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1 Introduction

In this paper we will discuss the topology of the Julia set for certain complex
exponential maps of the form F,(z) = Aexp(z) where A € C. We will restrict
attention to those exponentials for which F) has an attracting periodic orbit.
It is known that, since E, has a unique asymptotic value (0) and no critical
values, F/\ has at most one attracting cycle.

The Julia set of E) is the set of points at which the family of iterates
of FE) fails to be a normal family in the sense of Montel. It is known that
each point in the Julia set whose orbit has bounded imaginary part lies on
a curve in the Julia set [7]. This curve is the image of a homeomorphism
h :]0,00) — C with the following properties.

i) The orbit of h(0) is bounded
ii) If t > 0, the orbit of E¥(h(t)) tends to oo as n — oo
iii) limy_e0 Re h(t) = 00

These curves are called hairs. Points whose orbits escape lie on the tail
of the hair. The point h(0) whose orbit is bounded is called the endpoint of
the hair.

It is known [4] that the Julia set of E) is also the closure of the repelling
periodic points of E\. These points therefore lie at the endpoints of the hairs
since all other points on the hairs escape to co. Hence these endpoints must
accumulate on all other points on the Julia set. Another established fact is
that the tails of different hairs cannot meet in C. However, the endpoints of
certain hairs may coincide [10]. In fact, it often happens that more than one
tail meets at a given endpoint. When this happens, we say that the hairs are
attached or tied together.

For example, in Figure 1, we display the Julia set when A\ = 1/e. For this
A-value, F, has an attracting fixed point. The basin of attraction of this fixed
point (the complement of the Julia set) is displayed in black. In this figure,
it appears that the Julia set contains open sets. However, this is not the
case. In fact, J(E,) is a “Cantor bouquet” which consists of an uncountable
collection of hairs, none of which are tied together. It is known [18] that the
Hausdorff dimension of this Julia set is 2.

In Figure 2, we display the Julia set when A = 5 + im, one of the funda-
mental examples we deal with below. As we will see, this exponential has



Figure 1: The Julia set for A = 1/e.
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Figure 2: The Julia set for A = 5 + .
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Figure 3: The Julia set for A = 10 + 3.

an attracting cycle of period 3. In this case it appears that there are trios of
hairs that are attached at a number of distinct points in the plane.

In Figure 3, we display the Julia set when A = 10 + 3m¢. This map also
has an attracting cycle of period 3. Note that different hairs now seem to be
attached. In contrast, the Julia set for A = 3.147 (Figure 4) shows that the
structure of the attached hairs can be extremely complicated.

Our goal in this paper is to develop an algorithm that specifies exactly
which hairs are attached at which endpoints in the Julia set. Our algorithm
will depend on the kneading sequence associated to E). The kneading se-
quence is a sequence of n — 2 integers that specifies the topology of the basin
of attraction of the attracting n-cycle (we assume that n > 2 since the period
1 and 2 cases are trivial). Given the kneading sequence, we will use symbolic
dynamics to understand how the hairs are tangled together. In particular we
will prove that, if the last integer in the kneading sequence is nonzero, then
the corresponding exponential must have infinitely many distinct periodic
points that have multiple hairs attached.



Figure 4: The Julia set for A = 3.14s.

2 Fingers

In this section we will describe some general properties of the complement of
the Julia set. We assume that ) has an attracting periodic cycle zy, ..., z, =
zp of period n. Throughout we assume that n > 3.

It is well known that the asymptotic value 0 lies in the immediate basin
of attraction of some point on the cycle. Without loss of generality we will
assume that 0 € A*(z;) where A*(z) is the immediate basin of attraction of
z. The reason for assuming 0 € A*(z;) rather than 0 € A*(zy) will become
apparent in the sequel. We will define a collection of open set B; about each
of the z;. Starting with the point z; we first define a set B, ; with the
following properties:

i) B,y is an open and simply connected subset of A*(z;) .

ii) 0,2 € Bop

iii) B, has compact closure and is a fundamental domain, i.e.,
ng (Bn+1) - Bn+1



Next we will obtain a neighborhood of z; by considering the preimage of
B, .. Define
B, = E;" (Bpi1).-

Proposition 2.1 B, is simply connected neighborhood of zy and B,, contains
a half-plane Rez < & and is contained in a half-plane Rez < & for some

§1a§2 eR

Proof: Choose a closed disk D,(0) of radius p which is contained in B,
and centered at 0. Let & = log(p/|A|). Then

By (Dy(0)) = {z|Rez < &}

so this plane is contained in B,. Since this half plane contains all of the
preimages of points in D,(0), it follows that B, is connected. Further, F) :
B, — B, is a universal covering and so B, is simply connected. Finally,
since B,,;1 has compact closure, we can choose R so that B,,.; C Dg(0). Let
& =log(R/|A]). Then

B, C{#|Rez <&}

a
Now we can extend this construction to all the points on the cycle. For j =
1,...,n let B,_; be the connected component of E, ' (B,_;+1) that contains

Zn—j. Note that By is contained in the immediate basin of z; and By D B,;.
Indeed, E}(B;) = Bpy+1 — {0}. We also have By D B,, and E}(By) = B,,.

Proposition 2.2 For j=1,...,n—1, B; is a simply connected set which is
mapped univalently onto Bji1 by E).

Proof: For j = 2,...,n — 1, B; is contained in the basin of attraction of z;
by construction. Now recall that if U is a simply connected region such that
0 ¢ U, then there exists a continuous branch of the logarithm defined on U
and so E}'(U) consists of infinitely many disjoint simply connected regions.
Since the basin of zy does not contain 0 and B, is simply connected, the
result follows by applying this argument n — 1 times in succession. a

Note that E) : By — B; — {0} is a universal covering and hence this map
is not univalent.



Definition 2.3 An unbounded, simply connected F' C C is called a finger of
width c if

i) F is bounded by a simple curve v C C

ii) There exists a v > 0 such that F N {z|Rez > v} is simply connected,
extends to infinity, and satisfies

{FN{z|Rez >v}} C {ZUWE [5_§’§+§]}
for some £ € R.

Worth noting is the fact that since v is a simple curve, there exists a u
such that
Fn{z|Rez < pu}=0.

Proposition 2.4 Suppose F is a finger of width c with 0 ¢ F. Then E;' (F)
consists of infinitely many disjoint fingers, each of width d < 2.

Proof: Since 0 ¢ F', we may define a single valued branch of z — log(z/\)
on F. Hence there are infinitely many components of E; ' (F), each of which
is simply connected and extends to oo. These components extend to oo
in the right half plane, since E, maps Rez < v into a disk centered at 0.
Finally, there exists o < 0 such that the interval (—oo, ) is not contained
in F. Therefore the lines E;*(—o0, ) determine horizontal strips of width
2, each of which contains a single component of E;*(F). a

Proposition 2.5 Let n > 2. For j = 1,...,n—1, B; is a finger of width
bj S 2.

Proof: By Proposition 2.1 , B, is a region bounded on the right by a simple
curve in C which extends to oo in both directions in the strip & < Rez <
. We then argue as in the previous proof to show that E;'(B,) consists
of infinitely many disjoint components , each of which is a finger of width
< 27. By definition, B, ; is the finger that contains 2, ;. If 0 ¢ B, 1, the
previous proposition applies and it follows that B,,_» is a finger of width < 27.
Repeating this yields that B,,_s, ..., By are fingers, since 0 ¢ B,,_», ..., By. O

This construction stops at By, since By is not a finger due to the fact that
0 € By.



Proposition 2.6 The complement of By consists of infinitely many fingers
of width wy, where wy < 2m.

Proof: Since B; is a finger of width wy, w; < 27, the set BjNRez > v > 0 for
sufficiently large v is also a finger of width 2. Call this finger By. If v > 0,
then 0 ¢ B;, so Proposition 2.4 applies and E, 1(31) consists of infinitely
many fingers of width 27. But each of these fingers is contained in By which
is connected. Hence the complement of By consists of infinitely many fingers
which, in Re z > v, are separated by the unbounded components of E;l(Bl).
Since these components are 27¢ periodic, it follows that the fingers have width
at most 27. O

In this sense By resembles a “glove”, since it contains a left half plane
and has infinitely many fingers extending to the right. To summarize:

Theorem 2.7 Suppose zy, ..., 2z,_1 1S attracting periodic orbit for E) with
n > 3. Suppose 0 € A*(z1). Then there exist disjoint, open, simply connected
sets By, ..., B,_1 such that

i) z; € B;, B; C A*(%).

ii) E\ (Bj) = Bj4+1,j=0,..,n—2 and E) (B,_1) C By.

iii) By, ..., B,_1 are fingers of width b; < 2.

iv) The complement of By consists of infinitely many disjoint fingers.

Since this collection of sets will become important we will formulate the
following

Definition 2.8 A collection of open subsets By, ..., B,_1 satisfying the con-
ditions in Theorem 2.7 is called a fundamental set of attracting domains for
the cycle zy, ..., 2n_1. The fingers By, ... B,_1 are called stable fingers.

A typical example of a fundamental set of attracting domains for an expo-
nential with an attracting cycle of period 5 is shown in Figure 5. We remark
that this figure is actually a caricature, since, for an actual exponential, the
width of the fingers B;, By, and B3 should be arbitrarily small while the
width of B4 should be m. We will verify this in Proposition 2.11 below.



Figure 5: A fundamental set of attracting domains.

Example A. Let 4 = 5+ iw. Actually, the construction below works for
any u of the form a + 7w with a sufficiently large; we choose 5 merely for
convenience.

The map £, has an attracting cycle of period 3. To see this, we first note
that the real part of E}(0) satisfies

ReE,(0) = 5
Re E2(0) ~ —b¢

Thus

|E3(0)] ~ 5e7>
which is very close to 0.

Let Bjs denote the ball of radius 6 centered at the origin. Then EJ(Bj)
contains a ball whose radius is on the order of 56 centered at p = E,(0) if
j = 1; on the order of 5¢” - 56 centered at E(0) if j = 2; and on the order
of 5e75 - 5e% - 55 centered at E3(0) if j = 3. One checks easily that this
latter radius is much smaller than ¢ for ¢ on the order of 1/5. Moreover, the
distance from E3(0) to 0 is much smaller than ¢. Consequently, E3 maps Bs
inside itself, and so E,, has an attracting cycle of period 3.
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Figure 6: Fingers for E,,.

According to the above construction, we set By = Bs. Then the B; for
7 =0,1,2 form a fundamental set of attracting regions and are as displayed
in Figure 6. Note that this picture is again a caricature of the B;.

Example B. Now let v = a + 37 where a is sufficiently large. A similar
proof as in Example A shows that F, has an attracting cycle of period 3. In
Figure 7 we sketch the location of the various B; for E,. Note that the only
difference is the placement of Bs relative to the fingers in the complement of
Bo.

In fact there are many ways to construct a fundamental set of attract-
ing domains. In order to simplify later computations we wish to make the
boundaries of the fingers smooth and nearly horizontal in the far right half-
plane.

We will describe one important property in the following

Definition 2.9 A smooth curve y(t) is called horizontally asymptotic to c if
i) limy .o Re(y(t)) = 4o0.

ii) limy o Im(7y(t)) = c.

iii) lim;_, . arg (7/(t)) = 0.

Since the construction of the fundamental set of attracting domains in-
volves taking preimages we will need
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Figure 7: Fingers for E,.

Proposition 2.10 Suppose (t) is horizontally asymptotic to c. Then Ey'(v(t))
15 horizontally asymptotic to 2wk — arg A for some k € Z.

Proof: Suppose p(t) is a smooth curve for which E)(u(t)) = ~v(t). Let
wu(t) = z(t) +iy(t). Then we have

t
#(t) = log Q\ e o6
Furthermore
t
y(t) = arg (@) + 2kn
so we have

Im p(t) — (2km — arg )i

as t — oo. Finally, since

arg(7'(t)) = arg(E)\(u(t)) +arg(y/'(1))
= arg(y(t)) + arg(u/'(t)

and since arg(y(t)) — 0 as t — oo, it follows that arg(u'(t) — 0 as t — oc.
O

For any fundamental set of attracting domains the property that the
fingers have boundaries that are smooth and nearly asymptotic is solely de-
pendent on the the boundary of the component B, which includes the left
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half-plane. We will choose the boundary of that component to be vertical
for large enough imaginary part. This yields the following proposition which
we will state without a proof.

Proposition 2.11 For a cycle z, ..., 2,1 there exists a fundamental set of
attracting domains, denoted C; for j =0,..,n — 1, with the following proper-
ties. There are integers k; and a a parameterization v;(t) of the boundary of
C; which is horizontally asymptotic to

i) 2wk, —arg(\) £ 5 ifj=n—-1
ii) 2nk; —arg(A) if j=0,...,n—2
where k; € Z.

For the remainder of this paper, we always assume that the fundamental
set, of attracting domains is chosen to satisfy the above constraints.

3 Dynamics on the Julia set

Our goal in this section is to describe the dynamics of E on its Julia set via
symbolic dynamics.

3.1 Itineraries

We begin by describing the itineraries of points in the Julia set as well as
a collection of subsets of the Julia set, each of which is homeomorphic to a
Cantor set.

Recall that the complement of Cy consists of infinitely many closed fingers,
unbounded in the right half-plane. We denote these fingers by H; where
k € Z. We index the H; so that 0 € Hy and so that k£ increases with
increasing imaginary parts. Note that J(FE)) is contained in the union of the
H-
We have E,(Cy) = Cy — {0}, so it follows that Ey(Hy) = C— C for each
k. We define Ly} to be the inverse of £ on C — C; which takes values in
H-
Let ¥ = {(s) = (s05152...) | sj; € Z for each j}. ¥ is called the sequence
space. The shift map o on ¥ is given by

0(808182-..) = (815283 - - -).
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We define the itinerary S(z) of z € J(E,) by
S(z) = (505152 . ..) where s; = k iff E}(2) € H,.

Note that S(E\(z)) = o(S(z)).
We will be primarily concerned with itineraries whose entries are bounded.
Therefore we set

Yy ={seX||s;j| <N for each j}.

Each E) possesses a natural invariant set I'y that is homeomorphic to
Yy for each N. The details of this construction may be found in [7], but for
completeness we sketch it here also.

For 7 >> 0 and |k| < N, we define

Ve = (HrN{Rez < 7}) — U}Z 1 C;.

For 7 large enough, each of the V}, are simply connected and have the property
that
E\x(Vk) DV

for each j. See Figure 8.
Hence Ly j is well defined and maps UV} into Vj. Given s = (s¢s152...) €
YN, we define
;\L = L)\,so 6--+0 L)\,sn-

Each L} maps any Vj into V. In particular, LY maps V,, into V,,. Moreover,
for large enough n, the closure of L% (V) is contained in the interior of V,.
Indeed, any point on the boundary of V, is mapped by E¥ outside of the V;
for some k£ < n. The Poincaré (hyperbolic) metric defined on the unit disc
induces a metric on V,, since it is simply connected. The earlier argument
then implies that L} is a contraction in the Poincaré metric on V. It follows
that

vs = lim LY(z)

exists and is independent of z € Vj,.

Let I'y denote the union of the v, for s € ¥ 5. Then it is straightforward
to check that I'y is a Cantor set that is homeomorphic to ¥y (with homeo-
morphism given by s — 7;). Moreover I'y is contained in the Julia set of F)
and is invariant under F). Furthermore, the action of F) on 'y is conjugate
to the shift map o on Xy.

We summarize this as follows:

12
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Figure 8: Construction of the Vj.

Theorem 3.1 For each N > 0 there is an invariant subset T'y of J(E)) that
is homeomorphic to Xn and on which E) is conjugate to the shift map.

Remark. There are many points in J(F)) besides 7, that share the same
itinerary. Indeed, as we will describe below, each point in I'yy has at least
one “hair” attached that shares the same itinerary. This hair is a continuous
curve that connects a point in I'y to oo and lies in the Julia set.

3.2 The Kneading Sequence

For each C; with 1 < j < n — 1, there exists H; such that C; C H;. We

define the kneading sequence for A as follows.

Definition 3.2 Let E)\ have a attracting cycle of period n > 3. The kneading

sequence as the string of n — 2 integers

K()\) = Okle ce kn72*

where k; = j iff E5(0) € H,;.
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Note that the kneading sequence gives the location of Ey(0),..., EY~%(0)
relative to the Hj;. For completeness we include the location of 0 in H,.
Similarly, E7~"(0) lies in Cy, which is the complement of the #, and so this
will be denoted by *. Equivalently, the kneading sequence indicates which
‘H contain the points zs,...2,_1 on the orbit of the cycle.

For 7 >> 0 as defined above, the set

n—1

A, ={z€C|Rez>71} - |JC;j
=0

consists of infinitely many closed fingers. Each finger in A, is included in
precisely one H; since all of the fingers in the glove Cj; which bounds the H,
are removed with the other C;. If j is not one of the entries in the kneading
sequence, then there is only one finger in A, that lies in H; (namely the far
right portion of #; itself). We denote this finger in A, by H;. However, for j
in the kneading sequence, there is more than one finger in A, that meets #;
since the C; separate A, N H; into at least two fingers. The fingers that lie
in such an #,; N A, will be denoted H,, where jj orders them with ascending
imaginary part beginning with j,. Note that all of these fingers lie in the
half plane Rez > 7.

Example A. Recall the example E,, where y = 5 + 4w as described in the
previous section. In this case both C; and C5 lie in Hy. Since the kneading
sequence only involves the location of Cy in this case, we have K (u) = 00x.
Furthermore, the fingers C; and Cj subdivide {Rez > 7} N H, into three
fingers which we denote by Hy,, Hy,, and H,. See Figure 9.

Example B. In example B of the previous section, the kneading sequence
is now K(v) = 01, since Cy lies in H;. Thus C; and C, subdivide both
{Rez > 17} NHy and {Rez > 7} NH; into two subfingers, denoted by H,,,
H,,, H,,, and Hy,. See Figure 10

3.3 Augmented Itineraries

We can describe the itinerary of certain points in the Julia set even more
precisely by defining an augmented itinerary for z € J(E)y)N{z € C|Rez >
7}. In an augmented itinerary, we specify which of the Hj, the orbit of
z visits. More precisely, let Z' denote the set whose elements are either
integers not contained in the kneading sequence, or subscripted integers ji

14
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corresponding to an Hj, if j is an entry in the kneading sequence. The the
augmented itinerary of z is

S'(2) = (sos182---)

where each s; € Z' and s; specifies the finger in A, containing E,(z). Let X'
denote the set of augmented itineraries. Of course, the augmented itinerary
is defined only for points whose orbits remain for all time in A,.

Definition 3.3 The deaugmentation map is a map D : X' — ¥ such that if
Sn = jk then (D(8))n = 7. If sn = J, then (D(s))n = j-

That is, D simply removes the subscript from each subscripted entry in
a sequence in ¥, and leaves other entries alone.

It turns out that not all augmented itineraries actually correspond to
orbits in the far right half plane. In order to describe which augmented
itineraries do correspond to points in J(E)), we introduce the concept of
allowable transitions.

Definition 3.4 Let s = (s9s182...) € X/ A transition is defined as any two
adjacent entries (8;, S;41) in s. The transition is called allowable if

E/\(Hsi) n HS¢+1 # 0.

In this case we say E\(H,,) meets H,, . An allowable transition will be
denoted as s; — s;11. An itinerary s € X' will be called allowable if for all
s;j it follows that s; — s;11. The set of allowable itineraries will be denoted

DI

For the remainder of this paper we assume that N satisfies |k;| < N for
all entries k; in the kneading sequence. Let X7 denote the set of sequences
in 3* whose deaugmentation is a sequence in Xy.

3.4 Hairs

We now turn to the question of which points in J(E)) share the same itinerary
(augmented or otherwise). Without proof we will first state

Proposition 3.5 We may choose T large enough so that if j, — i for a
sequence in Xy, then {A;NLy, (Hy,)} C Hj, is a closed finger that is bounded
on the left by Rez = 7 and completely contained inside some Hj,.
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Using arguments developed in [7], we can show that given s’ € X%,

Tim {A, O Ly 0+ -0 {A, N Lag, (Hy,)}}
is a closed and connected set that meets oo, Rez = 7 and is a continuous curve
which we may parameterize by hyy : [to,00) — Hg with Rehy g (to) = 7.
This curve is called the tail of a hair in the Julia set. Therefore we have

Proposition 3.6 Let s € X%. There is a unique tail of a hair in A, NJ(E))
that has augmented itinerary s.

Thus, for each allowable sequence s’ in X%, we have a well defined hair in
the portion of the Julia set to the right of Re z = 7 that has itinerary s’. Our
goal now is to see how these hairs connect to the Cantor set I'y constructed
earlier.

Given the hair hj () (¢), we may pull this curve back into the region
Rez < 7 by applying Ly,. The result is a curve that extends the hair
hy,s(t) into the region Rez < 7. This follows since E) o h) 4(t) is properly
contained in the hair hy () (t) in the far right half plane. We continue this
process by applying

L)\,so 6---0 L)\,sn

to the hair hy gn+1(s) (t). Each time we extend the original hair. Moreover,
as in the proof that I'y is a Cantor set, these extended hairs all tend to a
unique point in I'y. Now there is only one point in I'y that has the same
non-augmented itinerary as the hair, namely the point whose deaugmented
itinerary is given by D(s). Therefore the hair must terminate at this point.

If we let A} ; be the set of points on the tail of the hair hjy ,(t) where
t € [1,00) then the full hair is characterized by the following definition.

Definition 3.7 The full hair corresponding to the sequence s € ¥} is given

by

3 T
nh—>nolo Lysoo---0Lyg, h)\,an+1(s)‘

We have shown:

Theorem 3.8 Let s € 5. The full hair corresponding to s is a curve in
the Julia set that tends to oo in the right half plane and limits on yp(s) € T'n.

17



It follows from Theorem 3.8 that hairs that correspond to different se-
quences in X% that have the same deaugmentation must limit on the same
point in I'y. In this case, we say that the hairs are attached to the same
point.

Hairs can in fact be tied together, as the following examples show.

Example A. Recall that for E,, the kneading sequence is K (u) = 00% and
that the region Hj contained the only two fingers C; and Cs. These fingers
subdivide A, into the three fingers which we denoted by H,,, Hy,, and H,.

Hence there are three full hairs in Hy, one tending to oo in each of these
three fingers. As we will see in the next section, all of these hairs have deaug-
mented sequence (000...). Hence, by Theorem 3.1, each of these hairs must
be attached to s with s = (000...), which is a fixed point for E). Further-
more, any preimage of v, must have three hairs attached, by invariance of
the Julia set. These triple attachments are clear in Figure 2, which shows
J(E,).

Example B. For the map E,, the kneading sequence is K(v) = 01 and we
have two fingers, C; C Hy and Cy; C H;. In Hy we have two fingers Hy, and
Hy,, and there are two in H; with indices 15 and 1;. Each of these fingers
contains a hair, and we will see that the pair in H is attached to a point of
period 2 with itinerary (010101 ...), while the pair in H; is attached to the
point with itinerary (101010...). These, as well as many other attachments,
are visible in Figure 3. Note the visible difference between J(E,) shown in
this figure compared to J(E),).

4 Untangling the Hairs

In this section, we show how to determine when two hairs are attached at
the same point in the Julia set. By Proposition 3.6, if we have an allowable
itinerary in s’ € X%, then there is a unique tail of a hair in J(E)) with that
itinerary. If an augmented sequence is not allowable, then there is no such
tail of a hair. Then, using Theorem 3.1, we can pull each of these hairs back
until it lands at a point in I'y. The landing point is then given by the point
whose deaugmented itinerary is D(s’). Therefore, to determine whether we
have more than one hair attached to a given point, all we need to do is to
determine when we have multiple allowable augmented sequences, each of
which has the same deaugmentation. This reduces the geometry of the hairs

18



to a combinatorial problem, as we show below.
Our main tool is the following Lemma.

Lemma 4.1 Let sy, 51,...5; € Z. Let sj € Z' with D(s}) = s;. Then there

is a unique sequence Sy, sy, ...s; , such that

1. D(s}) =s; fori=0,1,...5 — 1.

2. The transitions
5o = Sy > S

are all allowable.

Proof. Suppose that i; — k. Recall that this means that E\(H;;) meets
Hy, in the far right half plane. Equivalently, we must have

7
Lyi(Hg,) YA, C Hy,

as shown in the proof of Proposition 3.6. Now if 7,,, — k, also, we must have
E\(H;,,) meets Hy, in the far right half plane as well. But both H;; and H;,,
are contained in H; and FE) is injective on H;. Hence there can be at most
one allowable transition of the form i, — k,. This shows that the sequence
above is unique, if it exists.

To see that there is a transition i; — kq, recall that E\(H;) covers C—C}.
Hence E,(H;) meets all of the fingers in A;. In particular, there is a subfinger
in A; N H; that maps over Hj, in the far right half plane. This proves
existence. O

Thus, according to this lemma, given any s; € Z’', we can find one and

only one initial portion of an allowable sequence whose j** entry is 5.

Corollary 4.2 Suppose s € Y\ contains infinitely many entries that are
nonsubscripted. Then there is at most one hair corresponding to this se-
quence.

Proof. Given any integer k£ not in the kneading sequence, there are no
subscripted entries in Z’ corresponding to k. By the preceding lemma, there
is then only one allowable sequence with a given deaugmentation that satisfies

So—> 8 —~ - — k.
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Corollary 4.3 The only points in 'y that can have multiple hairs attached
are those

1. whose itineraries consist only of subscripted entries in Z', or

2. are preimages of such points.

Proof. By the preceding corollary, any allowable sequence in >y that corre-
sponds to a point in ['y with more than one hair attached must end in only
subscripted variables. O

Therefore, to determine which hairs are attached to which points in I'y,
we need only consider allowable sequences that consist entirely of subscripted
entries. These allowable sequences together with their preimages are the only
sequences that may have multiple hairs attached. So we have reduced the
question to: Which sequences s’ € ¥4 with only subscripted entries have
the property that there is a second sequence ' with D(s') = D(t'). We will
describe the algorithm for determining this after going over several examples.

4.1 Example A

Consider the function E)(z) = pe* where p = 5 + im as described earlier.
We have K(u) = 00 and the structure of the relevant Hy, is a shown in
Figure 9.

By the previous remarks, the only points in I'y that may have multiple
hairs attached are those whose itineraries end (sg...s,0...). That is, only
the single (repelling) fixed point in Hy (and its preimages) can have multiple
hairs attached. We will show that there are exactly three hairs attached to
each such point.

To determine this, we need to ask which sequences in 3%, have deaug-
mentation (000...). This in turn is determined by the allowable transitions
among the 0;.
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Proposition 4.4 For E,, the allowable entries in a sequence in X} are
09, 01,09 and all nonzero integers. The transition rules among these entries
are:

i) 0p — 0y

ii) 0 = 09,k >1

iii) 0y — 0g, k < —1

iv) j — k, 09,01, 09, for any two nonzero integers j and k.

The proof of this proposition follows immediately from the construction of
the fundamental set of attracting domains shown in figure 9.

As a consequence, the only three allowable sequences consisting of only
the 0; are

1. (0p003...)
2. (010505 . ..)
3. (020007 . ..)

Hence we have:

Theorem 4.5 For A = p, the only points in I x with multiple hairs attached
are the fized point with itinerary (000...) and all of its preimages. Each of
these points has exactly three hairs attached. All other points have a single
hair attached.

Notice that we can capture the information about these hairs in matrix
form using a transition matriz. In this matrix, the (4, j) entry is either 0 or 1
depending on whether ¢+ — 7 is either not allowed or allowed. Here the rows
and columns of the matrix are specified by the subscripted entries in Z' In
this case, the transition matrix involves the entries 0y, 01, and 0, and is given
by

010
T,=]10 0 1
1 00
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4.2 Example B

Now recall the function E\(z) = ve* where v = a+ 3mi where a is sufficiently
large. In this case C; lies in Hy but Cy now lies in H;. So K(v) = 01x.
Therefore the relevant entries in ¥}, are 0,01, 1o, and 1; and we need only
consider sequences involving just Os and 1s.

Proposition 4.6 For E,, the allowable entries in a sequence in X3 are
09,01, 1o, 11 and all nonzero integers. The transition rules among these en-
tries are:

i) 0p — 01,1

ii) 0, — all others, i.e. the complement of 01, 1
iii) 19 — 01,10,11,k >0

iv) 1y — all others. i.e. the complement

Again the proof follows from the construction shown in figure 10.
Thus the transition matrix involves the four subscripted entries in X3
and is given by:

T, =

o~ O

110
0 01
1 11
1 000

The hair structure for E, is much different from that of E,. For example,
the period 2 transitions

0g — 0 =09
0, =5 00—04

are both allowable. Also, the transitions

0p — 1y —04
0, —»1; =0

are also allowable. Let o denote the pair 040; and [ the opposite pair 0;0;.
Then we can string together any number of o’s, say &, follow it with a 1; and
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then repeat periodically and we obtain an allowable sequence in ¥3,. Simi-
larly, the same number of 3’s followed by a 1y and then repeated periodically
is also allowable. But both of these sequences have the same deaugmentation,
namely

(0.01..)

with 2k 0’s in each repeating block. Hence the hairs corresponding to each
of these sequences are attached to a periodic point of period 2k + 1.

Now none of these periodic points are preimages of each other. So, unlike
the case of E,, we have infinitely many distinct periodic points with multiple
hairs attached. Of course, each of their infinitely many preimages also has a
pair of hairs attached.

Remark. Multiple hairs can be attached to nonperiodic points as well. For
example, let @ = 0y0; and 8 = 0,09. The we have the following allowable
sequences

aliaaliaoal; ...
BloBB1lopBlLe - .. .

Note that each of these sequences has the same nonperiodic deaugmentation.

5 The General Case

In this section we prove the main result in this paper.

Theorem 5.1 Suppose that K(\) = kiko...k, o where k, o # 0. Then
the corresponding exponential has the property that there are infinitely many
distinct periodic points that have multiple hairs attached.

Before proving this result, we introduce some notation. In H, there is
at least one C;, namely C;, and perhaps stable fingers as well. We will
denote the two fingers in A, directly below and above C; by H, and H, ;.
This means that the subscripted entries in Z’' with deaugmentation 0 may be
ordered

0p < ... <0, <0441 <... <0

Lemma 5.2 Suppose the last digit in the kneading sequence is nonzero. The
the following transitions are allowable:

0g — Ou-l-l and O — OM'
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In particular, if 0p = 0,, then 0, — 0,441 @s allowable. If 0y = 0,441, then
0y+1 — 0, is allowable.

Proof. Ej)(Hy,) is mapped over at least Hy,,, and perhaps other fingers in
A, as the boundary of Hy, is mapped to the upper boundary of C;. Similarly,
the upper boundary of H, is mapped over the lower boundary of C, so Hy,
is mapped over Hy,. O

Lemma 5.3 Suppose K(\) = ky...kn_o with kn—o # 0. Then there eists

two strings ki, ... kn_o and k5, ... k;_, where D(k;) = D(k}) = k; having the
property that the following transitions are allowable:

Opt1 = ki = ks = -~ =k, o= 0, withi <p
Op — ky = ko — -+ — kg — 0; with j > p+1.

Proof. Let A denote the finger in Hy _, N Rez > 7 that is bounded above
by the upper boundary of Cy and below by the upper boundary of C),_;. Let
B denote the finger in Hy, _, N Rez > 7 that is bounded below by the lower
boundary of Cy and above by the lower boundary of C), ;. Since k, o # 0,
both A and B do not meet the finger ;. It follows that

FA = L/\70 e} L/\,k1 O --- L/\,kn_Q(A) N {Re z 2 T}

and
FB = L)\,O e} L)\,lcl O« L)\,knfz(B) N {Rez 2 ’7'}

are fingers in H,.
Note that

L)\,knfj (O L)\,kn_2 (A) and LAykn—j O=--- L/\,kn_2(B)

abut the finger C,,_;_; for each j, so Fy (resp. Fp) is a finger bounded below
(resp. above) by the boundary of Cj.

We claim that Fy C Hg,,,. Certainly, Fy meets Hy,, by the above
observation. So suppose that F4 also meets a different C; in Hy. Then there
is an integer j < n — 1 for which EJ(Fy) meets C,_, and thus EJ™" maps
points in F4 to points in H, for arbitrarily large v. This contradicts the
fact that each point in F4 has itinerary that begins 0k;...k,_s. The same
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argument shows that Fg C Hy,.In particular, we have the following allowable
transitions:
Opp1 = kT = k3 ==k,

and A X A
Ou—)klﬁkg—)"'—)kn_g.

Now note that Ey(F4) meets Hy, for each ¢ < p and E5(Fp) meets Hy, for
each 7 > p+ 1. This provides the desired itineraries. O

We now complete the proof of Theorem 5.1. Let 3; denote the subscripted
index Oy and f2 denote the subscripted index 04. Also let

~

o = OlH'lkI “e k:;_2 and Qg = Ouiﬁl - kn_g

Then combining Lemmas 5.2 and 5.3 we can conclude that the following
sequences are allowable

i) aran .
il) asoy
iii) oy B
iV) a3
V) Bron
vi) Bacry

This allows us to construct infinitely many pair of sequences

(alﬂlal."',OéQﬂzaQ.'",al e ) and (042,326Y2 "',04151011 042“‘)
* * * *

where the space (x) can be filled with an arbitrary even number of . Note
that both oy , s and (3, B2 have the same deaugmentation. Hence we have
constructed infinitely many pairs of augmented itineraries that have the same
deaugmentation. These pairs correspond to the hairs that meet at the same
point in I'y. This completes the proof.
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