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1. Introduction

One of the most wonderful ways to introduce middle or secondary school
students to the beauty and excitement of contemporary mathematics is to
involve them in the many variations of the “chaos game.” While the fact
that this game produces such fractal patterns as the Sierpinski triangle and
Koch curve has been known for many years by a handful of research math-
ematicians, it was only in the late 1980s that the widespread availability of
computer graphics enabled everyone to see the intriguing patterns that arise
from this game.

Since that time, many teachers have incorporated the chaos game and
the concept of a fractal into various areas of the algebra and geometry cur-
riculum. Most of these efforts are centered around the computation of fractal
dimension or the deterministic construction of these fractals. We believe that
the chaos game approach to fractals also provides teachers with an oppor-
tunity to help students comprehend the geometry of affine transformations.
For, given the fractal output of a chaos game, you can “go backwards.” That
is, with a knowledge of the geometry of transformations (contractions, rota-
tions, and translations) and a keen eye for geometry, you can determine the
rules of the chaos game that produces a particular fractal image.

We have used the following activities in “chaos clubs” that were organized
in middle and high schools as well as in summer math camps for underpriv-
ileged as wel as talented high schoolers. The students involved invariably
become quite excited when they encounter these ideas.

2. The “Classical” Chaos Game

The easiest chaos game to understand is played as follows. Start with
three points at the vertices of a triangle. Color one vertex red, one green,
and one blue. Take a die and color two sides red, two sides green, and two
sides blue. Then pick any point whatsoever in the triangle; this is the seed.
Now roll the die. Depending upon which color comes up, move this point
half the distance to the similarly colored vertex. Then repeat this procedure,
each time moving the previous point half the distance to the vertex whose
color turns up when the die is rolled. After a dozen rolls, start marking where
these points land.

When you repeat this process many thousands of times, the pattern that
emerges is a surprise: it is not a “random mess,” as most first-time players



would expect. Rather, the image that unfolds is one of the most famous
fractals of all, the Sierpinski triangle. Note that it does not matter which
shape the original triangle assumes: you can produce a Sierpinski triangle
of any desired shape via the chaos game, as shown in Figure 1. In these

Figure 1: Sierpiski triangles.

cases the three original vertices are located at the vertices of the resulting
Sierpinski triangle.

Now here is the observation that leads to the geometry: each of these
Sierpinski triangles consists of three self-similar pieces, each of which is ex-
actly one half the size of the original triangle in terms of the lengths of the
sides. These are precisely the numbers that we used to play the game: three
vertices and move half the distance to the vertex after each roll. So, just by
looking at this object, you can read off the rules of the game we played to
produce it. This is what we mean when we say you can go backwards.

3. Other Chaos Games

When students first see the output of the chaos game, they immediately
start asking: What if you change the number of vertices? What happens if
you change the distance you move to the vertex? What happens if this and
what happens if that...? This is the beginning of the connection with the
geometry of transformations. For example, if we modify the previous chaos
game by assuming that we contract toward one of the vertices by a factor of
three rather than two, then the image in Figure 2 results. Note that we have
three self-similar pieces here. Two are half the size of the original figure, but
the top self-similar piece is only one-third the size of the entire figure. As



Addd
1‘1 .‘1
Lk >
A A A& A
........
A ik ok
& 4
F-r-y s
Y A &

Figure 2: In this chaos game we have contracted toward the top vertex by a
factor of three, not two.

before, we can read off the rules of the chaos game that we played directly
from the resulting pattern.

Let’s try another chaos game. Put six points at the vertices of a regular
hexagon. Number them one through six and erase the colors on the die. We
change the rules a bit here: instead of moving the point half the distance to
the appropriate vertex after each roll, we now, as in the previous example,
“compress the distance by a factor of three.” By this we mean we move
the point so that the resulting distance from the moved point to the chosen
vertex is one third the original distance. We say that the compression ratio
for this game is three.

Again we get a surprise: after rolling the die thousands of times the
resulting image is a “Sierpinski hexagon” as shown in Figure 3. And again

Figure 3: The Sierpinski hexagon.



we can go backwards: this image consists of six self-similar pieces, each of
which is exactly one third the size of the full Sierpinski hexagon — the same
numbers we used to design the game. By the way, there is much more to this
picture than meets the eye at first: notice that the interior white regions of
this figure are all bounded by the well known Koch snowflake fractal!

The reason for the choice of compression ratio three here is that if we
place six equal-sized smaller hexagons inside a larger hexagon so that their
vertices meet as shown in Figure 4, then each of these smaller hexagons has
sides whose length is exactly one-third the original length. So if we choose
our initial point anywhere inside the large hexagon, then after one roll of the
die, the next point lands inside one of the six smaller hexagons. After the
next roll, the point moves into one of the 36 even smaller hexagons similarly
arranged inside the six previous hexagons. After a dozen or so rolls, we are
inside a tiny hexagon too small to see because of the resolution of the image.
At that point we begin randomly jumping around through all of these small
hexagons, eventually visiting all of them, at least up to the resolution of the
image at hand.

Figure 4: Construction of the Sierpinski hexagon.

Here now is a “reverse surprise.” Play the chaos game with four vertices
at the corners of a square and a compression ratio of two. After all of the
previous games, the result of this game is — surprise! — a square. But this is
not really a surprise, since the square consists of four self-similar subsquares,
each of which is exactly one half the size of the original (in length and width).
While the square is not a fractal, it is indeed a self-similar object.



4. Fractals

Clearly, self-similarity is only one component in the definition of a frac-
tal. A line segment and a square are self-similar sets, but they are definitely
not fractals. The missing ingredient here is fractal dimension: a fractal set
must also have fractal dimension that exceeds the set’s topological dimension.
Without going into details, topological dimension is the “usual” dimension of
a set; it is always a nonnegative integer. Fractal dimension gives finer infor-
mation about the roughness or complexity of a set. Sets like the Sierpinski
triangle or hexagon which have intricate geometries therefore have fractal
dimension larger than one, which is the topological dimension of both. For
more details, we refer to [1] or [3]. Incidentally, many people believe that a
fractal is a set whose fractal dimension is not an integer. This is incorrect:
there are many fractals that have integer fractal dimension. The Sierpinski
tetrahedron (a tetrahedral analogue of the triangle) has fractal dimension
two (but topological dimension one).

5. Rotations

Now let’s add rotations to the mix. This is where the geometry of trans-
formations becomes more important. Start with the vertices of a triangle as
in the case of the Sierpinski triangle. For two of the vertices, the rules are as
before: just move half the distance to that vertex when that vertex is called.
For the remaining vertex, the rule is: first move the point half the distance
to that vertex, and then rotate the point 90 degrees about the vertex in the
clockwise direction. The result of this chaos game is shown in Figure 5a: note
that there are basically three self-similar pieces in the fractal, each of which
is half the size of the original, but the top one is rotated by 90 degrees in the
clockwise direction. Again, as before, we can go backwards and determine
the rules of the chaos game that produced the image.

Changing the rotation at this vertex to 180 degrees yields the image in
Figure 5b. This time, the top self-similar piece is rotated 180 degrees. For
the fractal in Figure 5c, we rotated twenty degrees in the clockwise direction
around the lower left vertex, twenty degress in the counterclockwise direction
around the lower right vertex, and there was no rotation around the top
vertex.



Figure 5: Sierpinski with rotations.

6. Role of Technology

Many teachers introduce the chaos game using pencil and paper or mark-
ers and transparencies. This enables students to comprehend the basic ideas
behind the chaos game. Piling student-constructed transparencies one atop
another enables students to visualize how the Sierpinski begins to emerge.
But the basic fact is that this activity really requires technology. You simply
cannot see these images in their full glory without iterating thousands and
thousands of times. There is a website called the Dynamical Systems and
Techology Project (DS & T) that provides free software that allows students
to play the chaos game in various configurations. Called Fractalina, this soft-
ware is a java applet that enables students to choose various configurations
for the vertices as well as different compression ratios and rotations. Since
the software is written in java, it runs on all computers with java-enabled
browsers. The URL is math.bu.edu/DYSYS/applets.

7. Challenging the Students

We often challenge our students to figure out how we made various fractal
images. The students must determine the number of vertices (read number of
self-similar pieces), the compression ratio, and the rotations, if any. Figure 6
displays a couple of challenging images made by chaos games. To determine
the rules of the chaos game, students must be able to decipher the geometry
of the contractions and rotations that break the image into self-similar pieces.
This is not always easy, as the fractals in Figure 6 illustrate. Each of these
images consists of three self-similar pieces, each with a compression ratio of
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two, the first with a rotation of 90 degrees in the clockwise direction about
each vertex, and the second with the same rotation, but in the counterclock-
wise direction. In particular, determing where to place the vertices involves
both geometry and trigonometry when rotations are involved. The vertices
associated to the fractal in Figure 6a are shown in Figure 7.

Figure 6: Challenging chaos game images.

Figure 7: The location of the three vertices.

Another activity that greatly motivates students is fractal movie-making.
Once you know how to create a single fractal pattern via the chaos game,
you can slowly vary some of the rotations, compression ratios, or locations
of the vertices to create a fractal movie. We challenge our students to make
a movie that is “beautiful” and that we cannot figure out how they made it.
Students often work for hours to make these animations. Of course, beautiful
here means “with a lot of symmetry,” so there really is a lot of geometry in
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this activity. While a journal is not the best place to display a movie, several
frames from the movie “Dancing Sierpinski” are displayed in Figure 8. An
applet called Fractanimate is available to make these movies at the DS & T
website. A number of fractal movies created by students are also posted at
this site.

Figure 8: How did we produce this fractal “movie”?

8. The Chaos Game “Game”

Another challenge arises as an actual game. To play this game, we begin
with the outline of the Sierpinski triangle down to some level. That is,
we begin with the original triangle and successively remove groups of sub-
triangles at each level. The first level is defined to be the case where only
one triangle has been removed from the original triangle; the second level
occurs when the three smaller triangles are removed, and so forth. Highlight
one of the remaining small triangles at the given level. This triangle is the
target. Now place a point at the lower right vertex of the original triangle.



This is the starting point. The goal of the game is to move the starting point
into the interior of the target. The moves are just the moves of our original
chaos game: At each stage the point is moved half the distance to one of the
original vertices. The chaos game setup for a level three game is displayed
in Figure 9.

Point

Figure 9: Level three of the chaos game.

At a given level, it is always possible to move the starting point into the
interior of the given target in the same number of moves, no matter where
the target is placed. For example, for the three targets available at level one,
three moves are necessary to hit any target. At level two, four moves suffice,
and at level n, exactly n + 2 moves can be found to hit any target. The
challenge to students is to figure out the algorithm for hitting any possible
target. Students can usually come up fairly quickly with a way to hit a
specific target, but the algorithm necessary to hit any target is much more
difficult both to formulate and to explain.

For example, in Figure 9, the moves to hit the prescribed target are, in
order: top, left, right, left, and top. There is only one other way to hit this
target in five moves: left, top, right, left, top. This in general is the case:
there are exactly two sequences of moves that allow you to hit the target in
the minimum number of moves. As a hint as to how to proceed, the first
two moves are necessary to move the starting point from the boundary of
the original triangle into the interior of this triangle. Thereafter, hitting
the target involves determining the “address” of that target. An interactive
version of this game is available at the DS & T website.



9. Some Applications

Our students never seem to worry about applications of these ideas when
they see the fascinating shpes that arise from the chaos game. Nonetheless
there are many ways that these are currently being used. One involves data
compression. Think about how much data we need to feed into the com-
puter to generate the Sierpinski triangle: just three vertices, a compression
ratio of two, and the total number of iterations. That tiny amount of data
allows us to store the incredibly complicated set of points making up the
fractal. Furthermore, many objects from nature (trees, clouds, ferns, etc.)
are fractals, and a slightly more sophisticated form of the chaos game allows
us to capture these images as very small data sets. These ideas have been
used to great advantage in such diverse arenas as digital encyclopedias and
Hollywood movies to construct and store lifelike, fractal images.
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