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Abstract

For the family of maps Fy(z) = 2" + \/z"™ where n > 3, it is
known that there is a McMullen domain surrounding the origin in the
parameter plane. This domain is then surrounded by infinitely many
“Mandelpinski” necklaces Sy for £k = 0,1,2,.... These are simple
closed curves surrounding the McMullen domain and passing through
exactly (n — 2)n* + 1 centers of baby Mandelbrot sets and the same
number of centers of Sierpinski holes. When n = 2 there is no such
McMullen domain in the parameter plane. However, we show in this
paper that there do exist Mandelpinski necklaces Sy in this case. Now
these necklaces converge down to the origin. And, consistent with the
formula for higher values of n, each Sy passes through the centers of
only one Mandelbrot set and one Sierpinski hole.

In recent years a number of papers have appeared that deal with the
dynamics of singularly perturbed maps of the form Fy(z) = 2" + A/2" where
n > 2. It turns out that the case n = 2 is very different from the case
n > 2. One reason for this is that, when n = 2, as A — 0, the Julia sets of
F) converge to the closed unit disk (the filled Julia set of z?), but this does
not occur when n > 2 [6]. A second difference is that there is a McMullen
domain in the parameter plane when n > 2. This is a punctured open disk
surrounding the origin that consists of parameters for which the Julia sets of
the corresponding maps are Cantor sets of simple closed curves, all of which
are dynamically and topologically the same [10]. There is no such region
when n = 2. Rather, in any neighborhood of 0 in the parameter plane, there
are infinitely many different topological types of Julia sets [4]. And a third
difference is that, when n > 2, the second images of the free critical points all
tend to oo as A — 0 (this is what generates the McMullen domain), whereas
when n = 2, the second images of the free critical points tend to 1/4 as A — 0
(and 1/4 is not in the basin of co when A is small).

In the case n > 2, there is an interesting structure that surrounds the

McMullen domain. In [2], [3], and [8] it is shown that this domain in the pa-



rameter plane is surrounded by infinitely many disjoint simple closed curves
Si for £ = 0,1,2,... called Mandelpinski necklaces. Each Sy passes alter-
nately through the centers of (n —2)n* +1 Mandelbrot sets with base period
k+1 (with one slight exception when k£ = 1) and the same number of centers
of Sierpinski holes with escape time k + 3. See Figure 1. A center of a Man-
delbrot set of base period £ is a parameter in the main cardioid for which a
critical point is periodic with prime period /. A Sierpinski hole with escape
time £ is a collection of parameters for which the critical orbits all land in
the immediate basin of oo at iteration /. A center of a Sierpinski hole is a
parameter for which the critical orbits actually land at oo.

These Mandelpinski necklaces provide a great deal of structure around
the McMullen domain when n > 2. For example, when n = 3, the necklace
S16 passes through exactly 43,046,722 Mandelbrot sets and Sierpinski holes.
When the parameter lies in one of these Mandelbrot sets there are infinitely
many small copies of quadratic Julia sets embedded in the much larger Julia
set of F\. And when the parameter lies in a Sierpinski hole, the Julia set of
F) is a Sierpinski curve, i.e., a set that is homeomorphic to the Sierpinski
carpet fractal.

Because of the different behaviors of the critical orbits as A — 0 and
the lack of a McMullen domain when n = 2, it was always assumed that
there were no such Mandelpinski necklaces when n = 2. However, note that
the above formula says that each necklace &y should pass through exactly
(2 — 2)2% +1 = 1 Mandelbrot set and 1 Sierpinski hole when n = 2 for each
k. In fact, as we show in this paper, this does indeed happen. So we do
have some simplified Mandelpinski necklaces in this case. These necklaces
no longer surround a McMullen domain; rather, they converge to the origin
as k — 00. So the structure of the parameter plane around the origin when

n = 2 is very different from the case n > 2. See Figure 2. We conjecture that



Figure 1: Magnifications of the parameter plane for the family 2* + \/23
around the McMullen domain (the central white disk).

the existence of these simple necklaces will allow us to begin to understand
the very complicated structure of the parameter plane for n = 2 around the

origin, just as the Mandelpinski necklaces did in the case n > 2.

1 Preliminaries

In this paper we shall concentrate on the family of complex rational maps
given by
A
F A (Z) = 22 + ;

where A € C. One checks easily that the point at oo is fixed in the Riemann
sphere and Fj(c0) = 0 so oo is a superattracting fixed point. We denote the
immediate basin of attraction at oo by B). Since 0 is a pole there is an open
set about 0 that is mapped to B,. This set may or may not be disjoint from
B,, but in the cases we consider in this paper, these two sets will be disjoint.

We then call the preimage of B) surrounding 0 the ¢rap door and denote this



Figure 2: The parameter plane and a magnification around the origin for the
family 22+ )\/22. The large central disk is a Sierpinski hole, not the McMullen
domain. The origin is located at the “tip of the tail” of the Mandelbrot set
that appears to straddle the positive real axis.

set by 7).

It is well known that the Julia set of F), denoted by J(F)), has several
equivalent definitions [11]. One definition is that J(F)) consists of all points
at which the family of iterates of F) fails to be a normal family in the sense
of Montel. A second definition is that the Julia set is the closure of the set
of repelling periodic points of F\. And a third definition is that the Julia
set is the boundary of the set of all points whose orbits tend to oo (not
just those in B,). These definitions then imply that J(F)) is the chaotic
regime since arbitrarily close to any point in the Julia set there are points
whose orbits tend to oo and other points whose orbits are periodic. More
importantly, Montel’s Theorem implies that any neighborhood of a point in
J(F)) is mapped over the entire Riemann sphere by the set of all iterates

of maps in this family. So, on the Julia set, F) exhibits extreme sensitive



dependence on initial conditions.

There are several symmetries in the dynamical and parameter planes for
these maps. We have F)(—z) = Fi(z) and F)(iz) = —F\(z). Therefore
the orbits of z and iz are the same after two iterations. As a consequence,
the Julia set is symmetric under the map z — iz, i.e., J(F)) has fourfold
symmetry. Also, let Hy(z) = A'/2/z. Then F\(H\(2)) = Fi(2), so the Julia
set is also symmetric under the involution H,. We also have that F) is
conjugate to F; via the map z — Z, so the parameter plane is symmetric
under complex conjugation.

A straightforward computation shows that there are four free critical
points for F that are given by A\/%. We call these critical points “free” since
there are two other critical points at oo and 0, but oo is fixed and 0 maps
directly to oo for each A\. However, there are only two critical values given
by +£2v/\ since two of the free critical points are mapped to +2v/\ and the
other two are mapped to —2v/\. In fact, just like the quadratic polynomial
family 22 + ¢, there really is only one free critical orbit as both critical values
are then mapped to 4\ +1/4, so all of the critical points end up on the same
orbit after two iterations.

1/4

There are also four prepoles for F) given by (—\)'/*. So the prepoles and

critical points all lie on the circle of radius |A|*/*

centered at the origin. We
call this circle the critical circle and denote it by C3. Another easy com-
putation shows that F) maps the critical circle 4-to-1 onto the line segment
connecting the two critical values +2v/) and passing through the origin. We
call this line the critical segment. Any other circle centered at the origin is
then mapped as a 2-to-1 covering onto an ellipse whose foci are the critical
values. In particular, the region in the exterior of the critical circle is then
mapped as a 2-to-1 covering onto the complement of the critical segment in

the Riemann sphere and so too is the interior of the critical circle.



We shall assume for the remainder of this paper that the critical values
both lie on or inside the critical circle, so the critical segment will always lie
in the the disk bounded by the critical circle. It is known [1], [9] that, in this
case, J(F)) is connected and that 0B, is a simple closed curve lying in the
exterior of C3. Since Hy(B,) = T, we have that 97 is also a simple closed
curve that lies inside C}.

Let O be the punctured disk in the parameter plane that consists of
all nonzero parameters for which the critical segment lies strictly inside the
critical circle. When A lies on the boundary of @, we must have 2|v/| =
|A|'74, so it follows that |A\| = 1/16. Therefore the boundary of O is the circle
of radius 1/16 centered at the origin in the parameter plane. For A € O, F),
maps the exterior of the critical circle as a 2-to-1 covering onto the exterior of
the critical segment. Thus there is a simple closed curve in the exterior of C3
that is mapped 2-to-1 onto C;. Call this curve C}. Since C}) contains four
critical points and four prepoles, C7 contains eight pre-critical points and
eight pre-prepoles. Since the exterior of C} is then mapped onto the exterior
of C} as a 2-to-1 covering, there is another simple closed curve C3 that lies
outside C} and is mapped 2-to-1 onto C;. Continuing in this fashion, we
find an infinite collection of simple closed curves C} for k > 0 satisfying
Fy(C}) = C} | and hence Ff(C}) = C}. Note that the C} are all disjoint
and these curves converge outward toward 0B, as k — oo. This follows
since, if this were not the case, the limiting set of the C; would be a closed,
invariant set, say Ay,. If Ay # 0B,, then the region bounded by 0B, and A
would also be invariant. But this cannot happen since there would then be
points in B, that have neighborhoods on which the family of functions {F{}
would be normal, which cannot happen since B, C J(F)). In addition, C}
contains 2¥*2 points that are mapped by F¥ to critical points and the same

number of points that are mapped to the prepoles on C3. The points that



map to critical points and to prepoles are arranged alternately around C¥.
Since the interior of the critical circle is also mapped as a 2-to-1 covering
of the exterior of the critical segment, there are other simple closed curves
C*, for k =1,2,... such that F\ maps C*, as a 2-to-1 covering of C} , just
as above. We have H,(C?*,) = Cp. The C*, now converge down to 97T}
as k — oco. And, just as above, C*, contains exactly 2¥*? points that are

mapped to critical points and the same number to prepoles by F¥.

2 Rings in the Parameter Plane

In this section, we prove that the origin in the parameter plane is surrounded
by infinitely many disjoint simple closed curves &y with the Sy converging to
0 as £ — oo. The curve S; will consist of parameters for which the critical
orbit lands on the critical circle after exactly k£ + 1 iterations in a manner
specifed below. We shall show that Sy contains exactly one parameter for
which one of the critical points is periodic with period k£ + 1. Results in [5]
shows that this parameter is a center of the main cardioid of a Mandelbrot
set in the parameter plane (with two exceptions noted at the end of this
section). And we shall show that there is one other parameter in S for
which the critical orbits all land on oo at iteration k + 3. It is known [12]
that this parameter is then the center of a Sierpinski hole with escape time
k + 3. The parameters that are centers of a main cardioid of a Mandelbrot
set will lie in RT while the parameters that are centers of a Sierpinski hole
will lie in R™.

We first describe the ring Sy in the parameter plane. This curve consists
of A-values for which the critical values lie on the critical circle C} in the
dynamical plane. So, on this set, we must have |A|'/* = 2|v/A|. Solving this

equation shows that Sy is the circle of radius 1/16 centered at the origin in



the parameter plane, i.e., the boundary of @. When A\ € &y, the critical
circle C3 is the circle of radius 1/2 centered at the origin. Note that, as A
rotates around Sy, the critical points and prepoles each rotate around C
by a quarter of a turn while the critical values rotate by half a turn. It
then follows that there is exactly one parameter in Sy for which the critical
values land on a critical point, namely A = 1/16, and one other parameter
for which they land on a prepole, namely A\ = —1/16. So, for A = 1/16,
F) has a superattracting fixed point while, for A = —16, the critical orbit
escapes at iteration 3. This gives the result for S;.

For A\ € O with 0 < Arg )\ < 27, let ¢) = A/* denote the critical point
satisfying 0 < Argc) < m/2 and let c;‘, j = 1,2,3 denote the other three
critical points where the c;‘ are arranged in the counterclockwise direction
around the origin. Let I} denote the closed sector in C bounded by the
two critical point rays that are given by tc) and tc3 with ¢ > 0. Let I ])‘
denote the similar sector bounded by tc}_; and tc;. Note that the interior
of each I}‘ is mapped one-to-one onto C minus the two critical value rays
given by +tvy, t > 1. One of the critical point rays that bounds each I ]’\
is mapped onto one of these critical value rays while the other critical point
ray is mapped to the other critical value ray. Note also that, when \ € R*,
the critical value rays lie in Ip N I} = R and I3 N I = R™. For all other
A-values, one of the critical value rays lies in the interior of I} while the other
lies in the interior of I3. See Figure 3.

Since C? is an actual circle, we may define a natural parametrization
C2(0) of this curve by setting C3(0) = 3. We choose this parameterization
so that C} () rotates in the clockwise direction as f increases. Here we again
assume that 0 < Arg A < 27. Let 7 be the portion of C? that lies inside I,
i.e., 73(0) = C3(0) where 0 < 0 < m/2. Now the sector I3 is mapped over

itself univalently (except when A € R in which case one boundary curve is
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Figure 3: The critical circle and its preimages together with the sectors I;.

mapped 2-to-1 to a portion of RT). In all cases there is then a smooth curve
7} lying in C N I3 that is mapped univalently onto 3. We define v{*(f) to
be the point on this portion of C7 that is mapped to 7)(6). Inductively, we
then define 77(0) to be the point in Cp N I for which F\(y(0)) = v ,(6)
for each k > 1. Then we let 4*,(0) = H,(7)(6)) where H, is the involution
z — A2/ 7 that fixes the critical points ¢). So Fx(v*,(0)) =77 ,(0). One
checks easily that H, interchanges I3 and I3, so v*,(0) lies in I} N C*, for
each £ > 0.

Lemma. Given k > 0, there exists \* > 0 such that, if |A\| < \*, then both

critical values of Fy lie strictly inside the curve C*,.

Proof: For |\ sufficiently small, the critical circle C3 has magnitude that

is very small. Since F) ~ 22

away from the origin when |A| is small, we may
choose A, so that, if [A| < A;, then the closed curve C} | lies strictly inside the

circle of radius 1/8 surrounding the origin. Also, since F)(v)) = 1/4+ 4\, we



may choose Ay so that, if [A| < Ay, then |Fy(vy)| > 1/8. Let A* = min(Aq, Ag).

Then we have that, for each X inside the circle of radius A*, the image of the

critical value lies outside the circle of radius 1/8 and hence outside C}_,.
Therefore +uv, lies strictly inside the closed curve C?,.

O

We now define the rings Sy for £ > 1 in the parameter plane. Recall that

O is the set of nonzero parameters for which v, lies inside the critical circle.

Proposition. Suppose A € O. Fiz k > 1 and 0 in the interval [0,7/2].
Then there is a unique parameter A = X in O for which a critical value lies
at the point v*,(0). Moreover, \§ varies continuously with 0 and N§ = Ak /2

is a parameter in RT.

Proof: Since O is the open disk of radius 1/16 with the origin removed, we
have the universal covering half-plane O given by Re z < log(1/16). We then
have two maps defined on O.

The first is a map that we shall denote by V()\). To define this map, let
vy be the critical value that lies in the upper half plane when 0 < Arg A < 27.
Clearly, the map A — v, is not well-defined on O since v, moves to —v, as
Arg A\ rotates from 0 to 27. However, we can lift this map to a new map
V : O — X where X is the annulus 0 < [z| < 1/2 so that V agrees with
the map A — vy when 0 < Arg\ < 27. Let X be the universal covering of
X. Then we can lift V to a map V : O — X. Note that V is an analytic,
invertible map on O, and, as the argument of ) increases by 27 in O, the
imaginary part of V in X increases by exactly 7.

For fixed values of £ > 1 and 0 € [0,7/2], we also have the map A —
7 (0) defined when 0 < Arg A < 27. Again this map is not well-defined on
O, but we can lift it to a new map L : @ — C as above. By construction,
L()) is strictly contained inside the annulus X'. So we may lift L to a map
L:0—X.
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As we have shown, the point 7*,(6) is contained in the sector I as long
as # € [0,7/2]. And this sector rotates by exactly /2 radians as Arg A
increases from 0 to 2m. Moreover, the argument of 7}, (6) never increases
by 7 as A rotates around the origin, since this would imply that this point
visited both the positive and negative real axis enroute. Hence the argument
of L()) increases by an amount strictly less than 7 as the argument of A
increases by 2.

Now, since V is invertible, we may consider the composition ® = V1oL :
O — O. We claim that there is a unique fixed point for ® in O. To see this,
first note that we may extend both V and L to the boundary Re z = 1/16 of
O and ® maps this boundary strictly inside @. This follows since v, always
lies strictly inside the critical circle for F), which then lies inside the critical
circle for F, when p lies on the boundary of O. But this is the circle r = 1/2.
Hence there are no fixed points on the boundary of @. Next note that there
are no fixed points in the far left half-plane in @. This follows immediately
from the previous Lemma. Finally, since the argument of V increases by
more than the argument of L as \ rotates around the origin, it follows that
® must have a fixed point in O and, by the Schwarz Lemma, this fixed point
must be unique. Then the projection of this point into O is a parameter A
for which a critical value lands on the point 7*,(6). This is the parameter
Ak, Since all of the above varies continuously with 6, it follows that 6 — A
traces out a continuous curve in O.

Now when A € Rt, elementary arguments using real dynamics shows that

there is a superstable parameter value for which
vy < ¢y = FF(e)) < Fi(ey) < ... < Fi(cp).

This is then the parameter \f. Similarly, when Arg A\ = 27, the above result

shows that we have a similar unique parameter for which v, lies in R~ and
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then maps onto the same superattracting cycle. This is now the parameter
A% 5. But this then implies that Af = A% ,. Note that these are the only two
f-values for which two “different” Af’s coincide. Therefore the parameters
Ak lie along a simple closed curve surrounding the origin in the parameter
plane.
O
Thus we may define the ring Sy to be the simple closed curve parametrized
by 6 — Ak

Corollary. There is a unique parameter in Sy for which a critical point lies
on a superattracting cycle of period k + 1 and another unique parameter for

which the critical orbits escape at iteration k + 3.

Proof: As shown above, the parameter \f = \* /> is the unique parameter
in S for which F¥(v,) lands on a critical point in the curve 7. There is also
a unique parameter for which Ff(v,) lands on the prepole in 7} and hence
the critical orbit escapes at iteration k£ + 3. The graph of the real function

F), shows that this parameter lies in R .

Remarks:

1. Note that the parameter A} is the parameter for which ¢} is a superat-
tracting fixed point and this parameter appears to lie at the center of the
main cardioid of a Mandelbrot set that straddles the positive real axis. How-
ever, this is not quite a “full” Mandelbrot set, as the tip of the tail (i.e., the
parameter corresponding to ¢ = —2 for the quadratic Mandelbrot set) lies at
the origin, so the dynamics associated to this parameter do not correspond to
those for the parameter ¢ = —2. We conjecture that this is the only portion
of the Mandelbrot set that is missing.

2. Also, the parameter value A} does not lie at the center of a main cardioid

of a baby Mandelbrot set; rather, this parameter lies at the center of the
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period 2 bulb of the above Mandelbrot set.

3. All other parameters A5 do lie at the center of a baby Mandelbrot set

that lies inside the main Mandelbrot set on the real axis. This follows from

a polynomial-like map construction. See [5] for details.
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