < Re(w — €w) < (Re w)(1 — cosf) + msinb

< m(1—cosf)/sinf + mwsinb.

Since the right side approaches 0 as # — 0, we may choose #; small enough
so that (i) holds for 6 < 6.
O
We remark that there exists 6, > 0 such that Eg(O) € Sfor 0 <6 <0,
From now on we assume that 6 < min(6;, 6s).
Define G,,(0) = EF(0). G1(0) traces out the unit circle, while G5(0) gives
a cardioid-like curve, part of which meets S. See Figure 40. Let v9(6) denote
the piece of G5(f) in S. Note that v9(#) meets y = 0 at EZ(0) = e. Let
7 (6) denote the connected component of S N G,(#) that contains Ef(0).
For n sufficiently large (numerically, n > 3), 7,(f) connects y =0toy =7
in S. More precisely, for n > 3, there exists 6,, such that Im (~,(0,)) = ,
Re (7,(6,,)) > 2, and for all § with 0 < 6 < 6,,, 7,(f) € S. See Figure 10.
This can be seen by applying the Lemma repeatedly to Fy(v9(0)). If 6 > 0,
there exists n = n(f) such that Ej(v,(0)) € S.
Clearly, exp(y,(6)) is a curve in the upper half-plane that connects the
positive real axis to the negative real axis. Since 0 < 6 < 7/2, the curve
Ep(7.(0)) = € exp(7,(#)) also meets the negative real axis. When 6 = 0,,,
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Figure 40: The curves G, () for n = 1,2, 3.

0

the image Ey(7,(0)) is negative and real. Denote this point by 2,1, so that
Znt1 = E;TH0). Also let z; = E}(0) = x; +iy; for 0 < j < n+ 1. Note that
20 =0,|z1] =1, and z; € S for 2 < j < n.

Lemma 7.2 We have exp(z,) > 2+ X7 (z; +1).

Proof. We have z, > z; + 1. Moreover, by the previous Lemma, for 2 <
Jj <n—1, we have z;,; > 2z, + 1. Hence,

n _
2+ (z;+1) < Zxﬁl—xj + Ty + T, +3=21,+3<e™
i=1 i=2

since x,, > 2.
O
We now construct a disk about 0 which is contracted inside itself by Ej 2.
Let rpy1 = 1 and define 7, = ry41/e"e for 0 < k < n. Note that r; < 1 for
j <mandre=(e"""II]_e"%)"". Let B; be the disk of radius r; about z;.

Proposition 7.3 If z € By, then Eg(z) € B; for 5 <n+1. Moreover,

(B ()

n
< en-l—l H eacj.
Jj=0

Proof. Suppose |z — z;| < r;. Let M; = sup |Ej(z)|. Then, for j <n,
Ey(2) — zjp1| < Myry < [Xe®tTilr; < etip; < e%e-rj =T,
i 3T’ j j =T

since r; < 1. Consequently, Fy maps B; strictly inside B;;{, and we have
|Ej)(2)| < e%Tl. The result follows immediately.
O
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Theorem 7.4 Ey has an attracting periodic point of period n + 2 in Bj.

Proof. By the preceding proposition, Ej "' (By) C Bp;1. We now show that
Ey¢(Bny1) C Bg. Let z € Byy1. Then Re z < 25,41 +1 = —e*™ + 1. Applying
the previous Lemma, we have

|Eg(2)| < exp(—e™ + 1) <eexp( Z:E]—i-l —2)

as required. Hence, there exists a periodic point w such that Eg(w) € B; for
0<j<n+1and E”+2( ) = w.
Finally, observe that |Ej(z)| < ro if z € B, 1. Combined with the results
of Proposition 13, this yields |(Ej*?) (w)| < 1.
O

Corollary 7.5 There is a sequence 8,, — 0 such that, if n is sufficiently
large, Ey, has an attracting periodic orbit of period n.

7.2 Other Near-Real Parameters

There is nothing sacred about our using the initial point A = 1; one may
check easily that the above arguments go through for any A > 1/e and
parameter values \g = \e?®. The result is a sequence of open sets in the \
plane converging to the interval (1/e,00). For A-values in these open sets,
E) admits an attracting periodic orbit of period n.

As a corollary, we have

Corollary 7.6 E, is not structurally stable if A > 1/e.

See [D2] for more details on the above results. Douady and Goldberg [DoG]|
have proved that if A, u > 1/e, then E and E,, are not topologically conju-
gate. This is the case despite the fact that J(E,) = J(E,) = C.

There is much more to the parameter plane picture for £, when A is near
1. Let us consider the functions

Hy(A) = EX(0).
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H, is a function of the parameter \ and tells where the n'* iterate of 0 lands
for each A\. As a consequence of our previous work, the family of functions
{H,} is not normal at any parameter value A > 1/e. Fix A\¢ > 1/e and
let U be any neighborhood of )y in the A-plane. Then Montel’s Theorem
guarantees that the H, assume all but 2 values in U infinitely often. These
2 omitted values are 0 and oo, so, for example, there is A € U such that
H,()\) = 2mi. But then

EPH0) = E\(2m1) = X = E,(0).

Consequently, for this A-value, 0 is preperiodic, and so J(Ey) = C. It follows
that every A > 1/e is a limit of points for which 0 is preperiodic.
Thus we have

Theorem 7.7 If A > 1/e, there is a sequence A, — X such that 0 is prepe-
riodic for E,,, so that J(E,,) = C.

We will discuss in the next section the fact that each of these \,-values also
has a “hair” attached in the A-plane. This hair consists of A-values for which
ET(0) — oo. Consequently, J(E)) = C in this case too.

This means that the picture of the A-plane near A\ > 1/e is quite compli-
cated. There are open regions in which E has attracting periodic points as
well as preperiodic A-values with hairs attached for which J = C. Thus we
may continue to draw the parameter plane picture for the exponential family
that we started in Section 4. In Figure 41 we see the attracting fixed point
cardioid to the left. The black regions in this image represent regions where
we have an attracting cycle. Note how they accumulate on the real axis, as
we showed must be the case.

7.3 Hairs in the Parameter Plane

We now turn our attention to showing that there are infinitely many hairs
in the parameter plane on which E}(0) — oo so that J(E)) = C. We recall
first the construction of the hairs in the dynamical plane. Given A and an
itinerary s = (s0s152...), we considered the family of functions

Gi(A 1) = L5 0 E"(t)
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Figure 41: Detail of the parameter plane near A = 1/e.The white regions are
not open sets; rather, they are collections of hairs in the parameter plane.

where E(t) = Ey/(t) and t € [1,00). That is, G}(A,t) is determined by
iterating forward the model map F along the real axis, then puling back by
appropriate branches of the inverse of F) as determined by the itinerary s.
We know that this family of functions converges to a continuous function
in ¢t which parametrizes a hair in the dynamical plane, at least if ¢ is large
enough. Moreover, this function depends analytically on \.

The hairs in the parameter plane consist of A-values for which the orbit
of 0 under F, tends to oo with a specified itinerary. For simplicity, we will
restrict attention to sequences in Yk, the set of bounded, regular itineraries,
i.e., sequences of integers sgs;sy ... where 0 < [s;| < K. So we specifically
exclude s; = 0 in this section. The hairs have an endpoint that is given by
a A-value for which the orbit of 0 is bounded. All other A-values on the hair
have the property that the orbit of 0 tends to oo with the specified itinerary.
As a consequence, J(F)) = C for these A-values.

Definition 7.8 Let s = s¢s158y.... A continuous curve Hy:[1,00) — C is
called a hair with itinerary s if Hy satisfies:
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1. If X = Hy(t) and t > 1, then Re E}(0) — oo and the itinerary of A
under E) is s.

2. If X\ = Hs(1), then E\(0) = X = zx(s) where z)(s) is the endpoint of
the hair with itinerary s in the dynamical plane. Hence, the orbit of A
under E) is bounded and has itinerary s.

3. lim;_, o Re Hy(t) = oc.

Remark. We use the term “hair” for curves in both the dynamical plane
and parameter plane. When necessary, we use the terms dynamical hair and
parameter hair to distinguish between them. Our goal for the remainder of
this section is to sketch the proof of the following result.

Theorem 7.9 Suppose s is a bounded sequence with no zeroes. Then there
erists a hair in parameter space with itinerary s. Moreover, if s is periodic
or preperiodic, then 0 is preperiodic under Ey for A = Hg(1).

The proof of the theorem depends upon several technical lemmas so, for
simplicity, we merely sketch the main idea of the proof.

Given the itinerary s, we will work in a simply connected region (s in
parameter space. s will be the union of the horizontal strips R,(s¢) for
A € C—R". @, is an open horizontal strip in C with height 47 bounded
by horizontal lines Imz = (25 — 2)7 and Imz = (259 + 2)7, so Qs does
not include R since sy # 0. Given the sequence s, for each ¢, the dynamical
hair hy 4(t) lies in Rx(so) C @s. Consider the map Fi(\) = hy,(t). Note
that F} is a function of A\ and assigns to A the point on the dynamical hair
with itinerary s and time parameter ¢. It can be shown that F} is an analytic
function of A\. Furthermore, F; maps the closure of ), strictly into its interior
so therefore F; has a unique fixed point in (),. This fixed point is a A-value
that satisfies A = hy 5(t), so A = E,(0) lies on the hair in dynamical plane
that is attached to z)(s). We therefore define the point Hy(¢) on the hair in
the parameter plane as the unique fixed point of F} foreach ¢t > 1. If ¢t > 1 it
follows that E7(0) — oo, whereas, if t = 1, 0 maps after one iteration of E)
onto z,(s) and so this orbit is bounded. As we vary ¢, the fixed point of F}
varies, and this curve of fixed points produces the hair in parameter plane.

For further details of the proof, we refer to [Bol].
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7.4 Questions and Problems.

We have shown that there is a unique hair in the parameter plane corre-
sponding to any bounded, regular sequence and that this hair is attached to
a A-value for which the orbit of 0 is bounded. Note that if the itinerary s
is periodic, the the orbit of 0 is preperiodic. This is true since the itinerary
corresponds to the orbit of E,(0) = A, not to the orbit of 0. These are the
Misiurewicz points discussed in [DJ].

When the itinerary contains 0’s, the situation is much more complicated.
We conjecture that some of these are hairs land at bifurcation points in the
parameter plane. We also expect that there are many non-regular hairs that
land at the same point in the parameter plane, much as happens in the
dynamical plane (see Chapter 8.

Problem. Describe where the hairs with non-regular itineraries land in the
parameter plane.

Recall that there is a hair in the parameter plane that reaches the saddle-
node bifurcation point at A = 1/e. This of course in the portion of the real-
axis (1/e,00). In every other component of Cy, with £ > 1, the multiplier map
is a universal covering, so there are infinitely many points on the boundary
of a component with multiplier 1. These are the saddle-node points. They
are the visible cusps along the boundary of these components.

Problem. Determine an algorithm that describes the set of all hairs that
tend to the saddle-node points on the boundary of a component of C} with
k> 1.

Problem. Find an algorithm that determines when two different hairs in
the parameter plane land on the same parameter value.

In a sense, the hairs in the parameter plane play the same role as the
external rays in the exterior of the Mandelbrot set for the quadratic family.
Indeed, in each case the singular orbit tends to oo with a specific itinerary
when the parameter lies on one of these curves. Of course, we have no
uniformization of a neighborhood of oo for E) as we do in the quadratic case,
since oo is an essential singularity rather than a superstable fixed point. Thus
we expect no uniformization near oo in parameter space as well. Of course,
as we have seen in Chapter 4, all of the hyperbolic components (except C')
tend to oo in the exponential case, whereas they are all bounded for the
quadratic family.
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8 Untangling Hairs

In this section we discuss the topology of the Julia set for exponential maps
for which F), has an attracting periodic orbit. As we have seen, there can
be at most one attracting periodic orbit. When F) has an attracting fixed
point, there is a single component of the basin of attraction and the Julia set
is a Cantor bouquet. When the attracting orbit has period larger than 1, the
topology of the Julia set changes. There are now infinitely many different
components in the basin of the cycle. There still are invariant Cantor sets
and hairs in the Julia set. However, several of these hairs may actually be
attached to the same point in the Cantor set. This is what separates the
various components of the basin of the cycle. When this happens, we say
that the hairs are attached or tied together. We present a method in this
section for “untangling” these hairs. That is, we provide an algorithm that
enables us to read off using symbolic dynamics which hairs are attached to
the same point, given the itinerary of 0.

Figure 42: The Julia sets for A = 5 4 77 and 10 + 3.

For example, in Figure 42, we display the Julia set when A\ = 5 + i7.
As we saw in section 4, this exponential admits an attracting 3-cycle. In
this figure we also display the Julia set when A = 10 + 3mi. This map
also has an attracting cycle of period 3. Note that different hairs now seem
to be attached to one another. The symbolic dynamics will allow us to
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understand the differences between these two cases. In contrast, the Julia
set for A = 3.14i (Figure 43) shows that the structure of the attached hairs
can be extremely complicated.

Figure 43: The Julia set for A = 3.14s.

Our algorithm will depend on the kneading sequence associated to E).
The kneading sequence is a sequence of n — 2 integers that specifies the
topology of the basin of attraction of the attracting n-cycle (we assume that
n > 2 since the period 1 and 2 cases are trivial). It also allows us to codify
which hairs land on which points in the Julia set. As an illustration, we will
prove that, if the last integer in the kneading sequence is nonzero, then the
corresponding exponential must have infinitely many distinct periodic points
that have multiple hairs attached.

A similar procedure has been carried out for exponentials for which the
orbit of 0 is preperiodic in collaboration with Xavier Jarque. We refer to
[DJ] for details. Much of the work in the present chapter is joint with Ranjit
Bhattarcharjee [BD]. We refer to this paper for many of the details of this
construction.
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8.1 The Period Doubling Bifurcation

We begin with a simple example of how two hairs become attached to the
same endpoint. As we have seen, the exponential family undergoes a period
doubling bifurcation as A decreases through —e. An attracting fixed point
becomes neutral when A = —e and then becomes repelling. This is the story
on the real axis. In the complex plane, the picture is somewhat different.
Before the bifurcation, there is a repelling cycle of period 2 on either side
of the real axis, and each of these points has a single hair attached. As A
approaches —e, these points approach the attracting fixed point, taking their
hairs along with them. When A\ = —e, the repelling 2-cycle collides with the
attracting fixed point and produces the neutral fixed point. At this point, the
neutral fixed point inherits the two hairs. The hairs lie inside the repelling
petal at this fixed point, while portions of the real axis on either side of the
fixed point lie in the attracting petals. When A < —e, the new attracting
2-cycle splits away, leaving its former hairs attached to the repelling fixed
point. This is a hair transplant. See Figure 44.

Figure 44: The Julia sets for A = —2.5 and A = —3.5.

Here’s the idea behind how this happens. Suppose first that —e < A < 0.
Consider a ball B centered at 0 that contains the attracting fixed point z).
Then the preimage of B is a half plane that contains B and the second
preimage of B is a “glove,” as depicted in Figure 45. This is precisely the
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picture we obtined in the case where 0 < A < 1/e (see section 5), and the
arguments there show that the Julia set is a Cantor bouquet.

Figure 45: The shaded region is the second preimage of B when A > —e.

When A\ < —e the topology of these preimages changes. The first preim-
age of B is still a half plane, but this half plane no longer contains B. The
second preimage of this half plane is now infinitely many “fingers,” one of
which necessarily contains B. Call this finger F'. See Figure 46. If we then
take the preimage of F', we see that this preimage is a glove as depicted in
Figure 47. Call this glove G. Then we have E3(G) = B.

Figure 46: The second preimage of B when A < —e. There are actually
infinitely many fingers that make up this preimage.

Now the Julia set of F does not meet either F' or G. A portion of J(E))
must be contained between F' and G, as we will see below. Actually, this
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Figure 47: The third preimage of B when A < —e is a glove.

portion contains the pair of hairs that meet at the repelling fixed point.

8.2 Fingers

In this section we generalize the construction of the gloves for the period 2
ase. We assume that E), has an attracting periodic cycle z, ..., z, = 2z of
period n. Throughout we assume that n > 3.

As we have seen, the asymptotic value 0 lies in the immediate basin of
attraction of some point on the cycle. Without loss of generality we will
ssssss that 0 € A*(2;) where A*(2) is the immediate basin of attraction of
z. The reason for assuming 0 € A*(2;) rather than 0 € A*(zy) will become
apparent soon. We will define a collection of open sets B; about each of the
z;. Starting with the point z; we first define a set B, ; with the following
properties:

1. Byy1 is an open and simply connected subset of A*(z;);
2. 0,21 € Buyy;

3. B,+1 has compact closure and is also a fundamental domain, i.e.,
E} (But1) C By

Next we will obtain a neighborhood of zy by considering the preimage of

Bn_|_1. Define
B, = E;1 (Br+1) -
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One checks easily that B, is simply connected neighborhood of 2, and B,
contains a half-plane Re z < &; and is contained in a half-plane Re z < &, for
some &1,& € R

Now we can extend this construction to all the points on the cycle. For
j = 1,..,n, let B,_; be the connected component of E;' (B, ;i) that
contains z,—;. Note that B; is contained in the immediate basin of z; and
By D B,y1. Indeed, E}(By) = B,+1 — {0}. We also have B, D B, and
E}(By) = By, and, for j =1,...,n—1, B, is a simply connected set which is
mapped univalently onto B, by Fj.

Note that E) : By — B; — {0} is a universal covering and hence this map
is not univalent.

Definition 8.1 An unbounded, simply connected F' C C is called a finger of
width c if F is bounded by a simple curve v C C and there exists a v > 0 such
that F N{z| Rez > v} is simply connected, extends to infinity, and satisfies

{Fﬂ{z|Rez>l/}}C{z|Imz€ [f—g,f—i-g]}.

Suppose F'is a finger of width ¢ and suppose further that 0 ¢ F'. Then one
checks easily that E, ' (F) consists of infinitely many disjoint fingers, each of
width d < 27. As a consequence, we have that, for j =1,....,n -1, B; is a
finger of width b; < 27. This construction stops at By, since By is not a finger
due to the fact that 0 € B;. Indeed, we have that the complement of B,
consists of infinitely many fingers of width < 27. In this sense B, resembles
a “glove”, since it contains a left half plane and has infinitely many fingers
extending to the right. To summarize:

Theorem 8.2 Suppose 2y, ..., zn_1 S attracting periodic orbit for E) with
n > 3. Suppose 0 € A*(z1). Then there exist disjoint, open, simply connected
sets By, ..., B,_1 such that

1. Zj € Bj, Bj C A*(Zj),'
2. E) (BJ) = Bj—l-l) j=0,...,n—2 and E) (Bn_1) C By;
3. By, ..., Bn_1 are fingers of width b; < 2m;

4. The complement of By consists of infinitely many disjoint fingers.
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We say that a collection of open subsets By, ..., B,, 1 satisfying the condi-
tions in Theorem 8.2 is a fundamental set of attracting domains for the cycle
20y -y Zn—1. Lhe fingers By, ... B,_; are called stable fingers. We remark that
we may always assume that, in the far right half-plane, each of the stable
fingers is bounded by a curve above and below that is nearly horizontal. See
[BD] for the details on this modification.

Example A. Let u = a + 7 where a is sufficiently large. As we saw in
section 4, the map E, has an attracting cycle of period 3. Let D(4,0) be
a disk of radius 0 centered at the origin. One can choose § so that D(d,0)
lies in the basin of attraction of a point on the cycle. According to the
above construction, we set By = D(6,0). Then the B; for j =0, 1,2 form a
fundamental set of attracting regions and are as displayed in Figure 48. Note
that this picture is again a caricature of the B;.

3

Figure 48: Fingers for E,,.

Example B. Now let v = a + 3m¢ where a is sufficiently large. As we saw in
section 4, F, also has an attracting cycle of period 3. In Figure 49 we sketch
the location of the various B; for E,. Note that the only difference is the
placement of B, relative to the fingers in the complement of Bj.
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Figure 49: Fingers for E,.

8.3 The Kneading Sequence

Using the fundamental set of attracting domains, we can now assign itineraries
to each point in the Julia set. Recall that the complement of Bj consists of
infinitely many closed fingers, unbounded in the right half-plane. We denote
these fingers by H; where k£ € Z. We index the H; so that 0 € Hy and so
that k increases with increasing imaginary parts. Clearly, J(E)) is contained

in the union of the H.
Let ¥ = {(s) = (s05152...) | s; € Z for each j} be the sequence space on

infinitely many symbols. As always, the shift map o on X is given by
o(808182...) = (818283 - - .).

We then define the itinerary S(z) of z € J(E,) in the natural manner by
setting by

S(z) = (sos152...) where s; = k iff B (z) € Hy.

Note that S(E\(z)) = o(S(2)).
We will be primarily concerned with itineraries whose entries are bounded.
Therefore we set

Yy ={se€X||s;| <N for each j}.
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Note that these itineraries are defined slightly differently from those encoun-
tered in section 5.
Then, arguing exactly as in section 5, we have:

Theorem 8.3 For each N > 0 there is an invariant subset Ty of J(E)) that
s homeomorphic to Xn and on which E) is conjugate to the shift map.

So this gives a collection of Cantor sets of bounded orbits for Ey; now we
need to describe how the hairs are attached to these points.

For each B; with 1 < 7 <n — 1, there exists H;, such that B; C H;. We
define the kneading sequence for A as follows.

Definition 8.4 Let F\ have a attracting cycle of period n > 3. The kneading
sequence as the string of n — 2 integers

K(/\) = klkz . kn_g
where k; = j iff EL(0) € H;.

Note that the kneading sequence gives the location of Ey(0),..., EY~2(0)
relative to the Hy. We do not include the location of 0 since 0 always lies in
H,o. Similarly, E57'(0) lies in By, which is the complement of the H;, and so
this index is not included in K () as well. However, we remark that, in some
papers in the literature, these indices are included, so the kneading sequence
begins with a 0 and ends with an x. Equivalently, the kneading sequence
indicates which H; contain the points zs,...2,_1 on the orbit of the cycle.

For 7 >> 0 as defined above, the set

n—1
A, ={z€C|Rez>71}— | B,

J=0

consists of infinitely many closed fingers. Each finger in A, is included in
precisely one H; since all of the fingers in the glove By which bounds the H,
are removed with the other B;. If j is not one of the entries in the kneading
sequence, then there is only one finger in A, that lies in H; (namely the far
right portion of #; itself). We denote this finger in A, by H;. However, for j
in the kneading sequence, there is more than one finger in A; that meets H;
since the B, separate A, N H; into at least two fingers. The fingers that lie
in such an #,; N A, will be denoted H,, where jj orders them with ascending
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imaginary part beginning with j,. Note that all of these fingers lie in the
half plane Rez > 7.

Example A. Recall the example E,, where u = a + im as described in the
previous section. In this case both B; and Bj lie in H,. Since the kneading
sequence only involves the location of B, in this case, we have K(u) = 0.
Furthermore, the fingers B; and B, subdivide {Rez > 7} N H, into three
fingers which we denote by Hy,, Hy,, and Hy,.

Example B. In example B of the previous section, the kneading sequence
is now K(v) = 1, since By lies in #;. Thus B; and B, subdivide both
{Rez > 7} N*Hy and {Rez > 7} N H; into two subfingers, denoted by H,,,
Hy,, H,,, and H;,.

8.4 Augmented Itineraries

We can describe the itinerary of certain points in the Julia set even more
precisely by defining an augmented itinerary for z € J(E,)N{z € C|Rez >
7}. In an augmented itinerary, we specify which of the H;, the orbit of
z visits. More precisely, let Z' denote the set whose elements are either
integers not contained in the kneading sequence, or subscripted integers ji
corresponding to an Hj, if j is an entry in the kneading sequence. Then the
augmented itinerary of z is

S'(2) = (sos182---)

where each s; € Z' and s; specifies the finger in A, containing F(z). Let 3
denote the set of augmented itineraries. Of course, the augmented itinerary
is defined only for points whose orbits remain for all time in A,.

Definition 8.5 The deaugmentation map is a map D : ¥’ — ¥ such that if
Sp = jk then (D(8)), = 7. If sp, = j, then (D(s))n, = j.

That is, D simply removes the subscript from each subscripted entry in
a sequence in X', and leaves other entries alone.

It turns out that not all augmented itineraries actually correspond to
orbits in the far right half plane. In order to describe which augmented
itineraries do correspond to points in J(E)), we introduce the concept of
allowable transitions.
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Definition 8.6 Let s = (sps152...) € ¥/. A transition is defined as any two
adjacent entries (S;, S;+1) in s. The transition is called allowable if

E/\(Hsi) n H5i+1 # 0.

In this case we say Ex(H,,) meets Hy, . An allowable transition will be
denoted as s; — siy1. An itinerary s' € X' will be called allowable if for all
s;j it follows that s; — s;ji1. The set of allowable itineraries will be denoted

.

For the remainder of this section we assume that N satisfies |k;| < N for
all entries k; in the kneading sequence. Let X3 denote the set of sequences in
>* whose deaugmentation is a sequence in X5. Then it can be shown that:

Proposition 8.7 Let s € 3. There is a unique tail of a hair in A, NJ(E))
that has augmented itinerary s.

Thus, for each allowable sequence s’ in ¥}, we have a well defined hair
in the portion of the Julia set to the right of Rez = 7 that has itinerary
s'.  Given the hair hj ,(5)(t), we may pull this curve back into the region
Re z < 7 by applying the appropriate branch of the inverse, L, ;,. The result
is a curve that extends the hair h) 4(¢) into the region Re z < 7. This follows
since E) o hy4(t) is properly contained in the hair Ay ,(s)(¢) in the far right
half plane. We continue this process by applying

L)\,so O---0 L)\,sn

to the hair hy gnt1(4) (). Each time we take an inverse, we extend the original
hair. The full hair corresponding to the sequence s € ¥} is given by

nh—)Igo L)\,so o---0 L/\,sn h/\,an+1(s) (t)

Then, as in the proof that 'y is a Cantor set, these full hairs each tend to
a unique point in I'y. Now there is only one point in ['y that has the same
non-augmented itinerary as the hair, namely the point whose deaugmented
itinerary is given by D(s). Therefore the full hair with itinerary s must
terminate at this point. So we have:

Theorem 8.8 Let s € X%. The full hair corresponding to s is a curve in
the Julia set that tends to oo in the right half plane and limits on yp(s) € T'n.
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It follows from Theorem 8.8 that hairs that correspond to different se-
quences in X% that have the same deaugmentation must limit on the same
point in ['y. To go back to our two examples:

Example A. Recall that for E,, the kneading sequence is K (y) = 0 and
that the region H, contained the only two fingers B; and B,. These fingers
subdivide A, into the three fingers which we denoted by H,,, Hy,, and H,.

Hence there are three full hairs in Hj, one tending to oo in each of these
three fingers. As we will see in the next section, all of these hairs have deaug-
mented sequence (000...). Hence, by Theorem 8.3, each of these hairs must
be attached to v, with s = (000...), which is a fixed point for F,. Further-
more, any preimage of v, must have three hairs attached, by invariance of
the Julia set. These triple attachments are clear in Figure 42, which shows
J(E,).

Example B. For the map E,, the kneading sequence is K(v) = 1 and we
have two fingers, B; C Hy and By C H;. In H, we have two fingers H,, and
Hy,, and there are two in H; with indices 15 and 1;. Each of these fingers
contains a hair, and we will see that the pair in Hy is attached to a point of
period 2 with itinerary (010101...), while the pair in H; is attached to the
point with itinerary (101010...). These, as well as many other attachments,
are visible in Figure 42. Note the rather obvious difference between J(E,)
shown in this figure compared to J(E),).

8.5 Untangling the Hairs

In this section, we show how to determine when two hairs are attached at
the same point in the Julia set. By Proposition 8.7, if we have an allowable
itinerary in s’ € ¥}, then there is a unique tail of a hair in J(E),) with that
itinerary. If an augmented sequence is not allowable, then there is no such
tail of a hair. Then, using Theorem 8.3, we can pull each of these hairs back
until it lands at a point in I'y. The landing point is then given by the point
whose deaugmented itinerary is D(s'). Therefore, to determine whether we
have more than one hair attached to a given point, all we need to do is to
determine when we have multiple allowable augmented sequences, each of
which has the same deaugmentation. This reduces the geometry of the hairs
to a combinatorial problem, as we show below.
Our main tool is the following Lemma.
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Lemma 8.9 Let sy, 51,...5; € Z. Let s; € Z' with D(s}) = s;. Then there
is a unique sequence S, sy, - .. s;_; such that

1. D(s})) =s; fori=0,1,...5 — 1.

2. The transitions
So =S =8y

are all allowable.

Proof. Suppose that i; — k,. Recall that this means that E\(H;;) meets
Hy, in the far right half plane. Equivalently, we must have

L)\,’i(Hkg) NA, C HZJ

Now if 4,, — k, also, we must have E)(H; ) meets Hy, in the far right half
plane as well. But both H;; and H;,, are contained in H; and E) is injective
on H;. Hence there can be at most one allowable transition of the form
i+ — k. This shows that the sequence above is unique, if it exists.

To see that there is a transition i; — kg, recall that E\(H;) covers C— B .
Hence E,(H;) meets all of the fingers in A,. In particular, there is a subfinger
in A; N H; that maps over Hj, in the far right half plane. This proves
existence.

O

Thus, according to this lemma, given any s; € Z’, we can find one and only
one initial portion of an allowable sequence whose j*™ entry is s;. Therefore
we have:

Corollary 8.10 Suppose s € ¥, contains infinitely many entries that are
nonsubscripted. Then there is at most one hair corresponding to this se-
quence.

Corollary 8.11 The only points in I'y that can have multiple hairs attached
are those

1. whose itineraries consist only of subscripted entries in Z', or

2. are preimages of such points.
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Therefore, to determine which hairs are attached to which points in I'y,
we need only consider allowable sequences that consist entirely of subscripted
entries. These allowable sequences together with their preimages are the only
sequences that may have multiple hairs attached. So we have reduced the
question to: Which sequences s’ € ¥4, with only subscripted entries have
the property that there is a second sequence ' with D(s') = D(t'). We will
describe the algorithm for determining this after returning to our examples.

Example A. In this case we consider F\(z) = pe® where p = 5+ in. We
have K(u) = 0. By the previous corollary, the only points in I'y that may
have multiple hairs attached are those whose itineraries end (sg...s,0...).
That is, only the single (repelling) fixed point in Hy (and its preimages) can
have multiple hairs attached.

We claim that there are exactly three hairs attached to each such point.
To determine this, we need to ask which sequences in ¥} have deaugmenta-
tion (000...). This in turn is determined by the allowable transitions among
the Oj.

For E,, the allowable entries in a sequence in X7 are 0p, 0;,0, and all
nonzero integers. The way the corresponding fingers are mapped show that
the transition rules among these entries are:

1. 0g — O0g;

2. 00 =200,k > 15

3. 0 = 09, k < —1;

4. 7 — k,0p, 01, 04, for any two nonzero integers j and k.

As a consequence, the only three allowable sequences consisting of only
the 0; are

3. (020001

Hence we have:
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Theorem 8.12 For A = pu, the only points in I'y with multiple hairs at-
tached are the fized point with itinerary (000...) and all of its preimages.
Each of these points has exactly three hairs attached. All other points have
a single hair attached.

Notice that we can capture the information about these hairs in matrix
form using a transition matriz. In this matrix, the (4, j) entry is either 0 or 1
depending on whether ¢+ — j is either not allowed or allowed. Here the rows
and columns of the matrix are specified by the subscripted entries in Z' In
this case, the transition matrix involves the entries Og, 0, and 0, and is given
by

010
T,=|0 0 1
100

Example B. Now recall the function E)(z) = ve* where v = a + 3mi where
a is sufficiently large. In this case B; lies in Hy but By now lies in Hy. So
K(v) = 1. Therefore the relevant entries in X% are 0g, 01, 1o, and 1; and
we need only consider sequences involving just Os and 1s. One again checks
easily that the transition rules among these entries are:

1. 00 — 01, ].(),
2. 0 — all others;

3. 1y — 01, ]_0, 12,]€ > 0,

W

. 1{ — all others.
Thus the transition matrix now involves the four subscripted entries in
Yy and is given by:
0110
1001
1= 0111
1000

The hair structure for £, is much different from that of £,. For example,
the period 2 transitions

0g — 0 =09
04 =5 0y—0,
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are both allowable. Also, the transitions
0p —1y—04
00 —»1; — 00

are also allowable. Let o denote the pair 040; and [ the opposite pair 0;0p.
Then we can string together any number of o’s, say k, follow it with a 1; and
then repeat periodically and we obtain an allowable sequence in ¥%. Simi-
larly, the same number of 3’s followed by a 1y and then repeated periodically
is also allowable. But both of these sequences have the same deaugmentation,
namely

(0-00)

with 2k 0’s in each repeating block. Hence the hairs corresponding to each
of these sequences are attached to a periodic point of period 2k + 1.

Now none of these periodic points are preimages of each other. So, unlike
the case of E,, we have infinitely many distinct periodic points with multiple
hairs attached. Of course, each of their infinitely many preimages also has a
pair of hairs attached.

Remark. Multiple hairs can be attached to nonperiodic points as well. For
example, let a = 030; and 5 = 0;0q. The we have the following allowable
sequences

alioaaljeaal; ...

BloBB1loBBAL, - - .

Note that each of these sequences has the same nonperiodic deaugmentation.
In analogy with the previous example, one can prove more generally that:

Theorem 8.13 Suppose that K(\) = kiky ... kn_o where ky_o # 0. Then
the corresponding exponential has the property that there are infinitely many
distinct periodic points that have multiple hairs attached.

For the proof, we refer to [BD]. This theorem is by no means optimal.
A natural problem is to determine exactly which kneading sequences lead to
infinitely many attachments.

In the case of the quadratic family, hair attachments are the same as
external rays that meet at a common landing point. There are infinitely
many such distinct attachments whenever the parameter ¢ is drawn from any
portion of the Mandelbrot set that is not connected to the main cardioid by a
finite sequence of bifurcations. Perhaps the same is true for the exponential
parameter space.
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8.6 Back to The Parameter Plane

We can use the kneading sequences described in this section to begin to
describe the structure of the parameter plane for E,. For it is known that
all parameters in a given hyperbolic component have the same kneading
sequence. Thus we may associate a string of n — 2 integers to any hyperbolic
component of period n. For technical reasons, in the parameter plane, it is
customary to precede this sequence with a 0 (if the period is greater than 1)
and to follow it with an asterisk. So the fixed point component has kneading
sequence *, the period 2 component has kneading sequence 0%, and the period
three components have kneading sequences 0k*x where k € Z. Some of these
components are displayed in Figure 50.

One of the main results regarding the structure of the parameter plane is
the following [DFJ].

Theorem 8.14 Fizn > 3 and let sq,...,5,_9 € Z. There exists a hyperbolic
component os, ...s,_,« that extends to oo in the right half plane and such that
if A€ Qos,..s,,_0x, the map Ey has an attracting cycle of period n with param-
eter plane kneading sequence s = 0sy...S,_o%. Moreover, the components
Qos,...5,_qx are ordered lexicographically in the far right half plane.

In particular, it follows that there are infinitely many hyperbolic compo-
nents of period n for each n > 3. From the proof of this theorem one obtains
the following corollary (see Figure 51).

Corollary 8.15 Let $ys,..5,_,« be as in Theorem A. Then between this hy-
perbolic component and the hyperbolic component s, . (s, ,+1)« there exist
hyperbolic components o, (s, ,+1)k« JOr €ach k € Z.

In this statement the word “between” refers to the ordering given by the
imaginary part, since all hyperbolic components of period 3 or higher extend
to infinity in the right half plane.

9 Back to Polynomials

At this juncture, there appears to be little similarity between the parameter
plane for E) and the Mandelbrot set, the parameter plane for the maps
2z — 22 + c. It is true that each family is a “natural” one parameter family
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Figure 50: The parameter plane indicating some of the kneading sequences
of period 3 and 4 hyperbolic components. H1 represents the period 1 region
and H2 the period 2 component.
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Figure 51: A magnification of the parameter plane showing infinitely many
hyperbolic components between two period 3 components.
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of maps each of which has a one singular value, and both parameter planes
feature a central cardioid-like region in which the associated maps have an
attracting fixed point. But there the similarity seems to end. In this section,
however, we will show that there is a natural connection between the two
sets.

9.1 The Polynomial Family

The connection is given by the family of maps

Pin(2) = A (1 + S)d.

P, 5 is a polynomial of degree d which has a single critical point, at —d, and
a single critical value at 0. Of course, P, converges uniformly on compact
subsets to . But the convergence is dynamical as well.

Let Qq.(2) = 2%+ c. Qg has a single critical point at 0 and critical value
c. Hence we may construct the parameter plane for Q4. just as in the case
of the quadratic family (as in [DH]). Define

ve(2) =al(E — 1) :

Cc

Then one may check easily that the affine map v, conjugates Qq. to Py,
where c is any of the d — 1 choices for which A\ = dc? !, provided ¢ # 0.
Thus v, gives a ramified covering map from the parameter plane for Q4. to
the parameter plane of Py . This is a d — 1-fold covering ramified only at
0. Let B; denote the parameter plane for the P, , i.e., the analogue of the
Mandlebrot set for these maps. Then, arguing as in [DH] as extended to this
case in [PR], we have

Theorem 9.1 By is connected and the complement of Bg in C is an open
disk.

The Fundamental Dichotomy for quadratic maps holds for the P, 5 as well.
That is, if A € By, then the filled Julia set of P, is connected, whereas, if
A € C — By, then

Py, (0) - ¢

and so J(Py,) is a Cantor set. See [Bl].
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Figure 52: d = 4.

In Figures 52-54, we have displayed B, for d = 4 and d = 8 and d = 100.
The size of these images in the parameter plane varies. For example, when
d = 4, we display a box of sidelength 6, but when d = 100, the image is
a box of sidelength 200. Each of these images features a main cardioid of
roughly the same size (it is hardly visible on the right in Figure 54, so we
have magnified this region in Figure 55). Note that in this magnification,
the large protruberances heading to the right are the period three regions
that tend to the period three regions straddling the lines Im z = £ in the
exponential parameter plane.

Note also how the period 2 region just to the left of the main cardioid also
grows with d. Similarly, the number of cusps on the “decorations” attached to
the basic cardioid grows with d. Indeed, as d — oo, these figures “converge”
to the parameter plane of E,. This is what provides the link between the
quadratic and exponential families.

Exercise. Suppose A € (Y for the exponential family. Show that there is d
such that, if d > dy, then P, has an attracting cycle of period k.

Note that there is a fundamental difference between the B; and the pa-
rameter plane for F, which we now write as B,,. For each d, By is compact
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Figure 54: d = 100.

105



Figure 55: A magnification of the main cardioid in B) when d = 100.

and its exterior is isomorphic to the unit disk. It is easier to work with the
family z¢ + ¢ to prove this, but then the parameter plane for this family of
maps is a ramified cover (ramified d — 1 times over 0) of that of P;,. On
the other hand, as we showed in 4, each component of Cj, k& > 2, in By is
non-compact, and the “exterior” of B,, contains the hairs described above.
(Actually, the exterior of By, is not defined since any hair in the A-plane is a
limit of components of the Cy). For more information about the convergence
of hyperbolic components, we refer to [KK].

9.2 External Rays

One natural question is what happens to the external rays of Douady and
Hubbard which foliate the disk in complement of By. In [Bo2], it is shown
that certain of these rays have a limit as d — oo, and that this limit is
precisely one of the hairs in B,.

How do we identify the hairs which are limit curves of the external rays?
The precise answer is spelled out in [Bo2], but we will give some special cases
here. The external arguments of Douady and Hubbard are given by rational
numbers between 0 and 1. For example, for each d, the external argument

106



1/3

e - e e
b b= . o
% Lg“. :ﬁ‘f
o 7
Y g
' \
A j
172 % A
Rt .‘I.;‘:... =
O B
Ly -}."',
) d=3
d=2
1/4
L
st
: 4
. o '#H'[;
p: g ety =
B , e 5, B ot
_g:”‘ - o i i -ﬁ;rv N
E‘-‘ iy ;"51.. ha s
et LY. i o
o F e
. : duba
hE i 2 .
" R 1S 5 s
Bo s Al
Lt 1"1 BT A i.r'”'-‘; P '*-;( wj:l\'. ko g
r \J‘""I__- b i e
wl ]f-?-' : ) :,\"f’-ﬂﬁ ECo
2 -'I:‘\. it

Figure 56: The external ray corresponding to angle 1/d for d = 2, 3,4, 8.

of angle 1/d converges to a preperiodic A-value in B; which is attached to
the first “bulb” of the large period 2 region. These angles are depicted in

Figure 56.
Note that, in base d, we may write

1 > 1
E:(d_l)gdi—f—l'

The result in [Bo2] is that this ray converges as A — oo to the hair on which

A has itinerary (111...) (This is the hair which terminates at 27.)
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In general, if for each d, p(d) is the angle given by in base d

pd)= (-1

=1

where the s; form a repeating, regular sequence, then the rays with angle
p(d) in By converge as d — oo to the hair on which all \’s have itinerary
(s15283...).

It is an open question as to just how generally this result holds. For
example, we conjecture that if s = (sp$182...) is a repeating sequence with
so = 0, then the corresponding hair converges to a bifurcation point in the
parameter plane with external angle

1=0

In particular, the hairs corresponding to itineraries of the form (050507 ...)
should have external angle j/(d + 1). See Figure 57.

Problem. Determine the rays in By, that land at bifurcation points on the
boundaries of the C. How are they related to the external rays in B,.?

10 Other Families of Maps

Thus far, except for some brief excursions into the land of polynomials, we
have concentrated mostly on the exponential family. Of course, there are
many other complex analytic maps whose dynamics are rather intriguing.
Among entire functions that have been studied, we single out the trigono-
metric functions and the complex standard family z +— z+w + Bsin z [Fa| as
having received the most attention. More recently, the class of meromorphic
functions has received considerable attention. In this section, we describe a
few families of such families, paying special attention to how their dynamics
differ from that of the exponential. For an excellent survey of these maps,
we refer to [Be].

One of the principal differences arising in the iteration of meromorphic
(non-rational) functions is the fact that, strictly speaking, iteration of these
maps does not lead to a dynamical system. Infinity is an essential singularity
for such a map, and so the map cannot be extended continuously to infinity.
Hence the forward orbit of any pole terminates, and, moreover, any preimage
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of a pole also has a finite orbit. All other points have well defined forward
orbits.

Despite the fact that certain orbits of a meromorphic map are finite, the
iteration of such maps is important. For example, the iterative processes
associated to Newton’s method applied to entire functions often yields a
meromorphic function as the root-finder. See [CGS], [Bel].

10.1 Maps with Polynomial Schwarzian Derivative

In this section we will deal exclusively with a very special and interesting class
of meromorphic functions, namely, those whose Schwarzian derivative is a
polynomial. This class of maps includes a number of dynamically important
families of maps, including A tan z and Aexp z.

The Schwarzian derivative has played a role in the analysis of dynamical
systems in other settings. For example, if the Schwarzian derivative of two
C? maps of the interval is negative, the same is true for their composition.
Singer [Si] has used this to show that the class of functions satisfying these
conditions share many of the special properties of complex analytic maps.

The main property of maps with polynomial Schwarzian derivative that
makes this class special was noted first by Nevanlinna [N]. These maps are
precisely the maps that have only finitely many asymptotic values and no
critical values. As we have seen, the fate of the asymptotic values and critical
values under iteration plays a crucial role in determining the dynamics. A
further important fact about these maps concerns the covering properties of
the map itself. Hille [H] has shown that the plane may be decomposed into
exactly p sectors of equal angle (when the Schwarzian derivative has degree
p — 2) each of which is associated to one of the asymptotic values. This
structure theorem allows us to say much about the Julia set of the map.

Definition 10.1 If F(z) is a meromorphic function, its Schwarzian deriva-

tive is defined by S(P()) F'"(z) 3 (F"(2)\2
(F(2)) = F'(2) _§<F'(z)) ’

Associated to the Schwarzian differential equation
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is a linear differential equation obtained by setting

g(z) = (F'(2)) 7.

The resulting equation is

J'+35Q() =0, (x4

If g1,go are linearly independent (locally defined) solutions of (xx), their
Wronskian is a non-zero constant k. Since

(5) -3

92 95

it follows that F(z) = g1(2)/g2(2) is a solution of (x). Conversely, each
solution of () may be written locally as a quotient of independent solutions
of (k).

There is a wide class of maps whose Schwarzian derivatives are polynomi-
als. These include such maps as Atan z and A exp z, for which the Schwarzian
derivative is a constant, and [*exp(R(u))du where R is a polynomial.

Results of Nevanlinna [N] and Hille [H] allow us to describe the asymptotic
properties of the solutions to (xx) when @ is a polynomial of degree p — 2.

There are exactly p special solutions, Gy ...G,_1, called truncated solutions,
which have the following property: in any sector of the form

3T
< — —€
p

2Ty
argz — —
p

with € > 0, G, (z) has the asymptotic development
log G, (2) ~ (=1)"+12P/2,
Each G, is an entire function of order p/2. It follows that each G, tends to
zero as z — oo along each ray in a sector W, of the form
2y T
largz — —| < —.
p p

Moreover, G,,(z) — oo in the adjacent sectors W,,; and W, ;. Note that
G, and G, are necessarily linearly independent. However, G, and G,
for |k| > 2 need not be independent.
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Any solution of the associated Schwarzian equation may therefore be
written in the appropriate sector in the form

AG,(z) + BG,41(2)
CG,(z) + DG,11(2)

= F(2) (1)

with AD — BC # 0. Note that F(z) tends to A/C along any ray in the
interior of W, 11 and to B/D in W,. Recall that an asymptotic (or critical)
path for a function F'(z) is a curve « : [0,1) — C such that

lima(f) = oo

and
lim F(a(t)) = w.

t—1

The point w is called an asymptotic value of F. Thus A/C and B/D are
asymptotic values.

Example. Let Gy(z) = ¢*/? and G,(z) = e */2. Then we may write

. 90(2) +0-G1(2)
OG()(Z) +G12 )

So A/C = oo and B/D = 0. If W is the left half plane and W is the right
half plane, then e* tends to 0 along rays in W, and to oo in Wi. So, as we
have seen, both 0 and oo are asymptotic values for the exponential.

Asymptotic values can be classifed. Nevanlinna’s results show that the
assumption that () is a polynomial implies that F' has only finitely many
asymptotic values. They are therefore all isolated. Let B be a neighborhood
of the asymptotic value w that contains no other asymptotic values. Consider
the components of F~!(B — w). Since the only points at which F is not a
covering of its image are the asymptotic values, F' is a covering map on these
components. Hence these components are either disks or punctured disks. If
some component is a disk, then the asymptotic value w is called a logarithmic
singularity.

Example. Let F(z) = tanz. Then ¢ and —i are logarithmic singularities.
F maps the half plane Im z > 3, > 0 onto a punctured neighborhood of i.
The image of any path «(t) such that lim; ,; Im «(t) = oo is a path (t) such
that lim;_,; 5(¢) = 4. Similarly the image of a lower half plane Imz < v; < 0
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is mapped onto a punctured neighborhood of —i. The point at oo is an
accumulation point of the poles; it is not an asymptotic value.

Since a map with a polynomial Schwarzian derivative assumes the special
form (1) in each sector W, it follows that such a map has exactly p asymp-
totic values. Two or more of these values may coincide, but in this case,
non-adjacent sectors of asymptotic paths correspond to this value. Also, F'
has no critical points since

F'(z) =

95(2)

where £ is a constant and g, is entire. We summarize these facts in a theorem
originally proved by Nevanlinna [N].

Theorem 10.2 Functions whose Schwarzian derivatives are degree p — 2
polynomials are precisely the functions that have p logarithmic singularities,
ag, ..., ap—1. The a; need not be distinct. There are exactly p disjoint sectors
Wo,...,Wy_1, at oo, each with angle 2r/p in which F has the following
behavior: there is a collection of disks B;, one around each of the a;, satisfying
F~Y(B; —a;) contains a unique unbounded component U; C W; and F : U; —
B; — a; is a universal covering.

The U; are called exponential tracts. Since the truncated solutions tend
to 0 or oo in adjacent sectors, it follows that the boundary curve of each U;
has as asymptotic directions the pair of rays which bound the sectors W;.
A ray [ is called a Julia ray for F if, in any angle about 3, F' assumes all
(but at most one) values infinitely often. See Figure 1. It is an immediate
consequence of (1) that the ray §; bounding a pair of adjacent sectors W;_;
and W; for F' is a Julia ray. See Figure 58.

Example. The positive and negative imaginary axes are Julia rays for e*.

Similarly, the rays
2k + 1)m

arg z = o

for k € Z are Julia rays for exp(z?).

When F' is meromorphic, the arguments of the poles of F' accumulate on
the argument of the Julia rays. Therefore, except for finitely many poles,
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Figure 58: Exponential tracts and Julia rays.

it is possible to associate to a given pole p, that particular Julia ray, 8;y),
such that the pole lies in a small angle about ;). We also associate two
asymptotic values to each pole; v1(p) is the asymptotic value corresponding
to Ujp—1 and vo(p) is the asymptotic value corresponding to Uj().

Example. The positive and negative axes are Julia rays for tan z, the poles
are contained in these rays and vy (p) = i, vo(p) = —i for each of the positive
poles while v;(p) = —i, v5(p) = i for each of the negative poles.

10.2 The Tangent Family

Consider the equation

S(F(2)) =k ()
where k£ € R — {0}. The truncated solutions of (x*) are given by

e:l:\/fk/Zz

and the general solution is

Ae\/—lc/Zz_i_Be—\/—k/Qz
Ce\/—k/2z+De—\/—k/2z
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with AD — BC # 0. Two of these parameters can be fixed by affine conju-
gation. We will consider one parameter subfamilies of this family in this and

the next two sections.
Let A iz iz
e¥ —e
T\(z) = Atanz = PP
where A > 0. We have S(Tx(z)) = 2. As we have seen, Ty has asymptotic
values at +£\i, and T, preserves the real axis.

To define the Julia set of this map (and other maps in this class), we
adopt the usual definition: J(7)) is the set of points at which the family
of iterates of the map is not a normal family in the sense of Montel. As in
the case of entire functions, J(7)) is also the closure of the set of repelling
periodic points. But there is also a new equivalent formulation of the Julia
set: J(T)) is also the closure of the set which consists of the union of all of
the preimages of the poles of 7).

Exercise. Prove that all the poles and their preimages are dense in the Julia
set.

Usually, when the Julia set is not the entire plane, this set is a “fractal.”
Some exceptions are the quadratic maps z — z? whose Julia set is the unit
circle, and z — 22 — 2, whose Julia set is the interval [—2,2]. For all other
values of ¢, the Julia set of 22 + ¢ is a fractal. The tangent family provides
another example of a map whose Julia set is a smooth submanifold of C.

Proposition 10.3 If A € R, A > 1, then J(T)) is the real line and all other
points tend asymptotically to one of two fized sinks located on the imaginary
azxis.

Proof. Write T)(z) = Ly o E(z) where
E(z) = exp(2iz)

In(z) = —Ai (z _ 1) .

z+1

E maps the upper half plane onto the unit disk minus 0 and L, maps the
disk back to the upper half plane. Both F and L, preserve boundaries, so T}
maps the interior of the upper half plane into itself. Now 7T also preserves
the imaginary axis and we have

T (iy) = i tanh(y).
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The graph of Atanh y shows that 7 has a pair of attracting fixed points
located symmetrically about 0 if A > 1. By the Schwarz Lemma, all points
in the upper (resp., lower) half-plane tend under iteration to one of these
points.

Hence neither the upper nor the lower half plane is in J(7)). The real line
is in J(Ty). This follows from the facts that the real line satisfies T }(R) C R
and T)(R) = RU oo, and that T3(z) > 1 for all z € Rif A > 1 (T}(z) >
1if A = 1). Each interval of the form

2k—1  2k+1
( 2 2 W)
is expanded over all of R. If U is any open interval in R, then there is an
integer k such that T¥(U) covers one of these intervals of length 7. Hence
TETH(U) covers U. Tt follows that there exist repelling fixed points and poles
of T¥*! in U.

O
Remarks.

1. If A =1, then J(7)) = R, and all points with non-zero imaginary parts
tend asymptotically to the neutral fixed point at 0.

2. When A\ < —1, the dynamics of T} are similar to those for A > 1, except
that 7, has an attracting periodic cycle of period two. Points in the
upper and lower half-planes hop back and forth as they are attracted
to the cycle. Since |T§(z)| > 1 for z € R, it follows as above that
J(T)) =R for A < —1.

For 0 < |A] < 1, 0 is an attracting fixed point for 7). In this case, the
Julia set of T, breaks up into a Cantor set, as we show below. We will as
usual employ symbolic dynamics to describe the Julia set in this case. Let I'
denote the set of one-sided sequences whose entries are either integers or the
symbol co. If co is an entry in a sequence, then we terminate the sequence at
this entry, i.e., I' consists of all infinite sequences (so, $1, S2, .. .) where s; € Z
and all finite sequences of the form (s, s1, ..., s;,00) where s; € Z.

The topology on I' was described in [Mo]. For completeness, we will recall
this topology here. If (sg, s1, S9,...) is an infinite sequence, we choose as a
neighborhood basis of this sequence the sets

Uk = {(to,tl,...) |tz = S; for 4 S k}
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If, on the other hand, the sequence is finite (so,...,s;,00), then we choose
the U, as above for k£ < j as well as sets of the form

W = {(to,tl,...) |tz = S; fOI' 7 S] and |t]_|_1| Z Z}

for a neighborhood basis.

There is a natural shift map ¢ : I' — I which is defined as usual by
o(s0s182...) = (5182...). Note that o(c0) is not defined. In Moser’s topol-
ogy, o is continuous and I' is a Cantor set. I' provides a model for many of
the Julia sets of maps in our class, and o | I is conjugate to the action of F'
on J(F'). One such instance of this is shown in the following proposition.

Proposition 10.4 Suppose A € R and 0 < |A| < 1. Then J(T)) is a Cantor
set in C and Ty|J(T)) is topologically conjugate to o|T.

Proof. Since 0 < |A| < 1, 0 is an attracting fixed point for 7). Let B denote
the immediate basin of attraction of 0 in R. B is an open interval of the
form (—p,p) where T\(£p) = +p. (The points +p lie on a periodic orbit of
period two if —1 < X\ < 0.) The preimages 75 *(B) consist of infinitely many
disjoint open intervals. Let I;, j € Z, denote the complementary intervals,
enumerated left to right so that I abuts p. Then T} : I; = (RUoo) — B for
each j, and |T5(z)| > 1 for each = € I;. Standard arguments [Mo] then show
that _
A={z e RU{oo}|T}(z) € U for all j}

is a Cantor set and T)|A is conjugate to o|I.

Now A is invariant under all branches of the inverse of 7). It therefore
contains preimages of poles of all orders and is closed. Hence A is the Julia
set of T\. The classification of stable regions tells us that all other points lie
in the basin of 0.

O
Remarks.

1. The basin of 0 is therefore infinitely connected. This contrasts with the
situation for polynomial or entire maps in which finite attracting fixed
points always have a simply connected immediate basin of attraction.

2. In fact, the Julia set of T) is a similar Cantor set for all A with [A\| < 1.
See [DKe]

3. A full picture of the parameter plane for the tangent family may be
found in [KKo]
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10.3 Asymptotic Values that are Poles.

As we have seen, entire transcendental functions of finite type often have
Julia sets which contain analytic curves. Indeed, for a wide class of these
maps (see [DT]), all repelling periodic orbits lie at the endpoints of invariant
curves which connect the orbit to the essential singularity at oo.

In this section we give an example of a family of maps with constant
Schwarzian derivative for which certain of the repelling fixed points lie on
analytic curves in the Julia set, but for which many of the other periodic
points do not. This lack of homogeneity in the Julia set is caused by the fact
that one of the asymptotic values is a pole.

Consider the family of maps

Ae?

62 —_ e—Z

F)\(Z) =

with A > 0. We have S(F'(z)) = —2 and F), is periodic with period mi. These
maps have asymptotic values at 0 and A, and 0 is also a pole.

The graph of F) restricted to R shows that F) has two fixed points in
R at p and ¢ with p < 0 < g. We note that F\(z) = Ly o E(z) where
E(z) = exp(—2z) and L, is the linear fractional transformation

A

F has poles at kmi where k& € Z as well as the following mapping properties:

1. F) preserves Rt and R™.

2. F) maps the horizontal lines Im z = £(2k + 1) onto the interval (0, \)
in R.

3. F\ maps the imaginary axis onto the line Re z = A/2, with the points
kmi mapped to oo.

4. F, maps horizontal lines onto circular arcs passing through both 0 and
A

5. F) maps vertical lines with Re z > 0 to a family of circles orthogonal
to those in 4 which are contained in the plane Re z > \/2.

118



6. F)\ maps vertical lines with Re z < 0 to a family of circles orthogonal
to those in 4 which are contained in the plane Re z < A\/2.

As a consequence of these properties, we have

Proposition 10.5 If A > 0, then the fized point q is attracting. Moreover,
if Re z > 0, then F{(z) = q as n — oco. Hence J(F)) is contained in the
half plane Re z < 0.

To see this, just compute |Fj(¢q)] < 1. Then use property 5 above and
the Schwarz Lemma.

Proposition 10.6 J(F)) contains R~ U {0}.

Proof. The fixed point p is repelling. This follows from the fact that F)
has negative Schwarzian derivative: if [(F))'(p)| < 1, then it follows that p
would have to attract a critical point or asymptotic value of F\ on R. This
does not occur since ¢ attracts A and 0 is a pole.

Let z € (—oo,p). One may check easily that

(FR) ()] > 1.

Moreover,
|(F3")'(z)] = o0
as n — oo. This again follows from the fact that F}? has negative Schwarzian
derivative on R™. Let U be a neighborhood of z in C. Note that F¥" expands
U until some image overlaps the horizontal lines y = +7/2. By the above
properties, these points are in the basin of ¢. Hence the family {F?"} is not
normal at x, and so (—oc,p) C J(F)). The image of this interval under F)
is (p,0), so R~ C J(Fy).
O

Thus some points in the Julia set lie on analytic curves; for example, R™
and all of its preimages. But not all points in the Julia set lie on smooth
invariant curves:

Proposition 10.7 There is a unique repelling fized point p, in the half strip
/2 <Im z < 37/2

and this point does not lie on any smooth invariant curve in J(F)).
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Proof. Let R be the rectangle 7/2 < Imz < 37/2, v < Rez < 0 where v is
chosen far enough to the left in R so that

|FA(v + iy)| < m/4.

Then Fy(R) is a “disk” which covers R and Fy|R is 1-1. So, F; ' has a unique
attracting fixed point p; in R. Since this argument is independent of v for v
large enough negative, the first part of the Proposition follows.

Now suppose that p; lies on a smooth invariant curve 7 in J(F)). Since
J(Fy) is invariant under F} ', we may assume that v accumulates on the
boundary of the strip 7/2 < Imz < 37/2, Rez < 0 by taking iterates of
Fy ! as above. The upper and lower boundaries of the strip are stable by
property 2; hence y cannot meet y = 7/2 or y = 3w /2. Similarly, v cannot
meet the line x = 0 (except possibly at imw). So <y can only accumulate at
oo or im. If v accumulates at oo, then v must also accumulate at 7w, since
F\(im) = oo. Since all points on 7y leave the strip under iteration, it follows
that v must contain 2w. Now y cannot have a tangent vector at i7, for if so,
~ would enter the region Re z > 0, Im z # im, which lies in the Fatou set.

O
Remark. There is a continuous invariant curve which lies in the Julia set
and accumulates on p;. Indeed, the horizontal line ¢y given by y =7, 2 <0
lies in J(F)) since it is mapped onto R~ by F). Consider the successive
preimages £, = Fy"({y), where F} ! is the branch of the inverse of F, whose
image is 7/2 < Im z < 37/2. Then /; meets £y at im, £, meets ¢, at Fy*(im),
and so forth. Since p; is an attracting fixed point for F; ', the curve ¢ formed
by concatenating the ¢; is invariant and accumulates on p; as ¢ — oco. Note
that this curve is considerably different from a dynamical point of view from
the invariant curve R~ through p.

10.4 Bifurcation to an entire function.

Most maps with polynomial Schwarzian derivatives are bona fide meromor-
phic functions, but occasionally they are entire functions. In this section
we give an example of an “explosion” in the Julia set which occurs when a
member of a meromorphic family suddenly becomes an entire function. An
explosion occurs at a parameter value for a family of functions whenever the
Julia sets of the functions in the family change suddenly, when the parameter
is reached, from a nowhere dense subset of C to all of C.
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Consider the family
_ €? _ 1
CXefde? A4e 2

F)\(Z)

When A = 0, the corresponding element of this family is the entire function
Fy(z) = exp(2z) whose dynamics are well understood. Indeed, e?? is linearly
conjugate to 2¢*, and so J(Fp) = C, since the orbit of the asymptotic value
0 tends to oo.

When A > 0, J(F,) # C. This follows since F) has a unique attracting
fixed point py on the real line. In fact, we can say much more about J(F)).

Proposition 10.8 For all A > 0, the Julia set of F\ is a Cantor set in C
and Fy\ | J(F)) is the shift map on infinitely many symbols.

Proof. First note that the entire real axis lies in the basin of attraction of
px. This follows since F) has negative Schwarzian derivative and maps R dif-
feomorphically onto the interval bounded by the asymptotic values, (0,1/)).
In particular, both asymptotic values lie in the immediate basin of p) and so
there are disks about these points which lie in the basin. Taking preimages
of these disks, it follows that there are half planes of the form Re z < v; and
Re z > 1, with 11 < p) < 1» which lie in the immediate basin of p,.
We may find a strip S, surrounding the interval vy, 5] of the form

{z|Im z| < g,y <Re z <y}

which is mapped inside itself. Now let B denote the “ladder-shaped” region
consisting of the two half planes together with S, and all of its 7¢ translates.
See Figure 59. Clearly, F, maps B inside itself as long as the v; are chosen
large enough.

The complement of B consists of infinitely many congruent rectangles
R; where j € Z and the R; are indexed according to increasing imaginary
part. F\ maps each R, diffeomorphically onto C — F(B). In particular,
Fy\(R;) covers each Ry and oco. It follows that there exists at least one point
z corresponding to any sequence (S, S1, - - .) in the sequence space which has
the property that F(z) € Rs, for each n. Then our usual arguments show
that this point is unique, lies in the Julia set, and J(F)) therefore is a Cantor
set modeled on the sequence space with infinitely many symbols as described

in Section 2. .
O
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Figure 59: The region B.

10.5 Cantor Bouquets and Cantor Sets

Our goal in this section is to describe the topology of the Julia set for a
general meromorphic map F' with Schwarzian derivative that is a polynomial
P(z). By Nevanlinna’s Theorem, each such map F has p asymptotic values
ao,-..,ap 1. To each a; there corresponds a sector W; with angle 27 /p in
which F' has the following behavior: We may choose a small disk B; about
a; such that, if U; is the component of F~!(B;) meeting W;, then F : U; —
B; — a; is a universal covering map. The sectors are separated by the Julia
rays ;. Almost all poles p have associated Julia rays, B;(), and asymptotic
values v (p) and vy(p).

Note that all of the a; need not be distinct, but it follows from the linear-
independence of the truncated solutions GG, and G, that a; corresponding
to adjacent W; are distinct. Thus the basic mapping properties of F' are as
depicted in Figure 60.

Let us assume that all of the a; are finite. We may choose R sufficiently
large so that Dg = {2 |2| < R} contains all of the B; in its interior. Let I'g
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Figure 60: Exponential tracts and Julia rays.

denote the disk in C which is the complement of Dp. Let

~ pil
FR = FR - U UZ

1=0

If R is large enough, I'x consists of exactly p “arms” which extend to oo in
I'r and which separate the U;. Let A; denote the arm between U; and Uj,;.
A; contains the Julia ray ;. See Figure 60.

Since F | A; is a covering map that covers C — (B; U B;,) infinitely often,
it follows that F~1(T'z) N A; consists of infinitely many disks, each of which
is mapped by F' in a one-to-one fashion over I'p. These disks accumulate
only at oo. This is similar to the situation in the previous section.

Proposition 10.9 Suppose all of the asymptotic values of F' are finite. Let
Ar = {z| Fi(z) € Tg for all j}. If R is chosen large enough, then Ag is a
closed, forward invariant subset of J(F). Moreover, Ag is homeomorphic to
a Cantor set that is modeled on the shift space with infinitely many symbols.

Proof. As there are only countably many disks in F~1(I'g) N A; for each arm
A;, we may choose an indexing of these disks by the natural numbers. Say
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F~'(Tg) N (UA;) = U72Dj. Thus each D; C I'g and F maps each D; onto
['g. In particular, F'| D; covers each other Dy and oco. Standard arguments
as described in §2 then yield the result.
O
Thus the set of points whose orbits remain in a neighborhood of oo form
a closed forward invariant subset of the Julia set which is homeomorphic to
a Cantor set. We may apply these ideas on a global level if we can guarantee
that all of the asymptotic values lie in a single immediate attracting basin of
a fixed point.

Corollary 10.10 Suppose each of the a; lie in the immediate attracting basin
of an attracting fized point. Then J(F) is a Cantor set and F|J(F) is con-
jugate to the shift map on infinitely many symbols.

Proof. Our assumption allows us to choose a simple closed curve in C which
bounds an open set in the immediate attractive basin, and which contains all
of the B;. The Julia set is contained in the complement of this set. Applying
the above argument to this curve instead of ['g yields the result.
O
Recall that the Julia set of a rational map is also a Cantor set under
this hypothesis so that these meromorphic maps are dynamically similar to
rational maps. By contrast, there are no entire transcendental functions
whose Julia sets are Cantor sets [Bal]. On the other hand, if one or more of
the asymptotic values is the point at oo, then the Julia set contains Cantor
bouquets.

Theorem 10.11 Suppose F(z) has polynomial Schwarzian derivative with
degree p — 2. Suppose that F' has an asymptotic value a; which is also a
pole. Let W; be the sector containing the exponential tract corresponding to
a;. Then for each N > 0, J(F) contains a Cantor N-bouquet in W; which is
invariant under F2.

The proof may be found in [DKe].
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