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1 Introduction

In this paper we consider complex rational maps of the form

Fλ(z) = zn +
λ

zn
+ c (1)

where λ, c ∈ C are parameters. For this family of maps, we fix c to be the

center of a hyperbolic component of the corresponding Multibrot set, i.e., a

parameter such that, for the map

F0(z) = zn + c, (2)

0 lies in a superattracting cycle. For reasons explained below, we shall assume

that n ≥ 3 and that c is chosen so that this superattracting cycle has period

k > 1. The maps Fλ are obtained by replacing the only finite critical point

of F0 with a pole of order n. For these maps, ∞ is always a superattracting

fixed point, so there is an immediate basin of ∞ that we denote by Bλ. Since

0 is the only pole of Fλ when λ 6= 0, there is a preimage of Bλ that contains

0. If this preimage of Bλ is disjoint from Bλ, this set is called the trap door

and denoted Tλ. In this paper, we shall only consider cases where Bλ and Tλ

are disjoint, which always happens when |λ| is sufficiently small.

For the special case c = 0, the origin is a superattracting fixed point of

F0. The maps Fλ in this case have been extensively studied; see [Devaney et

al., to appear], [Devaney et al., 2005], [Devaney & Look, 2006]. When λ = 0,

the Julia set for this family is the unit circle. When λ 6= 0, there are 2n

“free” critical points for Fλ, i.e., critical points not equal to 0 or ∞. Each of

the free critical points maps to one of two critical values. When n is even,

these critical values then map to the same point so there is really only one

free critical orbit in this case. When n is odd, the two critical values map

to different points, but these points and their subsequent orbits are always

symmetric under z 7→ −z, so again, up to this symmetry, there is only one
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critical orbit. Similarly, for the family zn + c, there is only one critical orbit.

For zn + c, either the critical orbit escapes to ∞ or it does not. In the former

case, it is well known that the Julia set is a Cantor set, whereas, in the latter

case, the Julia set is a connected set. For the maps Fλ, it turns out that

there are three possible ways that the critical orbit can escape to ∞, so the

situation is more complicated. The following is proven in [Devaney et al.,

2005]:

Theorem. The Escape Trichotomy. Suppose n ≥ 3. Suppose that the orbits

of the free critical points of Fλ(z) = zn + λ/zn tend to ∞.

1. If the critical values lie in Bλ, then J(Fλ) is a Cantor set and Fλ | J(Fλ)

is conjugate to a one-sided shift on 2n symbols.

2. If the critical values lie in Tλ, then J(Fλ) is a Cantor set of concentric

simple closed curves (quasicircles).

3. If the critical values eventually map into Tλ, then J(Fλ) is a Sierpinski

curve.

We remark that case 2 of this result was proven by McMullen [1988].

Moreover, this case does not occur when n = 2. This is the reason why we

assume that n ≥ 3.

In the above result, a Sierpinski curve is a planar set that is homeomor-

phic to the Sierpinski carpet fractal. It is known that any planar set that is

compact, connected, locally connected, nowhere dense, and has the property

that any two complementary domains are bounded by disjoint simple closed

curves is homeomorphic to the carpet [Whyburn, 1958]. It is also known that

a Sierpinski curve is a universal plane continuum since there is a homeomor-

phic copy of any planar, one-dimensional, compact, connected set contained

in a Sierpinski curve.

3



In this paper we will be especially interested in the second case of the

Escape Trichotomy. The set of λ values such that the Julia set of zn + λ/zn

is a Cantor set of simple closed curves is called the McMullen domain. It is

known that the McMullen domain is an open disk in the parameter plane that

is punctured at the origin and bounded by a simple closed curve [Devaney

& Marotta, 2007]. For λ-values in the McMullen domain, it is also known

that the boundary of Bλ, denoted by ∂Bλ, is a simple closed curve, just as in

the case where λ = 0. But when λ 6= 0, the Julia set explodes and becomes

a Cantor set of simple closed curves. When we say that the Julia set is a

Cantor set of simple closed curves, we mean that this set is homeomorphic

to the cross-product of a Cantor set with the unit circle having the property

that all of the closed curves in this set are concentric.

Our goal in this paper is to show that a somewhat different phenomenon

occurs when c is chosen at the center of a hyperbolic component of the

Multibrot set with period k > 1. In this case, it is known that the interior

of K(F0), the filled Julia set, now consists of infinitely many disjoint open

disks, so J(F0) is a much more intricate set than in the case c = 0. As is

well known, J(F0) is the boundary of the basin of attraction of ∞. We shall

show that, for |λ| sufficiently small, ∂Bλ is still homeomorphic to J(F0) and

Fλ | ∂Bλ is conjugate to F0 on J(F0). As in the case c = 0, there is again

much more to the Julia set when λ becomes nonzero. We shall show that,

again for |λ| sufficiently small, the kth iterates of the critical points all lie

in the trap door. This will imply that the Julia set now contains countably

many Cantor sets of simple closed curves; indeed, each of the infinitely many

interior components of the complement of Bλ now contains a Cantor set of

simple closed curves. However, the simple closed curves corresponding to

endpoints in the Cantor set are quite different: each of them has infinitely

many additional “decorations” attached.
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There is also a great deal more to these Julia sets besides this countable

collection of Cantor sets of closed curves and the boundary of the basin of

∞. In particular, most of the the Cantor sets of closed curves do not contain

any periodic points. As is well known, the repelling periodic points of Fλ are

dense in J(Fλ), so these periodic points must lie elsewhere in the Julia set.

To describe these other points in the Julia set, we will assign an itinerary to

these other points in the Julia set. This itinerary will be an infinite sequence

of integers that describes how the orbit of this point moves through the

interior components of the complement of Bλ. We will show that the set

of points whose itinerary ends in certain sequences forms a Cantor set, and

these points form the remainder of the Julia set. Finally, we will prove that

each of the points in these Cantor sets are point components of the Julia set.

Thus our main goal in this paper is to prove the following:

Theorem. Let n ≥ 3. Consider zn + λ/zn + c, where c lies at the center of

a hyperbolic component in the Multibrot set of period k > 1 for zn + c. When

|λ| is sufficiently small, the Julia set contains

1. countably many preimages of the boundary of Bλ;

2. a countable collection of Cantor sets of closed curves;

3. and an uncountable number of point components.

We remark that the “unburied” curves in the Cantor set of simple closed

curves are the ones that come with the “decorations” attached; these curves

are actually preimages of ∂Bλ.

To illustrate this result, in Fig. 1, we display the Julia set of z3 +λ/z3− i

when λ = 0.0001 and of z3 − i, the unperturbed map. The outer boundary

of the Julia set of z3 + λ/z3 − i is a homeomorphic copy of the Julia set
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Figure 1: The Julia sets for z3 − i (left) and z3 + λ/z3 − i when λ = 0.0001
(right). The critical point in the unperturbed map, z3 − i, is in a superat-
tracting 2-cycle. Note the explosion that occurs when λ becomes nonzero.

of z3 − i. Note that 0 lies on a 2-cycle for z3 − i, so −i is the center of a

hyperbolic component of period two for z3 + c. The central yellow region in

the picture to the right is the trap door. Note that this region is surrounded

by a collection of open annuli whose boundaries are not simple closed curves,

but rather have a structure similar to the attachments in the Julia set of

z3 − i; these are the decorated curves. Figure 2 shows magnifications of

several regions in this Julia set. In Fig. 3, we display another cubic Julia

set and a perturbation to it; when λ = 0, there is an attracting four cycle.

Figure 4 shows a magnification of the trap door of this Julia set.

We also remark that the situation that occurs when n = 2 is dramatically

different. In this case, there are no Cantor sets of circles. Rather, the interior

regions of the Fatou set of F0 are often filled with collections of Sierpinski

curves. See [Devaney et al., to appear].
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Figure 2: Magnifications of Fig. 1: the trap door (left) and a section of the
Cantor set of closed curves (right). Note the attachments to the accessible
circles.

2 Preliminaries

Let c be the center of a hyperbolic component of the Multibrot set with

period greater than one. Let

Fλ(z) = zn +
λ

zn
+ c (3)

where λ, c ∈ C and n ≥ 3. When λ 6= 0, maps of this form have critical

points at 0, ∞ and the 2n points located symmetrically about the origin at

λ1/2n. Since 0 is mapped to ∞ which is superattracting fixed point, we call

the remaining 2n critical points the free critical points. The 2n critical points

map to vλ = c±2λ1/2, the two critical values for Fλ. There are thus only two

critical orbits since, after one iteration, each of the critical points is mapped

to one of these two points. This is one difference between our family and the
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Figure 3: The Julia set for z3 + c (left) and z3 + λ/z3 + c (right) when
c = −0.58384 − 0.27022i and λ = −0.0000001. The critical point of the
unperturbed map, z3 − 0.58384− 0.27022i, is in a superattracting 4-cycle.
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Figure 4: A magnification of the trap door of the Julia set for z3 + λ/z3 + c
when c = −0.58384− 0.27022i and λ = −0.0000001.

case c = 0; when c = 0 there is only one free critical orbit.

It is easily verified that the circle of radius |λ1/2n| that connects the 2n

critical points is mapped 2n times over the line segment connecting the two

critical values, c ± 2λ1/2. We call the circle of radius |λ1/2n| the critical

circle and the line segment connecting the two critical values the critical

segment. It is also easily verified that any circle centered at the origin with

the exception of the critical circle is mapped n-to-1 onto an ellipse whose two

foci are the critical values. Thus each component of the complement of the

critical circle in C is mapped as an n-to-1 covering of the complement of the

critical segment.

Since ∞ is a superattracting fixed point, it has an immediate basin of

attraction denoted by Bλ. When λ 6= 0, there is a neighborhood of 0 that

maps to Bλ. If this neighborhood is disjoint from Bλ, we call the component

of the basin of infinity containing the origin the trap door and denote it by
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Tλ. In this paper, we will consider only maps of this type, i.e., those maps

with |λ| chosen sufficiently small so that Tλ and Bλ are disjoint.

The Julia set of Fλ is the set on which the family of iterates of Fλ fails

to be normal in the sense of Montel. It is known that this set is equivalently

the closure of the set of repelling periodic points of Fλ. The complement of

the Julia set is called the Fatou set.

When λ = 0, the critical point 0 lies in a superattracting cycle of period

k given by 0 = c0, c = c1, c2, · · · , ck−1, ck = 0. Let Oj denote the immediate

basin of attraction of cj under F k
0 . So F0 maps O0 n-to-one onto O1, while F0

maps each other Oj one-to-one onto Oj+1. It follows that F k
0 is conformally

conjugate to z 7→ zn on each Oj.

3 The Boundary of the Basin of Infinity

In this section we prove that, if |λ| is sufficiently small, the boundary of

Bλ, ∂Bλ, is homeomorphic to J(F0). As is well known, there is a Böttcher

coordinate ϕλ defined on a neighborhood of ∞ in Bλ that conjugates Fλ to

z 7→ zn in a neighborhood of ∞. If none of the free critical points lie in Bλ,

then, again as is well known, we may extend the definition of ϕλ so that it

takes the entire immediate basin univalently onto C−D and hence conjugates

Fλ to z 7→ zn on all of Bλ. The following proposition shows that this occurs.

Proposition. If |λ| is sufficiently small, then Tλ is disjoint from Bλ, so

0 6∈ Bλ. Also, none of the free critical points lie in Bλ.

Proof: Recall that O0 is the component of the interior of J(F0) that contains

0. Let ν0 denote the boundary of O0. We have that F k
0 preserves ν0 and is

hyperbolic on this set since the critical orbit is periodic and hence bounded

away from this set. Therefore there is an open annulus containing ν0 that is

mapped by F k
0 as a covering over a larger annulus. For |λ| sufficiently small,
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Fλ maps this annulus in a similar fashion completely over itself. Hence Bλ

cannot extend into the disk that is the bounded component of the comple-

ment of this annulus. The critical points are given by λ1/2n, so this annulus

may be chosen so that all of the critical points and 0 lie in this internal disk.

Hence they do not lie in Bλ.

2

Next we prove that ∂Bλ is homeomorphic to J(F0) using holomorphic

motions. To do this, we first define a holomorphic motion on Bλ that is

parameterized by λ for |λ| sufficiently small. Then we apply the Λ-lemma of

Manẽ, Sad, and Sullivan [1983] to extend this motion to Bλ. This will show

that ∂Bλ is homeomorphic to ∂B0 = J(F0).

Recall the definition of a holomorphic motion:

Definition. Let X ⊂ C. A map H : X × D → C given by (z, λ) → H(z, λ)

is a holomorphic motion of X parameterized by λ if

1. H(z, 0) = z for all z ∈ X;

2. H(·, λ) : X → C is injective for all z ∈ X;

3. H(z, ·) : D → C is holomorphic for all z ∈ X.

Proposition (The Λ-Lemma.) Let H : X × D → C be a holomorphic

motion. Then H is continuous and it extends to a unique holomorphic motion

H : X × C, where X is the closure of X.

As shown above, we may choose δ > 0 so that the Böttcher coordinate

is defined on all of Bλ for all λ with |λ| < δ. If µ ∈ D, we have that ϕδµ is

defined on all of Bδµ. So we define H : B0×D → C by H(z, µ) = ϕ−1
δµ ◦ϕ0(z).

We claim that H is a holomorphic motion. First the identity condition is

easily satisfied since ϕ−1
0 ◦ ϕ0(z) = z. H is injective for fixed µ since ϕδµ is
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injective. Third, since H is a composition of functions that are holomorphic

in µ, H must also be holomorphic in µ. Thus, H is a holomorphic motion.

Applying the Λ-lemma, we obtain a new map, H : B0 × D → C. It follows

that Bδµ is the continuous image of J(F0) under H. Interchanging 0 and

δµ, we have that H is a homeomorphism. Thus we have shown that the

boundary of the basin of infinity of Fλ = Fδµ is homeomorphic to the Julia

set of F0.

2

4 Cantor Sets of Simple Closed Curves

Our goal in this section is to prove the existence of a countable collection of

Cantor sets of simple closed curves in J(Fλ). Recall that when λ = 0, the

origin lies on a superattracting k-cycle. We restrict in this section to values

of |λ| small enough so that Bλ is homeomorphic to J(F0). It follows that the

preimage of Bλ, namely Tλ, that contains 0 is disjoint from Bλ. We will first

show that, for these λ-values, the kth iterate of cλ lies in Tλ so the (k + 1)st

iterate of cλ lies in Bλ.

First observe the following for |λ| small. (We consider the critical value

vλ to be given by c + 2λ1/2; the same argument can be used for the other

critical value.)

cλ = λ1/2n

vλ = Fλ(cλ) = c + 2
√

λ = F0(0) + 2
√

λ

F 2
λ (cλ) ≈ F 2

0 (0) + F ′
0(F0(0))2

√
λ

F 3
λ (cλ) ≈ F 3

0 (0) + F ′
0(F

2
0 (0))F ′

0(F0(0))2
√

λ.

In general, for j = 1, · · · , k, the jth point on the orbit of cλ is:

F j
λ(cλ) ≈ F j

0 (0) + F ′
0(F

j−1
0 (0))F ′

0(F
j−2
0 (0)) · · ·F ′

0(F (0))2
√

λ.
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Consider the kth iterate of cλ. Since all of the derivative terms above are

nonzero and since F k
0 (0) = 0, it follows that F k

λ (cλ) approaches zero as λ

does. Then the next iterate is given by

F k+1
λ (cλ) = (F k

λ (cλ))
n +

λ

(F k
λ (cλ))n

+ c.

As λ → 0, we have:

lim
λ→0

F k+1(cλ) ≈ lim
λ→0

λ

(F k
0 (0) + F ′

0(F
k−1
0 (0))F ′

0(F
k−2
0 (0)) · · ·F ′

0(F (0))2
√

λ)n
+ c

= lim
λ→0

λ

Cλn/2
+ c

where C is the nonzero constant

2F ′
0(F

k−1
0 (0))F ′

0(F
k−2
0 (0)) · · ·F ′

0(F (0)).

As long as n ≥ 3, this limit is ∞. We have shown:

Proposition. For n ≥ 3, the (k + 1)st iterates of the critical points all lie in

Bλ for sufficiently small values of |λ| so, the kth iterates of the critical points

lie in the trap door.

Recall that, for λ = 0, the function F0(z) = zn + c has a superattracting

cycle of period k given by 0 = c0, c = c1, . . . , ck−1. Recall also that Oj is

the immediate basin of attraction of cj under F k
0 . The curve tracing the

boundary of each of the Oj is denoted by νj. Each of the Oj is a simply

connected Fatou component for the map F0. These components of the Fatou

set behave in the following way: O0 is mapped n-to-one over O1 by F0. For

j = 1, . . . , k − 2, Oj is mapped one-to-one over Oj+1 and Ok−1 is mapped

one-to-one over Ok = O0. The boundary curves of these components map

over each other in an analogous manner.

When λ 6= 0, the Oj persist due to the holomorphic motions argument

presented earlier. So for Fλ(z) = zn + λ/zn + c there are analogous regions
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O0(λ), . . . ,Ok−1(λ) with the boundaries of these regions defined to be νj(λ)

for j = 0, . . . , k − 1. The dynamics on O0(λ) is now quite different since,

in this case, there is now a pole located at the origin. So the trap door lies

inside O0(λ), and so do all of the free critical points. Since the critical values

are given by c ± 2
√

λ, the critical values lie in O1(λ), close to c. Hence the

boundary of the trap door is mapped as n-to-one covering onto the entire

set ∂Bλ. We therefore call the boundary of the trap door an n-fold inverted

copy of the Julia set of F0. See Fig. 2.

Let Sλ be the preimage under Fλ of the complement of O1(λ) in O0(λ).

Note that Sλ contains the trap door and much more but does not contain the

critical points. It follows that the boundary of Sλ is mapped n-to-one onto

the boundary of O1(λ) and hence is a simple closed curve that we call ξ(λ).

So Sλ is a closed disk bounded by ξ(λ). Thus we have that ξ(λ) and ν0(λ)

are the preimages of ν1(λ). It follows that the preimage of O1(λ) in O0(λ) is

an open annulus that is bounded by these two simple closed curves. We call

this annulus Aλ.

Proposition. The preimage under F k
λ of Sλ is a closed annulus that divides

the annulus Aλ into two open subannuli, each of which is mapped univalently

onto Aλ by F k
λ .

Proof. We have that Sλ is a closed disk. Suppose that U = F−k
λ (Sλ) has

` boundary components. Since F k
λ maps U with degree 2n onto a simply

connected set, and there are exactly 2n critical points in U , the Riemann-

Hurwitz formula then gives

2− ` = (2n)(1− 2) + (2n) = 0. (4)

Thus U has two boundary components forcing it to be either an annulus or

two disks. Suppose first that the preimage of the region Sλ is a pair of disks.
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Figure 5: The region O0(λ).

We may choose |λ| sufficiently small so that the (k−1)st image of the critical

segment is located inside Sλ. Since the critical circle is mapped 2n times

over the critical segment, it follows that the critical circle must be located

in exactly one of these disks. The other disk therefore contains no critical

points, so the disk that does not contain the critical circle is mapped once

over Sλ. The disk with the critical circle inside is mapped 2n times over Sλ,

thereby yielding 2n+1 preimages of points in Sλ. This gives a contradiction

so the preimage of the region Sλ must be an annulus. Since this annulus

contains the critical points, it must surround the origin and hence separate

Aλ into two open subannuli. Since there are no critical points in these annuli,

they are each mapped univalently over Aλ by F k
λ .

2
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Consider the annulus Aλ in O0(λ). Its boundary curves ξ(λ) and ν0(λ)

are each mapped over ν0(λ) n times as a covering by the kth iterate of the

map. Thus Aλ is mapped over itself 2n times by F k
λ . Let the preimage of Sλ

in O0(λ) under F k
λ be denoted Cλ. By the above proposition, this preimage

is an annulus that surrounds the origin. Thus the annulus Aλ can be divided

into three subannuli: Cλ and two others. Let B0 be the outer subannulus and

B1 be the inner subannulus. Cλ lies between these two subannuli. See Fig. 5.

Under k iterates of Fλ, ν0(λ) is mapped to itself and both boundary curves

of Cλ are mapped to ξ(λ). Thus B0 covers Aλ under F k
λ . Similarly, B1 is also

mapped over Aλ by the kth iterate of Fλ. It follows that there is a preimage

of Cλ in both B0 and B1. This construction yields a Cantor set of concentric

simple closed curves (or, for short, a Cantor set of circles) in O0(λ) exactly

as shown in [McMullen, 1988]. We call this Cantor set of circles Λ0(λ).

For j = 1, . . . , k − 1, there is a preimage of this Cantor set of circles

in Oj(λ). We call this set Λj(λ). Note that any point in any of the Λj(λ)

has orbit that remains for all iterations in ∪Oj(λ). Moreover, these points

move around the Oj(λ) in the exact order that the point cj on the critical

orbit moves around Oj under F0. Taking preimages of the Λj(λ) produces a

countable number of Cantor sets of simple closed curves within each of the

regions corresponding to a Fatou component of F0. We have shown:

Proposition. Let n ≥ 3. For zn + λ/zn + c, when c lies at the center of

a hyperbolic component in the Multibrot set for zn + c and |λ| is sufficiently

small, the Julia set contains countably many Cantor sets of simple closed

curves.

There is a great deal more structure in the Julia set for functions in this

family. In particular, many of the closed curves in the Cantor sets of simple

closed curves above come with “decorations.” For example, consider the F k
λ -
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invariant Cantor set of simple closed curves Λ0(λ) lying in O0(λ). The outer

closed curve in this set is the outer boundary of O0(λ), i.e., the simple closed

curve ν0(λ). But ν0(λ) is just a piece of ∂Bλ. So we regard the rest of ∂Bλ

as the collection of decorations hanging off ν0(λ).

Now consider the inner circle in this Cantor set of simple closed curves

in O0(λ). This is the curve we called ξ(λ). This curve is mapped n-to-one

onto ν0(λ) by F k
λ . Therefore there is a preimage of ∂Bλ attached to ξλ; this

preimage is mapped n-to-one onto ∂Bλ, i.e., it is the n-fold inverted copy of

∂Bλ. These are the decorations attached to this curve; note that they all

point inside ξλ and form the boundary of Tλ. Continuing in this manner,

each of the two preimages of ξ(λ) comes with decorations that are mapped

to ∂Tλ. So they are n2-inverted copies of ∂Bλ. All of these decorations point

into the interior of the first annulus that we removed in the construction of

the Cantor set of simple closed curves. Continuing in this fashion, we see that

each of the preimages of ν0(λ) also comes with similar decorations atttached.

These are the “unburied” curves in Λ0(λ) so they all come with decorations

attached. The uncountably many other simple closed curves in these sets are

not so decorated, however, as they do not map to ξ(λ). Similar arguments

hold for each of the Cantor sets of circles that is a preimage of Λ0(λ). We

have shown:

Proposition. In any preimage of the Cantor set of circles Λ0(λ),

1. Each of the unburied curves comes with decorations that are preimages

of ∂Bλ;

2. Each of the buried components is a simple closed curve without decora-

tions.
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5 The Rest of the Julia Set

In the final section, we turn our attention to the dynamical behavior of all

the remaining points in the Julia set. In the previous sections, the only

repelling periodic points we encountered were located in ∂Bλ or in one of the

k Cantor sets of simple closed curves Λ0(λ), . . . , Λk−1(λ). In particular, the

countably many preimages of ∂Bλ and the Λj(λ) cannot contain any periodic

points since these sets eventually map onto ∂Bλ or the union of the Λj(λ)

and henceforth remain there. Now it is known that repelling periodic points

are dense in the Julia set, so our description of the Julia set up until this

point is far from complete. In this section, we prove that the remainder of

the Julia set consists of an uncountable collection of point components.

First consider the set of points in J(Fλ) that are not in ∂Bλ or any of

its preimages. We shall assign an itinerary to each point in this set. Recall

that the disks Oj are the components of the Fatou set of F0 that contain

F j
0 (0) for j = 0, . . . , k− 1, and that the Oj(λ) are the corresponding sets for

Fλ. The set of bounded components of the Fatou set of F0 contains infinitely

many other such disks. So for each j > k − 1, let Oj denote a unique such

disk. The way that the Oj are indexed is not important. Let Oj(λ) denote

the corresponding open disk for Fλ.

We define the itinerary of z by S(z) = (s0 s1 s2 . . .) where sj = ` if and

only if F j
λ(z) ∈ O`(λ). Since, by assumption, the orbit of z never lands in

∂Bλ, there is no ambiguity in this definition. For example, if z ∈ O0(λ) lies

in the F k
λ invariant Cantor set of circles Λ0(λ), then S(z) = (0 1 . . . (k − 1)).

Thus there are infinitely many points that share this particular itinerary.

Furthermore, any point that eventually maps to this set must then have

itinerary that ends in this repeating sequence.

Now let Jλ be the set of points that are not in ∂Bλ or any of its preim-
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ages and also not in the Cantor sets of simple closed curves Λj(λ) or their

preimages. We say that (s0 s1 . . .) is an allowable itinerary if this sequence

is the itinerary of a point z ∈ Jλ. Which sequences are allowable therefore

depends on the choice of the indexing of the Oj(λ).

Suppose S(z) = (s0 s1 . . .) is an allowable itinerary. If some entry of this

itinerary, say sj, equals 0, then either sj+1 = 1 or sj+1 6= 1. In the latter

case, we call j a departure index . If j is not a departure index, then sj = 0 is

necessarily followed by the string 1 2 . . . (k − 1) 0. If j is a departure index,

then the orbit of z “deviates” from a similar orbit for F0 since it does not

move around in the above order. Now each disk Oj(λ) must eventually map

onto O0(λ) since this is true for F0. Therefore there must be infinitely many

digits si for which si = 0. Since we have assumed that the orbit of z never

lands in the union of the Λj(λ), this itinerary cannot end in the repeating

sequence (0 1 . . . (k − 1)). Therefore it follows that each allowable itinerary

must contain infinitely many departure indices.

Proposition. Suppose (s0 s1 . . .) is an allowable itinerary that does not end

in the repeating sequence (0 1 . . . (k − 1)). Then the set of points with this

itinerary is a Cantor set in J(Fλ). Moreover, every point in this set is a

point component of J(Fλ).

Example. Before turning to the proof of this result, we first give an il-

luminating example. Suppose the given itinerary is (0). This itinerary is

allowable since Fλ maps O0(λ) over all of the other Oj(λ) in n-to-one fash-

ion, including O0(λ). Note that each entry in this sequence is a departure

index. Since the critical values lie in O1, it follows that there are n subdisks

in O0(λ) that are mapped univalently onto O0(λ); these are the points in

C (not just in J(Fλ)) whose itinerary begins 00. Note that these subdisks

lie inside the curve ξλ, since the region between ξλ and the outer boundary
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ν0(λ) of O0(λ) is mapped to O1(λ) by Fλ. Hence the union of these n disks

is surrounded by infinitely many annuli in O0(λ) that eventually map to the

trap door and hence lie in the Fatou set.

Since each of these n disks is mapped univalently onto O0(λ), it follows

that each of these subdisks contains preimages of these annuli. Furthermore,

each one of these subdisks also contains n smaller subdisks that are mapped

univalently onto one of the original n disks. As above, the annuli in these

subdisks surround the union of these smaller subdisks. This yields n2 smaller

disks consisting of points in C whose itinerary begins 000. Continuing in this

fashion, standard arguments from complex dynamics then show that the set

of points with itinerary (0) is a Cantor set of points. Any point in this Cantor

set is surrounded by arbitarily small annuli that lie in the Fatou set. Thus

each point in this Cantor set is actually a point component of the Julia set.

Proof: The proof of the general case proceeds in essentially the same fashion

as the above example, except for the fact that not all of the zeroes in the

itinerary correspond to departure indices. Since there are infinitely many

zeroes in each allowable itinerary, we may assume without loss of generality

that the allowable itinerary begins with a 0. If this index is a departure

index, the itinerary begins with the string (0 β) = (0 s1 . . . si−1 0) where none

of the sj are zero. Then, just as in the example above, the set of points in

C whose itinerary begins with (0 β) consists of exactly n disks, and each is

mapped univalently onto O0(λ) by F i
λ.

Suppose however that this initial 0 is not a departure index. Then the

itinerary begins 0α = (0 1 . . . (k − 1) 0). As in the previous section, the set

of points in O0(λ) whose itinerary begins with this sequence is an annulus,

and this annulus is mapped 2n-to-one onto O0(λ). If the itinerary begins

(0 α α), then the set of points whose itinerary begins in this manner con-

sists of 2 annuli, and each of these annuli is mapped 2n2-to-one onto O0(λ).
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Continuing, if the itinerary begins with a total of m α’s after the initial 0,

then the corresponding set consists of 2m−1 annuli, each of which is mapped

2nm-to-one onto O0(λ).

Now suppose that the itinerary begins (0 α β). The set of points whose

itinerary begins with (0 β) consists of n disks in O0(λ). Moreover, none

of these disks contains a forward image of a critical point. So if we pull

these disks back by the appropriate inverses of Fλ, we find that the set of

points whose itinerary begins (0 α β) consists of (2n)n = 2n2 disjoint disks

in O0(λ), and each of these disks is surrounded by a collecion of annuli lying

in the Fatou set. If the itinerary begins (0 αm β), where αm indicates that

the itinerary contains m consecutive strings of α’s, then the set of points

with this itinerary now consists of (2n)mn disks, each of which is similarly

surrounded by annuli in the Fatou set.

Finally, if we have an itinerary of the form (0 αm1 β1αm2 β2 . . .), concate-

nating the above constructions shows that the set of points with this itinerary

is a nested intersection of disks which converge down to a Cantor set. More-

over, each point in this set is surrounded by arbitrarily small annuli in the

Fatou set. This completes the proof.

2
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