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1 Introduction

In this paper we consider complex analytic rational maps of the form

Fλ(z) = z2 + c+
λ

z2

where λ, c ∈ C are parameters. For this family of maps, we fix c to be a pa-
rameter that lies at the center of a hyperbolic component of the Mandelbrot
set, i.e., a parameter such that, for the map

F0(z) = z2 + c,

0 lies on a periodic orbit. We then perturb F0 by adding a pole at the
origin. Our goal is to investigate the structure of the Julia set of Fλ, which
we denote by J(Fλ), when λ is nonzero.

For these maps, the point at ∞ is always a superattracting fixed point,
so we have an immediate basin of attraction of ∞ that we denote by Bλ.
As a consequence, we may also define the filled Julia set for these maps to
be the set of points whose orbits remain bounded. We denote this set by
K(Fλ).

In the case where c is chosen so that the map has a superattracting cycle
of period 1, the structure of J(Fλ) has been well-studied [1], [3], [4], [5]. In
this case, c = 0 and the map is z2 +λ/z2. This map has four “free” critical
points at the points cλ = λ1/4, but there is essentially only one critical
orbit, since one checks easily that F 2

λ (cλ) = 4λ + 1/4. Hence all four of
the critical orbits land on the same point after two iterations. Then the
following result is proved in [1].

Theorem. Suppose the free critical orbit of z2 + λ/z2 tends to ∞ but
the critical points themselves do not lie in Bλ. Then the Julia set of this
map is a Sierpinski curve. In particular, there are infinitely many disjoint
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2 1. Rabbits, Basilicas, and Other Julia Sets Wrapped in Sierpinski Carpets

open sets in any neighborhood of 0 in the parameter plane (the λ-plane) for
which this occurs. Furthermore, two maps drawn from different open sets
in this collection are not topologically conjugate on their Julia sets.

A Sierpinski curve is any planar set that is homeomorphic to the well-
known Sierpinski carpet fractal. By a result of Whyburn [14], a Sierpinski
curve may also be characterized as any planar set that is compact, con-
nected, locally connected, nowhere dense, and has the property that any
pair of complementary domains are bounded by simple closed curves that
are pairwise disjoint. A Sierpinski curve is an important object from the
topological point of view because it is a universal plane continuum among
all topologically one-dimensional sets, i.e., it contains a homeomorphic copy
of any planar one-dimensionsl set.

When |λ| is small, we consider the map z2 + λ/z2 to be a singular
perturbation of the simple map F0(z) = z2. As is well known, the Julia
set of F0 is the unit circle. When |λ| is small, it is known that the Julia
set of Fλ is also bounded by a simple closed curve that moves continuously
as λ varies. Note that, when the hypothesis of the above Theorem is met,
the Julia set suddenly changes from a simple closed curve to a much more
complicated Sierpinski curve.

We remark that the situation for families of the form

zn +
λ

zd

where n, d ≥ 2 but not both are equal to 2 is quite different. For these
families, it is known [8] that the Julia sets for |λ| small consist of a Cantor
set of simple closed curves, each of which surrounds the origin. Sierpinski
curves do occur as Julia sets for these maps, but only for larger parameter
values.

Our goal in this paper is to describe a related but somewhat different
phenomenon that occurs in the family

Fλ(z) = z2 + c+
λ

z2

when the singular perturbation occurs at c-values that are the centers of
other hyperbolic components of the Mandelbrot set. A similar explosion in
the Julia set takes place when λ 6= 0. Unlike the case c = 0, the boundaries
of the components of the basin of ∞ are no longer simple closed curves.
Rather, these domains are usually bounded by “doubly” inverted copies of
the Julia set of z2 + c. By removing the attachments on these components,
we then find infinitely many disjoint Sierpinski curves that now lie in the
Julia set whenever the critical orbits eventually escape. In addition, there
is a collection of other points in the perturbed Julia set when c 6= 0.



i

i

i

i

i

i

i

i

1. Introduction 3

To be more precise, suppose now that n = d = 2 and c lies at the center
of some hyperbolic component with period k > 1 in the Mandelbrot set.
When λ = 0, the Julia set and filled Julia set of F0 are connected sets
whose structure is also well understood: the interior of K(F0) consists of
countably many simply connected open sets, each of which is bounded by
a simple closed curve that lies in the Julia set. Let C0 denote the closure
of the component of this set that contains 0. Let Cj be the closure of the

component that contains F j
0 (0) for 1 ≤ j ≤ k−1. Then F k

0 maps each Cj to
itself. Moreover, F k

0 on Cj is conjugate to the map z 7→ z2 on the closed unit
disk. For example, the center of the hyperbolic component of period 2 in the
Mandelbrot set occurs when c = −1; this Julia set is known as the basilica
and is displayed in Figure 1.1. Similarly, when c ≈ −0.12256 + 0.74486i, c
lies at the center of a period 3 hyperbolic component and the corresponding
Julia set is the Douady rabbit. See Figure 1.1.

Figure 1.1. The basilica (c = −1) and the Douady rabbit (c = −0.12256+0.74486i)
Julia sets.

Our first goal in this paper is to prove the following result.

Theorem 1. There exists δ > 0 such that, if |λ| < δ, the boundary of Bλ

is homeomorphic to ∂B0 = J(F0) and Fλ restricted to ∂Bλ is conjugate to
F0 on J(F0).

By this result the structure of the Julia set of z2 + c persists as ∂Bλ

when |λ| is small. However, the structure of J(Fλ) inside ∂Bλ is quite a bit
more complex. In Figure 1.2, we display perturbations of the basilica and
the Douady rabbit. Note that the boundary of Bλ in these cases is a copy
of the original basilica or rabbit, but that there are infinitely many “doubly
inverted” basilicas or rabbits inside this set. See Figures 1.3 and 1.4. By a
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4 1. Rabbits, Basilicas, and Other Julia Sets Wrapped in Sierpinski Carpets

Figure 1.2. Perturbations of the basilica (λ = −0.001) and the Douady rabbit
(λ = 0.0013 − 0.002i) Julia sets.

Figure 1.3. Several magnifications of the perturbed basilica Julia set.

double inversion of the rabbit, for example, we mean the following. Choose
one of the Cj and translate the rabbit linearly so that the periodic point
inside Cj moves to the origin. Then invert the set via the two-to-one map
z 7→ 1/z2. This map moves all the components of the filled Julia set that lie
in the exterior of Cj so that they now lie inside the image of the boundary
of Cj , and the external boundary of this set is now a simple closed curve
that is the image of the boundary of Cj . A homeomorphic copy of this set
is what we called a doubly inverted rabbit. See Figure 1.4.

As a consequence of Theorem 1, there is a region Cj(λ) that corresponds
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1. Introduction 5

Figure 1.4. A magnification of the doubly inverted rabbit. Note that there are some
“quadruply” inverted copies of the rabbit surrounding this set. These bound regions
that contain critical points of Fλ or their preimages.

to the region Cj for F0. Consider the set of points in Cj(λ) whose orbits
travel through the ∪Ci(λ) in the exact order that the point cj travels

through the ∪Ci under F0. Call this set Λj
λ. Note that Λj

λ is contained in
the disk Cj(λ) and is invariant under F k

λ . We shall prove:

Theorem 2. Suppose that |λ| is sufficiently small and that all of the free
critical orbits of Fλ escape to ∞ but the critical points themselves do not
lie in Bλ. Then, for j = 0, . . . , k − 1, the set Λj

λ is a Sierpinski curve.

Corollary. Inside every component of the interior of C − ∂Bλ that corre-
sponds to an eventually periodic component of the interior of K(F0) there
is a similar copy of a Sierpinski curve that eventually maps to the Sier-
pinski curves inside the Cj(λ). Furthermore, each interior complementary
domain of all of these Sierpinski curves contains an inverted copy of the
Julia set of F0, and then each interior component of this set also contains
a Sierpinski curve, and so forth.

Thus, when λ becomes nonzero and the critical orbits eventually escape
to ∞, we see a similar phenomenon as in the case of z2: suddenly each
component of filled Julia set inherits the structure of a Sierpinski curve
while ∂Bλ remains homeomorphic to ∂B0. However, there is actually much
more to the structure of the full Julia set of Fλ than that described in the
above Theorems.

By Theorems 1 and 2, when |λ| is sufficiently small, we have two types
of invariant subsets of the Julia set of Fλ: ∂Bλ and the Λj

λ. Moreover,
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6 1. Rabbits, Basilicas, and Other Julia Sets Wrapped in Sierpinski Carpets

we completely understand both the topology of and the dynamics on these
sets. However, each of these sets has infinitely many preimages and each
of these preimages lies in the Julia set but contains no periodic points. So
there are many other points in J(Fλ).

To describe these points, we shall assign in Section 5 an itinerary to
each such point in the Julia set (excluding those in the various preimages
of ∂Bλ). This itinerary will be an infinite sequence of non-negative integers
that specifies how the orbit of the given point moves through the various
preimages of the Cj(λ). For example, the itinerary of any point in Λ0

λ will

be 012 . . . n− 1 and the itinerary of any point in Λj
λ will be the j-fold shift

of this sequence. Similarly, any point in a preimage of any of the sets Λj
λ

will be a sequence that terminates in such a sequence. The itinerary of
any other point in the Julia set will not have this property. Then we shall
prove:

Theorem 3. Let Γs(λ) denote the set of points whose itinerary is the
sequence of non-negative integers s = (s0s1s2 . . .). Then, if s ends in a
repeating sequence of the form 012 . . . n− 1, Γs(λ) is a Sierpinski curve.
Otherwise, Γs(λ) is a Cantor set.

2 Preliminaries

Let c be a center of a hyperbolic component of the Mandelbrot set with
period greater than 1. Let

Fλ(z) = z2 + c+
λ

z2

where λ ∈ C. When λ 6= 0, these maps have critical points at 0, ∞, and the
four points λ1/4. Since 0 maps to ∞, which is a superattracting fixed point,
we call the remaining four critical points the free critical points. There are
really only two free critical orbits for this family, since Fλ(−z) = Fλ(z),
so ±λ1/4 both map onto the same orbit after one iteration. Thus we have
only two critical values for Fλ, namely c± 2λ1/2.

One checks easily that the circle of radius |λ|1/4 centered at the origin
is mapped four-to-one onto the straight line segment connecting the two
critical values c± 2λ1/2. We call this circle the critical circle and its image
the critical segment. The points (−λ)1/4 on the critical circle are all mapped
to c. Also, the straight lines from the origin to ∞ passing through each of
the four critical points are mapped two-to-one onto straight line segments
extending from one of the two the critical values to ∞ and extending the
critical segment so that these lines together with the critical segment form
a single straight line in the plane. One also checks easily that any circle
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centered at the origin (except the critical circle) is mapped by Fλ two-to-
one onto an ellipse whose foci are the two critical values. As these circles
tend to the critical circle, the image ellipses tend to the critical segment.
Thus the exterior (resp., interior) of the critical circle in C is mapped as a
two-to-one covering of the complement of the critical segment.

For these maps, recall that we always have an immediate basin of at-
traction of ∞ denoted by Bλ. For each λ 6= 0, there is a neighborhood of 0
that is mapped into Bλ. If this neighborhood is disjoint from Bλ, we call
the component of the full basin of ∞ that contains the origin the trap door
and denote it by Tλ. We will be primarily concerned with the case where
Bλ and Tλ are disjoint in this paper.

The Julia set of Fλ, denoted by J(Fλ), is the set of points at which the
family of iterates of Fλ fails to be a normal family in the sense of Montel.
The complement of the Julia set is the Fatou set. It is known that J(Fλ)
is the closure of the set of repelling periodic points of Fλ. The Julia set
is also the boundary of the full basin of attraction of ∞. When Tλ and
Bλ are disjoint, there are infinitely many distinct components of the entire
basin of ∞, so the Julia set surrounds infinitely many disjoint open sets in
which orbits eventually escape into Bλ. These holes all lie in the Fatou set.

Since Fλ(−z) = Fλ(z), it follows that J(Fλ) is symmetric under z 7→
−z. There is a second symmetry for these maps: let Hλ(z) =

√
λ/z. Then

we have Fλ(Hλ(z)) = Fλ(z), so J(Fλ) is also symmetric under each of the
involutions Hλ.

Recall that we have assumed that 0 lies on a cycle of period k > 1 for
F0. Let cj = F j

0 (0) for j = 1, . . . , k − 1. The set Cj is the closure of the
component of the interior of C− J(F0) that contains cj . As is well known,
the interior of Cj is the immediate basin of attraction of F k

0 surrounding
cj . Also, F k

0 maps Cj to itself as a two-to-one branched covering with cj
acting as the only branch point. On the boundary of Cj , F

k
0 is conjugate

to the map z 7→ z2 on the unit circle. All other components of C − J(F0)
eventually map to the Cj (with the exception of the basin of attraction of
∞, which is mapped to itself).

3 The Boundary of the Basin of ∞
Our goal in this section is to prove Theorem 1.

Theorem 1. There exists δ > 0 such that, if |λ| < δ, the boundary of Bλ

is homeomorphic to ∂B0 = J(F0) and Fλ restricted to ∂Bλ is conjugate to
F0 on J(F0).

Proof: We shall use quasiconformal surgery to modify each of the maps
Fλ so that the resulting maps are all conjugate to F0 via a conjugacy hλ, at
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8 1. Rabbits, Basilicas, and Other Julia Sets Wrapped in Sierpinski Carpets

least for |λ| small enough. Then hλ will be shown to be a homeomorphism
taking ∂Bλ to ∂B0 = J(F0).

Let O0 be the closed disk of radius r about the origin. We choose r small
enough so that O0 lies in the interior of the Fatou component of K(F0)
that contains the origin. For i = 1, . . . , k, let Oi = F i

0(O0). Note that Ok is
strictly contained in the interior of O0. Let βi denote the boundary of Oi.
There is a simple closed curve γ0 that lies outside of β0 in the component
of K(F0) containing the origin and that is mapped two-to-one onto β0 by
F k

0 . We may then choose δ > 0 small enough so that, if |λ| < δ, there is a
similar curve γ0(λ) lying outside β0 that is mapped two-to-one onto β0 by
F k

λ . This follows since, for |λ| small enough, Fλ ≈ F0 outside of O0. Let
γi(λ) = F i

λ(γ0(λ)) for i = 1, . . . , k so that γk(λ) = β0. Let Ai(λ) denote
the closed annulus bounded by βi and γi(λ) for each i ≤ k.

For |λ| < δ, we define a new map Gλ on C as follows. We first set
Gλ = F0 on each of the Oi. Then we set Gλ = Fλ on the region outside
the union of all the Oi and Ai(λ). We now only need to define Gλ on
the Ai(λ) for i = 0, . . . , k − 1. To do this, recall that F0 maps βi to βi+1

while Fλ maps γi(λ) to γi+1(λ). For i = 0, . . . , k − 1, we then define
Gλ : Ai(λ) → Ai+1(λ) to be a smooth map that:

1. Gλ agrees with F0 on βi and with Fλ on γi(λ);

2. G0 = F0 on each Ai(λ);

3. Gλ is a two-to-one covering map on A0(λ) and one-to-one on Ai(λ)
for 1 ≤ λ ≤ k − 1;

4. Gλ varies continuously with λ.

According to this definition, we have that G0 = F0 everywhere on C.
Furthermore, Gλ is holomorphic at all points outside of the Ai(λ) and Gλ

has a superattracting cycle of period k at 0. Finally, Gλ = Fλ on Bλ and
its boundary, so the immediate basin of ∞ for Gλ is just Bλ.

We now construct a measurable ellipse field ξλ that is invariant under
Gλ. Define ξλ to be the standard complex structure on the union of the Oi,
i.e., the circular ellipse field. Now we begin pulling back this structure by
successive preimages of Gλ. The first k preimages defines ξλ on the union
of the Ai(λ) (and elsewhere). Each of these pullbacks yields an ellipse field
on the Ai(λ) since we are pulling back by a map that is not necessarily
holomorphic on these annuli. However, since Gλ is a smooth map on these
annuli, this new portion of the ellipse field has bounded dilatation. Then
all subsequent pullbacks of the ellipse field are done by holomorphic maps
since Gλ = Fλ outside of the Ai(λ). This defines ξλ on the union of all of
forward and backward images of the Oi. As defined so far, ξ0 is just the
standard complex structure on the union of all the bounded components of
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4. Sierpinski Carpets 9

K(F0). Furthermore, each Gλ preserves ξλ. To complete the definition of
ξλ, we set ξλ to be the standard complex structure on all remaining points
in C. Since Gλ = Fλ on this set of points, it follows that Gλ preserves
ξλ everywhere and, in particular, ξλ has bounded dilatation on the entire
Riemann sphere.

By the Measurable Riemann Mapping Theorem, there is then a qua-
siconformal homeomorphism hλ that converts ξλ to the standard complex
structure on C. We may normalize hλ so that hλ(∞) = ∞, hλ(c) = c, and
hλ(0) = 0. Since ξλ depends continuously on λ, so too does hλ. Moreover,
h0 is the identity map. Thus hλ conjugates each Gλ to a holomorphic map
that is a polynomial of degree two with a superattracting cycle of period
k. This polynomial must therefore be F0 for each λ. We therefore have
that hλ is a homeomorphism that takes ∂Bλ to J(F0). This completes the
proof.

2

4 Sierpinski Carpets

Our goal in this section is to prove Theorem 2. For the rest of this section,
we fix a λ value with |λ| ≤ δ so that, by Theorem 1, ∂Bλ is homeomorphic
to J(F0). Hence we have the k regions Cj(λ) for Fλ that correspond to the
periodic regions Cj for F0. By Theorem 1, each of the Cj(λ) is a closed disk
that is bounded by a simple closed curve. We shall prove that there is an
F k

λ -invariant set Λλ ⊂ J(Fλ) that is contained in C0(λ), is homeomorphic
to the Sierpinski carpet, and has the property that all points in this set
have orbits that remain for all iterations in ∪Ci(λ) and travel through
these sets in the same order as the orbit of 0 does under F0. The other
parts of Theorem 2 and its Corollary then follow immediately from this
result by taking appropriate preimages of Λλ.

So consider the region C0(λ) and its boundary curve ν0(λ). Similarly,
let νj(λ) denote the boundary of Cj(λ). Since |λ| ≤ δ, the critical segment
lies inside C1(λ), so the critical circle lies in the interior of C0(λ). Now recall
that Fλ maps the interior of the critical circle as a two-to-one covering onto
the exterior of the critical segment in C. It follows that there is another
simple closed curve in C0(λ) that lies inside the critical circle (and hence
inside ν0(λ)), and, like ν0(λ), this curve is mapped two-to-one onto ν1(λ).
Call this curve ξ0(λ). The region between ξ0(λ) and ν0(λ) is therefore an
annulus that is mapped by Fλ as a four-to-one branched covering onto the
interior of the disk C1(λ). Call this annulus Aλ. Note that all four of the
free critical points of Fλ lie in Aλ since the critical values reside in the
interior of C1(λ).

The complement of Aλ in C0(λ) is therefore a closed disk that is mapped
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10 1. Rabbits, Basilicas, and Other Julia Sets Wrapped in Sierpinski Carpets

by Fλ two-to-one to the complement of the interior of C1(λ) in C. Hence
there is a subset of this disk that is mapped two-to-one onto ∂Bλ. This
subset includes the boundary curve ξ0(λ) that is mapped two-to-one to
ν1(λ) in ∂Bλ and the preimages of all of the other points in ∂Bλ lie strictly
inside the curve ξ0(λ). Since Fλ is two-to-one inside ξ0(λ), the preimage
of ∂Bλ is thus a doubly inverted copy of ∂Bλ. Note that there is a com-
ponent of the complement of this inverted copy of ∂Bλ that is an open set
containing the origin that is mapped two-to-one onto Bλ. This set is the
trap door, Tλ.

To prove that the set Λλ in C0(λ) is homeomorphic to the Sierpinski
carpet, we use quasiconformal surgery. We shall construct a quasiconformal
map Lλ : C → C that agrees with F k

λ in Aλ. The set of points whose orbits
under Lλ are bounded will be exactly the set Λλ. So we then show that
Lλ is conjugate to a rational map of the form

Qλ,α(z) = z2 +
λ

z2
+ α

where α is a complex parameter and that, with the given assumptions on
the critical orbits of Fλ, the Julia set of Qλ,α is a Sierpinski curve. This
will show that Λλ is a Sierpinski curve.

To construct Lλ, first recall that F k
λ maps ν0(λ) two-to-one onto itself

and is hyperbolic in a neighborhood of this set. Also, ν0(λ) is symmetric
under z 7→ −z. Hence we may choose a simple closed curve ζ1(λ) having
the following properties:

1. ζ1(λ) lies close to but strictly outside ν0(λ) and surrounds ν0(λ);

2. ζ1(λ) is symmetric under z 7→ −z;

3. there is a preimage of ζ1(λ) under F k
λ , namely ζ0(λ), that lies between

ν0(λ) and ζ1(λ) and F k
λ maps ζ0(λ) to ζ1(λ) as a two-to-one covering,

so ζ0(λ) is also symmetric under z 7→ −z;

4. all points in the open annulus betwen ν0(λ) and ζ1(λ) eventually leave
this annulus under iteration of F k

λ .

We remark that the curve ζ1(λ) does not lie in Bλ; indeed, ζ1(λ) passes
through portions of J(Fλ) close to but outside the curve ν0(λ).

We now define Lλ in stages. We first define Lλ(z) = F k
λ (z) if z is in

the closed annulus bounded on the outside by ζ0(λ) and on the inside by
ξ0(λ). To define Lλ outside ζ0(λ), we proceed in two stages. First consider
the region Vλ outside ζ1(λ) in the Riemann sphere. In this region we “glue
in” the map z 7→ z2. More precisely, since ζ1(λ) is invariant under z 7→ −z,
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4. Sierpinski Carpets 11

it follows that Vλ also has this property. Let φλ be the exterior Riemann
map taking Vλ onto the disk

D2 = {z ∈ C | |z| ≥ 2}

in C and fixing ∞ with φ′λ(∞) > 0. Because of the z 7→ −z symmetry in
Vλ, we have that φλ(−z) = −φλ(z). Let f(z) = z2, so f takes D2 to

D4 = {z ∈ C | |z| ≥ 4}.

We then define Lλ on Vλ by

Lλ(z) = φ−1

λ (φλ(z))2.

Note that Lλ(z) = Lλ(−z) since φλ(−z) = −φλ(z).
So we now have Lλ defined on the region inside ζ0(λ) (but outside ξ0(λ))

and also outside ζ1(λ). We next need to define Lλ on the open annulus Uλ

between ζ0(λ) and ζ1(λ). On the boundary curve ζ0(λ) of Uλ, we have that
Lλ is the two-to-one covering map F k

λ and Lλ(ζ0(λ)) = ζ1(λ); on the other
boundary curve ζ1(λ), Lλ is the map above that is conjugate to z 7→ z2.
So we define a smooth map qλ on Uλ such that:

1. qλ takes Uλ to the annulus bounded by ζ1(λ) and Lλ(ζ1(λ)) as a
two-to-one covering;

2. qλ agrees with Lλ on both boundaries of Uλ;

3. qλ(−z) = qλ(z);

4. qλ varies smoothly with λ.

We now have Lλ defined everywhere outside ξ0(λ). Inside ξ0(λ), we
then set Lλ(z) = Lλ(Hλ(z)). Since Hλ maps the disk bounded on the
outside by ξ0(λ) to the exterior of ν0(λ) and then Lλ maps this region to
itself, it follows that Lλ takes the disk bounded by ξ0(λ) onto the exterior of
ν0(λ) in two-to-one fashion. Note that Lλ is continuous along ξ0(λ), since,
on this curve, the “exterior” definition of Lλ, namely F k

λ , and the interior
definition, Lλ ◦Hλ = F k

λ ◦Hλ agree. Also, we have that Lλ(−z) = Lλ(z).
See Figure 4.5.

Proposition. The set of points whose entire orbits under Lλ lie in Aλ is
precisely the set Λλ.

Proof: Suppose z ∈ Aλ. Then we have that F j
λ(z) ∈ Cj(λ) for j =

0, . . . , k− 1 since F j
λ(Aλ) = Cj(λ) for each such j. If Lλ(z) also lies in Aλ,

then we have that F k
λ (z) also lies in C0(λ) and the first k points on the orbit
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�
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�
�0

ξ0(λ)

Aλ

ν0(λ)

ζ0(λ)

ζ1(λ)

-
z2

qλ
-

-

F k
λ

Figure 4.5. Construction of Lλ.

of z under Fλ travel around the Cj(λ) in the correct fashion. Similarly, if

Lj
λ(z) lies in Aλ for all j, then the entire orbit of z visits the Cj(λ) in the

correct order and we have that z ∈ Λλ.
Conversely, if Li

λ(z) ∈ Aλ for 0 ≤ i < j but Lj
λ(z) 6∈ Aλ, then Lj

λ(z)
must lie inside the disk bounded by ξ0(λ). But Fλ takes this disk to the
exterior of C1(λ), so the orbit of z does not follow the orbit of 0 and so
z 6∈ Λλ.

2

Proposition. The map Lλ is quasiconformally conjugate to a rational
map of the form

Qλ,α(z) = z2 + α+
λ

z2
.

Proof: We first construct an Lλ-invariant ellipse field in C. First define
this field to be the standard complex structure in the region outside ζ1(λ).
Then pull this structure back by qλ to define the ellipse field in the annulus
between ζ0(λ) and ζ1(λ). Since qλ is a smooth map, the ellipse field in this
region has bounded dilatation. To define the ellipse field in the annulus
between ν0(λ) and ζ0(λ), we keep pulling the already defined ellipses back
by the appropriate branch of Lλ, which, in this region, equals F k

λ . Since



i

i

i

i

i

i

i

i

4. Sierpinski Carpets 13

F k
λ is holomorphic, the ellipse field continues to have bounded dilatation

under these pull-backs.
We next define the ellipse field inside ξ0(λ) by pulling the given field

back by Lλ. This is possible since Lλ maps the region inside ξ0(λ) as a
two-to-one covering of the exterior of ν0(λ).

Finally, we extend the ellipse field to the annulus between ξ0(λ) and
ν0(λ) as follows. We first use the iterates of the map F k

λ to define the ellipses
at any point whose orbit eventually enters the disk bounded by ξ0(λ). If a
point never enters this region, then we put the standard structure at this
point. This defines the ellipse field almost everywhere. Note that this field
is preserved by Lλ, has bounded dilatation, is symmetric under z 7→ −z,
and is also preserved by Hλ.

By the Measurable Riemann Mapping Theorem, there exists a qua-
siconformal homeomorphism ψλ that straightens this ellipse field. We
may normalize ψλ so that ψλ(0) = 0 and ψλ(∞) = ∞. Because of
the symmetries in the ellipse field, we have that ψλ(−z) = −ψλ(z) and
ψλ(Hλ(z)) = Hλ(ψλ(z)). Therefore the map ψλ ◦ Lλ ◦ ψ−1

λ is a rational
map of degree 4 that fixes ∞ and has a pole of order 2 at the origin. So
we have

ψλ ◦ Lλ ◦ ψ−1

λ (z) =
a4z

4 + . . .+ a1z + a0

z2
.

Since ψλ(−z) = −ψλ(z) and Lλ(−z) = Lλ(z), we must have a3 = a1 = 0
and this map simplifies to

ψλ ◦ Lλ ◦ ψ−1

λ (z) =
a4z

4 + a2z
2 + a0

z2
= a4z

2 + a2 +
a0

z2
.

we may scale this map so that a4 = 1 and then the Hλ-symmetry shows
that a0 = λ. Therefore, Lλ is conjugate to the rational map

Qλ,α(z) = z2 +
λ

z2
+ α.

2

We now complete the proof that Λλ is a Sierpinski curve. It suffices
to show that Λλ is compact, connected, locally connected, nowhere dense,
and has the property that any two complementary domains are bounded
by simple closed curves that are pairwise disjoint.

By the previous Propositions, we know Λλ is the set of points whose
orbits are bounded under iteration of Lλ. Also, the set Λλ contains no
critical points by assumption. Moreover, this set is homeomorphic to the
filled Julia set ofQλ,α. Thus all of the critical points of Qλ,α must escape to
∞ as well and so the Fatou set of Qλ,α is the union of all of the preimages of
the basin of ∞. Standard facts about the Julia sets of rational maps then
yields the fact that J(Qλ,α) is compact and nowhere dense. In particular,
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the filled Julia set of this map is equal to J(Qλ,α). By a result of Yin
[15], since all the critical orbits of Qλ,α tend to ∞, the Julia set is locally
connected.

Now we know that the set of Lλ-bounded orbits is bounded on the
outside by the simple closed curve ν0(λ) and on the inside by ξ0(λ), and all
the other complementary domains are preimages of these sets. Therefore
this set is connected and all of the complementary domains are bounded by
simple closed curves. These curves must be pairwise disjoint for, otherwise,
a point of intersection would necessarily be a critical point whose orbit
would then be bounded. But this cannot happen since all of the critical
orbits escape to ∞. This completes the proof.

5 Dynamics on the Rest of the Julia Set

In this section we turn our attention to the dynamical behavior of all other
points in J(Fλ). As in the previous sections, we continue to assume that
|λ| is sufficiently small and that all of the critical orbits of Fλ tend to ∞
(but the critical points themselves do not lie in Bλ).

By Theorem 2 there exists the invariant set ∂Bλ on which Fλ is con-
jugate to F0 on J(F0). Let Bλ denote the set consisting of ∂Bλ together
with all of its preimages under F j

λ for each j ≥ 0. Similarly, by Theorem 3,

there exist Sierpinski curves Λj
λ for j = 0, . . . , k− 1 on each of which F k

λ is
conjugate to a map of the form z2 +α(λ)+λ/z2. Let Ωλ denote the union
of the Λj

λ together with all of the preimages of these sets under all iterates
of Fλ. By our earlier results, we understand the topology of and dynamics
on each of these sets.

We therefore consider points in the set

Oλ = J(Fλ) − (Bλ ∪ Ωλ).

Note that there must be infinitely many points in this set since none of the
preimages of the Λj

λ or ∂Bλ contain periodic points and, as is well known,
repelling periodic points must be dense in J(Fλ).

To describe the structure of the set Oλ, we first assign an itinerary to
each point in this set. For 0 ≤ j ≤ k − 1, let Ij denote the interior of

the disk Cj in K(F0) that contains F j
0 (0). The interior of K(F0) consists

of infinitely many other such open disks. So for each j > k − 1, we let
Ij denote a unique such disk. How these Ij are indexed is not important.
Then let Ij(λ) denote the corresponding open disk for Fλ.

Given z ∈ Oλ, we define the itinerary of z to be the sequence of non-
negative integers S(z) = (s0s1s2 . . .) where, as usual, sj = ℓ if and only

if F j
λ(z) ∈ Iℓ(λ). The itinerary is said to be allowable if it actually corre-

sponds to a point in Oλ. Note the following:
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1. We do not assign an itinerary to any point in Bλ since the Ij(λ) are
disjoint from this set (and we already understand the dynamics on
this set anyway).

2. The itinerary of any point in Oλ necessarily contains infinitely many
zeroes. This follows immediately from the fact that each Ij with
j > 0 must eventually be mapped to I0 by some iterate of F0 and so
the same must be true for Ij(λ) and Fλ.

3. The itinerary of z ∈ Oλ cannot end in an infinite string of the form
(0 1 . . . k − 1) since we have assumed that z 6∈ Ωλ.

Now suppose z ∈ Oλ. If some entry of S(z) = 0, say sj = 0, then either
sj+1 = 1, in which case we have that

sj+2 = 2, sj+3 = 3, . . . , sj+k = 0,

or else sj+1 6= 1. In the latter case, we call the index j a departure index,
since these are the points on the orbit of z where this orbit “deviates” from
a similar orbit for F0. As above, there must be infinitely many departure
indices for any orbit in Oλ, since this itinerary cannot end in the repeating
sequence (0 1 . . . k − 1).

Before turning to the proof of Theorem 3, we give several illustrative
examples of why the set of points in Oλ with a given itinerary is a Cantor
set. For clarity, we restrict to the case where Fλ(z) = z2 − 1 + λ/z2, i.e.,
the case where c is drawn from the center of the period two bulb in the
Mandelbrot set. We let I2(λ) = −I1(λ), so I2(λ) is the other preimage of
I0(λ).

Example 1: The itinerary (0). In this case, each index j is a departure
index since sj+1 6= 1. Let Vn(λ) be the set of points in I0(λ) whose itinerary
begins with n + 1 consecutive zeroes. Then V0(λ) = I0(λ) and V1(λ) is a
pair of disjoint open disks in I0(λ), each of which lies inside the curve ξ0(λ)
that is mapped two-to-one to the boundary of I1(λ). Each of these disks is
mapped univalently over I0(λ) since the critical points of Fλ lie outside the
curve ξ0(λ) and are mapped to I1(λ). But then V2(λ) consists of 4 disjoint
open disks, two in each component of V1(λ) that are mapped onto the two
components of V1(λ). Continuing in this fashion, we see that Vn(λ) consists
of 2n disjoint open disks, and Vn(λ) ⊂ Vn−1(λ) for each n. Since Fλ maps
Vn(λ) to Vn−1(λ) as above, standard arguments from complex dynamics
then show that the set of points in Oλ whose itinerary is (0) is a Cantor
set.

From now on, we let Ws0s1...sn
(λ) denote the set of points in Oλ whose

itinerary begins with s0s1 . . . sn.
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Example 2: The itinerary (02). In this case we again have that the
critical points are mapped into I1(λ), so, as above, W02(λ) is a pair of
open disks in I0(λ), each of which is mapped univalently onto I2(λ). Thus
W202(λ) is also pair of disks lying in I2(λ). But then, since Fλ maps each
disk in W02(λ) univalently onto I2(λ), we have that W0202(λ) consists of
four disks, two in each of the disks comprising W02(λ). Continuing, we see
that every second iterate produces double the number of disks contained
in the previous W (λ), so again we see that the set of points on Oλ with
itinerary (02) is a Cantor set.

Example 3: The itinerary (0102). As in the previous example, W02(λ)
is a pair of disks, since each of the critical points in I0(λ) is mapped into
I1(λ) for small |λ|. Then W102(λ) is a pair of disks in I1(λ) since I1(λ) is
mapped univalently onto I0(λ). But now W0102(λ) consists of at least 4
and at most 8 disjoint disks in I0(λ). To see this, note that the preimage of
I1(λ) in I0(λ) is the annulus bounded by the curves ξ0(λ) and ν0(λ) defined
earlier, and Fλ takes this annulus four-to-one onto I1(λ). There are four
critical points in this annulus, and it could be the case that one of the
critical points map into one of the two disks in W102(λ). If that happens,
then the negative of this critical point (also a critical point) maps to the
same disk. So the preimage of this particular disk has either one or two
components since the map is four-to-one. But, if this preimage has only one
component, by the z 7→ −z symmetry, this component would necessarily
surround the origin. Now this preimage must be disjoint from the Sierpinski
curve invariant set in I0(λ) and also separate ξ0(λ) from ν0(λ). This then
gives a contradiction to the connectedness of the Sierpinski curve. Hence
each of these disks would have at least two preimages for a total of at least
four and at most eight preimages of W102(λ) in I0(λ). But then W20102(λ)
also consists of at least 4 and at most 8 disks, while W020102(λ) now consists
of double this number of disks, since Fλ maps I0(λ) two-to-one onto I2(λ),
but the critical points map into I1(λ). That is, each of the two original
disks in W02(λ) acquires from 4 to 8 preimages when we pull them back
by the four appropriate inverses of Fλ. Then, continuing in this fashion,
each time we pull back each of these disks, again by the four appropriate
preimages, we find at least 4 preimages for each one. Again, the set of
points with this itinerary is a Cantor set.

We now complete the proof of Theorem 3. Consider the allowable
itinerary (s0s1s2 . . .). We may asume at the outset that s0 = 0 and that 0
is a departure index. So say that the itinerary is given by (0s1 . . . si0 . . .)
where sj 6= 0 for 1 ≤ j ≤ i. Then the set of points whose itinerary begins
this way is a pair of disks in I0(λ), and each of these disks is mapped uni-
valently onto I0(λ) by F i+1

λ . Then there are two cases: either i + 1 is a
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departure index or it is not. In the former case, the itinerary may be con-
tinued (0s1 . . . si0si+2 . . . si+ℓ0 . . .) where again sj 6= 0 for i+2 ≤ j ≤ i+ ℓ.
Just as in Examples 1 and 2, the set of points in I0(λ) whose itinerary
begins in this fashion now consists of 4 disks. In the other case, we have
that si+1 = 1, . . . , si+k−1 = k − 1, si+k = 0. Arguing as in Example 3,
we have that the set of points whose itinerary now begins in this fashion
consists of between four and eight disjoint open disks, all contained in the
original pair of disks, and each mapped onto I0(λ) (at most two-to-one) by
F i+ℓ+1

λ . In any event, the number of disks that correspond to this initial
itinerary has at least doubled. Continuing in this fashion, we see that at
each index for which sj = 0, we find at least double the number of disjoint
open disks in I0(λ) that begin with this itinerary. These disks are nested
and converge to points. Hence the set of points with the given itinerary is
a Cantor set.

6 Several Examples

For completeness, we give several examples of parameters in the family

Fλ(z) = z2 − 1 +
λ

z2

for which both critical orbits eventually escape to ∞ and the above theo-
rems hold. We shall choose λ real and negative. Note that, in this case, we
have Fλ(z) = Fλ(z), so the Julia sets are symmetric under z 7→ z. More
importantly, the two critical values are symmetric under this map, so if one
critical value eventually escapes, then so does the other one.

The first example occurs when λ = −.0025 so that one of the critical
values is vλ = −1 + 0.1i. We then compute

Fλ(vλ) = −.0124262− .20049i

F 2
λ(vλ) = −.978559 + .0126334i

F 3
λ(vλ) = −.0451908− .0247924i

F 4
λ(vλ) = −1.50415 + .795835i

F 5
λ(vλ) = .628637− 2.39483i

We have that vλ and F 2
λ(vλ) belong to I1(λ) whereas Fλ(vλ) and F 3

λ(vλ)
belong to I0(λ). One checks easily that F 4

λ(vλ) then lies outside ∂Bλ.
Hence both critical orbits escape at this iteration. See Figure 6.6 for a
picture of this Julia set.

The second example occurs when λ = −.0001 so that one of the critical
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Figure 6.6. The Julia sets for z2
−1−λ/z2 when λ = −.0025 and also λ = −.0001.

values is −1 + .02i. We then compute

Fλ(vλ) = .00049988− .040004i

F 2
λ(vλ) = −.939142 + .00160116i

F 3
λ(vλ) = −.118129− .00300783i

F 4
λ(vλ) = −.993207 + .00107508

F 5
λ(vλ) = −.0136424− .00213578i

F 6
λ(vλ) = −1.449917 + .160339i

F 7
λ(vλ) = 1.22177− .48076i

F 8
λ(vλ) = .261538− 1.17479i

F 9
λ(vλ) = −2.31167− .614536i

so that F 6
λ(vλ) now is the first point on the critical orbit to lie outside ∂Bλ.

See Figure 6.6.
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