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Abstract

Our goal in this paper is to give an example of a one-parameter
family of rational maps for which, in the parameter plane, there is a
Cantor set of simple closed curves consisting of parameters for which
the corresponding Julia set is a Sierpinski curve. Hence the Julia sets
for each of these parameters are homeomorphic. However, each of the
maps in this set is dynamically distinct from (i.e., not topologically
conjugate to) any other map in this set (with only finitely many ex-
ceptions). We also show that, in the dynamical plane for any map
drawn from a large open set the connectedness locus in this family,
there is a Cantor set of invariant simple closed curves on which the
map is conjugate to the product of certain subshift of finite type with
the maps z — £2z" on the unit circle.

1 Introduction

One of the most interesting planar sets from a topological point of view is the
Sierpinski curve. A Sierpinski curve is any planar set that is homeomorphic
to the well-known Sierpinski carpet fractal. There is an equivalent topological
characterization of these sets due to Whyburn [15]: any planar set that is
compact, connected, locally connected, nowhere dense, and has the property
that each pair of complementary domains is bounded by disjoint simple closed
curves is known to be a Sierpinski curve. From a topological point of view
these sets are important since they are universal planar sets in the sense
that they contain a homeomorphic copy of any compact, connected, one-
dimensional set.

Sierpinski curves have been shown to occur as the Julia sets of many
different types of rational maps [4], [8], [11], [16]. We describe some of these
possibilities in the next section. In particular, for most of these examples,
the Sierpinski curve Julia sets occur in a structurally stable setting. That is,
these sets arise in a specific family of rational maps and any small enough
perturbation of such a map within this family yields a Julia set that is also
a Sierpinski curve and, moreover, the two maps are topologically conjugate
on their Julia sets.

In this paper, we give a very different example of a family of rational
maps that has Sierpinski curve Julia sets. The family is Fy(z) = 23 + \/23.
Our main result is:



Theorem. There is a Cantor set C of simple closed curves in the A-plane
for the family F having the following properties:

1. For any X € C, the Julia set of F\ is a Sierpinski curve;

2. Given any A € C, there are at most finitely many p € C such that F)
and F,, are topologically conjugate;

3. If X and u lie on different curves in C, then F)\ is not topologically
conjugate to F),.

In particular, it follows that none of the maps corresponding to parame-
ters in C are structurally stable within the family F), for small perturbations
change the dynamics on these Sierpinski curve Julia sets.

The motivation for this paper comes from a paper of McMullen [9] in
which he shows that, for any map of the form G, (z) = 2" + \/z¢, provided
that A is small enough and 1/n+1/d < 1, the Julia set of G, is a Cantor set of
simple closed curves. In particular, for families of the form F)(z) = 2"+ /2"
(i.e., n = d > 2), it is known [3] that the set of parameters with this type
of Julia set lies in a simply connected open disk that surrounds the origin
in the A-plane and that is bounded by a simple closed curve. This region in
the parameter plane is called the McMullen domain and is denoted by M. If
A € M, it is known that the restriction of F) to the Julia set is topologically
conjugate to the product of the full one-sided shift map on two symbols with
the map 6 — +nf on the unit circle. See Figure 1 for a picture of the
parameter plane in the case n = 3 together with several magnifications of
the McMullen domain. In this Figure, there are infinitely many closed curves
surrounding M that pass through the centers of a collection of disks; these
are the Sierpinski holes described later. Along these curves also lie the centers
of many small copies of the Mandelbrot set. This structure was explained in
[5]. The Cantor set of simple closed curves in the above Theorem lies in the
regions between between these circles.

To prove the result about the parameter plane in the case n = 3, we first
prove the following:

Theorem. There is an open neighborhood O in the parameter plane for
F\(z) = 2" + \/z" where n > 3 that strictly contains the closure of M and
has the property that, if A € O, then there is an invariant subset of the Julia
set that is homeomorphic to a Cantor set of simple closed curves. On this
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Figure 1: The parameter plane for the family z® + \/23 and several magni-
fications. The central white disk is the McMullen domain M. The simple
closed curves in the Theorem accumulate on the boundary of M.



invariant subset, the map is now conjugate to the product of a certain subshift
of finite type on the space of one-sided sequences of two symbols and the map
0 — £nf on the unit circle.

That is, within the McMullen domain, the entire Julia set consists of
simple closed curves that are interchanged by F) in a manner prescribed
by the full shift on two symbols. Just outside of M, some of these closed
curves disappear, but an uncountable collection of them persist (and other
structures arise). On this set of closed curves, we can identify specifically the
subshift matrix that governs how the curves are interchanged by F). Then
we can use this information to show how, at least in the case n = 3, this
entire scenario may be translated over to the parameter plane.

We remark that, because of the above result in the dynamical plane, it
should be relatively straightforward to extend the parameter plane result in
the case where n > 3. Certain technical estimates giving the location of the
Cantor set of simple closed curves in the dynamical plane will have to be
modified in the general case.

2 Preliminaries

Let F\(z) = 2" + A/z" where A\ € C is a parameter and n > 3. When
|z| is large, F)(z) =~ 2", so F) has an immediate basin of attraction at oo
that we denote by B),. Each F) also has a pole of order n at the origin.
Hence there is an open neighborhood of 0 that is mapped into By. Now
either this neighborhood is disjoint from the immediate basin B) or else this
neighborhood is contained in B). In the former case, we denote the entire
preimage of By that contains the origin by 7. We call this region the trap
door since any point z that does not lie in By but for which Ff(z) does lie
in By for some k£ > 0 has the property that there is a unique point on this
orbit that lies in 7).

Besides 0 and oo, F) has 2n additional “free” critical points given by
¢y = A2 However, F) has only two critical values given by vy = £2v/\.
In fact, there is only one free critical orbit for )\ up to symmetry. For, if n is
even, we have Fy(2v/\) = F\(—2v/)), so each of the critical points land on the
same orbit after two iterations. If n is odd, then we have Fy(—z) = —F\(2),
so the orbits of £2v/) are always symmetric under z — —z.

F) also has 2n prepoles given by py = (—A)'/?". Note that the free critical
points and the prepoles all lie on the circle |z| = |A|*/?". We call this circle
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the critical circle and denote it by C). An easy computation shows that the
C) is mapped 2n to 1 onto the straight line segment connecting +v,. We
call this segment the critical segment. Similarly, any other circle centered at
the origin is mapped n to 1 onto an ellipse whose major axis contains the
critical segment.

We call the straight rays given by tcy, with ¢ > 0 the critical point rays.
Note that

F)‘(tC)\) = )\1/2 (tn + t%) y
so it follows that each critical point ray is mapped two to one onto the straight
ray that extends from one of the critical values vy to co. We call these two
rays the critical value rays. The rays tp, with ¢ > 0 are called prepole rays,
and these rays are mapped one to one onto the entire line segment passing
through +iv, and extending to co in both directions. Note that these lines
lie perpendicular to line formed by the critical segment and the critical value
rays.

Recall that the Julia set J(F)) for the rational map F) has several equiv-
alent definitions. It is known that the Julia set is the closure of the set of
repelling periodic points as well as the boundary of the set of points whose
orbits tend to oo [10]. The complement of the Julia set is called the Fatou
set.

There are several symmetries in the dynamical plane. First, let v =
exp(mi/n). Then we have F)(vz) = —F)\(z), so, as above, either the orbits of
z and vz coincide after two iterations (when 7 is even), or else they behave
symmetrically under z — —z (when n is odd). In either event, the dynamical
plane and the Julia set both possess 2n-fold symmetry. Second, let Hy(z) be
one of the n involutions given by A\'/?/z. Then Fy(H\(z)) = Fi(z), so the
dynamical plane and Julia set are also symmetric under each H,. Note that
H)\(B)\) = T)\.

The following result gives one instance of how Sierpinski curve Julia sets
occur in the family F) [7].

Theorem (The Escape Trichotomy). Let F\(z) = 2™ + /2" and consider
the orbit of vy.

1. If vy lies in By, then J(F)) is a Cantor set;

2. Ifvy lies in Ty, then J(F)) is a Cantor set of simple closed curves, each
of which surrounds the origin;



3. If Ff(vy) lies in T\ where k > 1, then J(F)) is a Sierpinski curve.

Finally, if the orbit of vy does not escape to oo, then J(F)) is a connected
set.

We remark that case 2 of the above result was proved by McMullen [9].

Because of the Escape Trichotomy, the parameter plane for F) (the \-
plane) divides into three distinct regions. Let £ be the set of parameters for
which vy € B, so, by the Escape Trichotomy, J(F)) is a Cantor set. We
call £ the Cantor set locus. As mentioned earlier, the McMullen domain M
is the set of parameters for which vy, € T); M is the central open region
in Figure 2. Let N denote the complement of £L U M. N is called the
connectedness locus. It is known that N contains precisely (2n)¥3(n — 1)
Sierpinski holes with escape time k > 3 [3], [13]. These are open disks in
N in which each corresponding map has the property that the critical point
lands in B, at iteration k or, equivalently, the critical value lands in 7}, at
iteration k£ — 2. See Figure 2.

Figure 2: The parameter plane when n = 4. The open disks marked S are
the Sierpinski holes with escape time 3.

It is known [12] that there is a Bottcher coordinate on B,. That is,
assuming that vy ¢ By, F\| B, is topologically conjugate to z — z™ outside
the unit disk in C. As a consequence, the usual theory of external rays goes
over immediately to the family F) [10].
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In Figure 2, there are three clearly visible copies of the Mandelbrot Set.
In fact, there are infinitely many other copies of the Mandelbrot set in N
[3]. Many of these Mandelbrot sets have cusps that lie on the boundary of
the Cantor set locus, but there appear to be infinitely many other Mandel-
brot sets that do not meet this boundary. This leads to another way that
Sierpinski curves can occur as Julia sets in these families. In [6] it was shown:

Theorem. Given k > 3, there are open disks in the parameter plane for
which F has an attracting cycle of prime period k and the Julia set of F) is
a Sierpinski curve. If X and p are parameters drawn from these disks with
different periods, then F and F, are not topologically conjugate.

The open disks in this Theorem are the main cardioids of some of the
“buried” Mandelbrot sets in the parameter plane. Note that maps with
Sierpinski curve Julia sets that arise when the critical orbits escape cannot
be topologically conjugate to those in the above result.

3 Cantor Sets of Circles in the Dynamical
Plane

In this section we consider the family of functions F)(z) = 2" + A/2™ where
n > 3 and A € C. Our aim is to show that there is an open set O in
the parameter plane for this family that contains the McMullen domain and
has the property that, if A € O, there is an invariant Cantor set A, of
simple closed curves lying the J(F)). We call these curves “circles,” though
technically they are only quasicircles. Moreover, F on A, is conjugate to
the product of a certain subshift of finite type and one of the two circle maps
given by 6 — +n#b.

To define this conjugacy, let ¥ denote the subset of the space of one-
sided sequences of 0’s and 1’s generated by the subshift of finite type whose

transition matrix is
11
A= (1 O) |

That is, ¥ consists of all sequences s = (595152 ...) where s; = 0 or 1 subject
to the restriction that 1 cannot follow 1. Let o : ¥ — 3 be the shift map on
this space of sequences. It is straightforward to check that periodic points of
o are dense in X. Also let ¢ : S' — S' be the map ¢y(f) = —nf mod 1 and
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let ¢1 : S' — S' be the map ¢;(#) = nf mod 1. Then we shall show that F)
is topologically conjugate on A, to the map

P: xS -¥u xS
given by ®(s,0) = (0(s), ps,(#)). That is, for a given s = (s95182...) € X,
the map @ takes the circle (s, S') C ¥ x S as an n to 1 covering of the circle

(o(s),S"). If s, = 0, the map on the circle is # — —nf and so is orientation
reversing; otherwise, the map is 6 — nf and so is orientation preserving.

Suppose that
A Ly~
< (3)

[Fa(oa)] = [2VA] < [AY2"] = ey

Then we have that

so, for these parameters, F)\ takes the critical circle C) to the critical segment
which therefore lies strictly inside C. F) is an n to 1 covering map on the
region outside C) and also on the region inside C). F) takes each of these
regions onto the complement of the critical segment in C. In the exterior
region, F) takes circles centered at the origin to ellipses that surround the
critical segment in an orientation preserving manner; in the interior region,
F, reverses the orientation on such circles.

In what follows we sometimes denote the critical circle C by ~,. Of
course, 7o depends on A, but we drop the parameter dependence for con-
venience of notation. Note that there is a preimage of v, that lies strictly
outside 7. Call this preimage ;. There is also a similar preimage v_; inside
Y. F) maps both v; and v ; as an n to 1 covering onto 7,. So each of these
curves is a simple closed curve. We again call them “circles,” though, unlike
Y0, they are not actual circles. Then there is a preimage 5 of v, lying out-
side v; and another preimage v_5 of 4 lying inside v_;. Inductively, for each
k > 1, there is a pair of preimages of ~,, one called 7, lying outside 7, and
another called y_(x1) lying inside y_, and each of these circles is mapped n
to 1 onto 7. Note that F )’f therefore maps 71 as an n* to 1 covering onto
Yo- Also, vz — OB, as k — oo, whereas v_; — 07). See Figure 3.

When XA € M, we have that v, € T), so v, lies inside each circle v;. But
when A lies outside M, Fy(v,) no longer lies in B, so v, now lies outside cer-
tain of the ;. There is an open set of parameters for which v, lies inside the
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Figure 3: The critical circle and it preimages 7.

open disk in the dynamical plane bounded by v_5. Let O be the component
of this open set that contains the McMullen domain. So for each A € O,
since v, lies inside 7 o, we have that F)(vy) lies outside the circle ;.

Theorem. Suppose A € O. Then there is an invariant subset Ay of J(F))
that is homeomorphic to the Cantor set of circles ¥ x St. Moreover, Fy | Ay
is topologically conjugate to the map ® on ¥ x St.

Proof: Consider the annular region bounded by v; and v 5. By assumption,
vy lies in the exterior of this annulus. Let B; be the outer annulus in this
region that is bounded by vy and ;. Let By be the inner annulus bounded
by v and v 5. Then F) takes B; — 7y as an n to 1 covering over the disk
bounded by 7, minus the critical segment. Hence there is a preimage of B,
lying in B;. Call this preimage A;. Since F) is an n to 1 covering map on
By, it follows that A; is also an annulus. In similar fashion, F) takes By — 7y
in n to 1 fashion over the disk bounded by 7; minus the critical segment.
Hence there is another annulus Ay C By that is mapped as an n to 1 covering
onto By U By. In particular, F)(Ap) properly contains Ag U A; while F)(A;)
properly contains Ajy. Standard arguments from complex dynamics then say



that -
Av=[)F(4 U 4)

§=0
is a Cantor set of quasicircles and F) restricted to this set is conjugate to ®.
O

In the following section, we shall construct this conjugacy more explicitly
(in the case n = 3) and show that the conjugacy varies analytically with .
Note that the exterior annulus between 7; and 7, is mapped as an n to 1
covering of the annulus between -, and ;. Hence there is a preimage of a
portion of Ay in this annulus. This preimage is also a Cantor set of circles. In
similar fashion, any annulus bounded by 4 and 4, for any k£ € Z contains
a Cantor set of circles which either lies in A or else eventually maps into Aj.

We remark that, in the above proof, we could just as well have chosen
By to be the annulus between v, and v_; and then B_; to be the annulus
between v_5 and y_;. This would give a subshift on the three symbols —1, 0,
and 1 with the following pairs as the only allowed followers in the sequence
space: 00, 0(—1), 10, and (—1)1.

For later use, we can now give a more dynamical construction of A,. We
have shown that there is a circle in A, corresponding to the sequence 001
in ¥; let po denote this circle. Let py = Fy(uo) and ps = F\(p1). So g
corresponds to the sequence 010 and p to 100. So the p; form a collection
of circles that is invariant under F}. We call this collection a cycle of circles
of period 3. Let vy denote the preimage of p; that is not equal to ug, so vy
corresponds to the sequence 1010. As before, the p; and 14 all depend on A.

Since po and pp have itineraries in X that begin with 0, both of these
circles lie in the annulus Ay constructed in the above proof. Similarly, ps
and vy lie in the annulus A;. Let U, be the annular region bounded by g
and p; and U; the annular region bounded by us and vy. Since F) takes p,
outside of Ay, it follows that u; lies inside the circle py. Similarly, v, lies
inside po. We therefore have that F) takes U; onto Uj since the bounding
circles are mapped to bounding circles. Similarly, F\ takes Uy onto the entire
larger annulus bounded by p; and ps (and therefore containing py and vyp).
As a consequence, we have the exact situation as in the above proof, with
Uy and U; playing the roles of Ay and A;. So the Cantor set of circles Ay
lie in the annuli Uy and U; that are bounded by specific circles in A,. See
Figure 4. We have shown:

Corollary. The invariant set of circles Ay is contained in the pair of annuli
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Figure 4: The annuli Uy and Uj. F)\(Ul) = U, while F)\(U()) > Uy U Us.

bounded by the specific circles g, p1, pa, and vy, where each of these circles
lies in Ax. The p; are circles that lie on a cycle of circles of period 3 while
Vo 18 mapped onto the circle py by F.

Using this result, we can now show that the set A, is a dynamical invari-
ant.

Proposition. Suppose that A\, u € O and that F) is topologically conjugate to
F, via a conjugacy h. Then h maps Ay to A, and therefore gives a conjugacy
between Fy and F), on these invariant sets.

Proof: First note that there is a unique invariant circle surrounding the
origin for both F) and F),. Indeed, only the annulus between the curves
and y_; is mapped over itself by F\ and F),; the annulus between -y, and y;_;
is mapped to a region disjoint from this annulus whenever k£ # 0. Hence the
annulus between v, and y_; contains a unique invariant circle for both F)
and F),, and so h must take the invariant circle for F) to that for F},. Note
that these circles correspond to the sequence 0 in .

In similar fashion, there is a unique pair of circles for F and F), that
have period 2 under these maps; these are the circles corresponding to the
sequences 01 and 10.

For the period three case, the situation can be different. Both F\ and F),
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have a cycle of circles lying in A, and corresponding to the sequence 001 as
shown above. But there may be another such cycle. Before we had assumed
that the critical values lie inside the curve v 5. But if the critical values
lie inside y_3, then we can construct another cycle of circles of period 3 as
follows. The annulus between vy, and 7, is mapped onto the annulus between
v and ;. Then the annulus between 7, and ~; is mapped over all of the
annuli bounded by curves of the form v, and 7, _; where £ < 0. In particular,
the image of this annulus covers the annulus between v 5 and v_3. But then
this annulus is mapped over the original annulus between ~; and 7v,. So
arguing as before, there is a cycle of circles of period three that visits these
annuli in order under both Fy and F),. (So these circles would correspond to

an itinerary of the form 21(—2) if we denote the annulus between y_, and
v—3 by A_5.) One checks easily that this is the only other possibility for a
cycle of circles of period three that is concentric about the origin.

We claim, however, that, even in the case where two such cycles of circles
exist, the conjugacy takes the cycle corresponding to the sequence 001 for F)
to the corresponding cycle for F),. Indeed, for this cycle of circles, F reverses
the orientation twice as it maps circle to circle, namely on each of the two
circles that lie in Ag. On the other hand, for the other cycle of circles, there
is only one reversal of orientation. So the conjugacy cannot map a cycle of
circles corresponding to 001 to a cycle corresponding to the other sequence.

As a consequence, h must take the circle corresponding to the sequence
1010 for F) to the corresponding circle for F),. It follows that the conjugacy
maps points in the Julia set for F\ whose orbits remain in the annuli Uy U U,
for all iterations to the corresponding annuli for F},. That is, h maps Ay to
A, and is thus a conjugacy on these subsets of the Julia set.

O

4 Cantor Sets of Circles in the Parameter
Plane

For the remainder of this paper, we consider only the family Fy(z) = 2% +
A/2z3. Our goal here is to prove that there is a Cantor set C of circles in the
parameter plane for this family with the following properties:

1. If A € C, then J(F)) is a Sierpinski curve, so all of these Julia sets are
homeomorphic;
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2. If A and p lie on different circles in C, then F) is not topologically
conjugate to F;

3. Given A € C, there are only finitely many p € C such that F and F), are
topologically conjugate. So there are uncountably many dynamically
different maps corresponding to parameters on each circle in C.

The way we will prove this result is by showing that there is a unique pa-
rameter such that F)(v,) lands at a prescribed point in the invariant Cantor
set of circles Ay constructed in the previous section.

In order to prove this, we first need specific estimates on the size and
location of both the McMullen domain and the invariant Cantor set of circles
A, for parameters close to the McMullen domain, and secondly we must make
precise what we mean by a “prescribed” point in A,. So, from now on we
restrict attention to parameters A in the annulus S given by 0.014 < |\| <
1/49 = 0.0204.. ..

We first claim that S C O, so that for each A € S, v, lies inside v_,
so F)(v,) lies outside the circle ; in the dynamical plane and the invariant
Cantor set of circle A, is well-defined.

Lemma. Suppose A € §. Then F\(vy) lies outside the circle 7.

Proof: First note that, if A € S, then |cy| = [A[Y/S < (1/49)'/6 = 0.5227.. ..
If || = 0.85, then

Fy(2)] > (0.85)° — m > 0.58....

so |Fx(2)| > |ea|. Therefore the circle |z| = 0.85 lies strictly outside 7 () for
each A € S. We have

A0n) = \/_3 #3
Fr(vy) (2 )\)+<2\/X)

Therefore ]

7
>
2 g

8
—8AP2 > - — — > 0.85.

[Fa(va) =

oo

Therefore F)(vy) lies outside 7.
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Let A denote the annulus in the dynamical plane given by

A={zeC|0.238 < |2 <0.28]}.

Lemma. For each A € S, 0T is contained in the interior of the annulus

A.
Proof: If |2/ = 0.28 and A € S, we have

3 1

But if |w| = 0.96, then

|Fy(w)] < (0.96)% + < 0.91,

(49)(0.96)°
so B, lies outside the circle |w| = 0.96. Therefore points on the circle |z| =
0.28 do not lie in T'y. Hence OT), lies inside this circle.

On the other hand, if |z| = 0.238, then

0.014
|Fa(2)] > % — (0.238)° > 02387 (0.238)% > 1.02.

But if |w| = 1.02, then we have

3
|F\(w)| > (1.02)% - 4—19 (%) > 1.04
so w lies in By. Therefore, all points with |z| = 0.238 lie in the trap door, so
0T, lies outside this circle. Hence 07 lies in the interior of A.
O

We remark that, in order to extend the main Theorem of this section to
the case n > 3, it is only necessary to provide similar estimates as in the
previous two lemmas.

Note that if |A\| = 0.014, then [2v/A| = 0.2366... whereas if |\| = 1/49,
then [2v/A| = 0.285.... So as A moves around the annulus S in parameter
plane, the critical values +v, fill an annulus in the dynamical plane that
properly contains A and hence 0T) for each A € S.

Since S is a compact subset of the parameter plane and the circles v_;
accumulate on 07 as j — oo, we have:
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Corollary. There exists K < 0 such that, for each A € S and k < K, the
curves Y, (A) are contained in A.

As we described earlier, there is a different Cantor set of circles lying
between ~; and v, that is mapped by F) onto the portion of A, lying between
Y and 7. Similarly, for each £ > 1, there are other Cantor sets of circles
lying between -, and 71 that are mapped to the same portion of Ay by F¥.
Let A’}\ denote these sets. For £ < —2, we have similar sets between ~; and
vi_1 that are mapped to A'f‘_l by F). Call these sets A% as well. So when k
is negative, we have that F )‘\k| maps A¥ to the same portion of Ay as before.
By the previous corollary, we may then find K < 0 such that, if £ < K,
A% is contained in the annulus A. So we let ' denote the union of all the
Cantor sets of circles A’)f in A for k¥ < K. The “Cantor sets of circles” in the
parameter plane will consist of parameters for which the critical values of F)
lie on the circles in T'{, though technically this is not a Cantor set since we
do not include the boundary of the McMullen domain in this set to close it
up.

To construct this set in the parameter plane, we must first produce a
parametrization of each circle in A, that varies analytically with A. In order
to do this, we need to recall the construction of the internal rays (i.e., the
spines of the Cantor necklaces) as defined in [2]. In that paper, the con-
struction is given only in the case n = 2, but the same construction goes
over immediately to the higher degree case. Hence we merely sketch this
construction for n = 3 here.

Suppose first that 0 < ArgA < 27. Let ¢y = ¢o(A\) denote the unique
critical point that lies in the sector 0 < ArgA < 7/3 for these parameter
values. Let ¢; = ¢j(A) be the critical point given by exp(27ij/6) - ¢o. Let
P; = P;(A) be the closed prepole sector in C bounded by the critical point
rays through c; and c¢;_; and containing both the origin and the point at oco.
So P, is bounded by the critical point rays through ¢, and cs.

Since 0 < Arg A < 27, we have that 0 < Argwv, < 7 and so

Arg A ArgA  Arg) 2
Argcoz%<Argv,\: r2g < r6g +§:Argcz

for all of these A-values. Similarly, by symmetry,

Arges < Arg (—vy) < Arges.

It follows that the images of the critical point rays lie outside of the sectors
P, and P these sectors for each X\. Then, as shown in [2], the set of points
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whose orbits remain for all iterations in Py U P; is a simple closed curve
Ny that passes through both 0 and co. F) maps the portion of 7, that lies
in Py univalently onto all of 7, (except at oo, which has both 0 and oo as
preimages). The curve 7, contains the external rays of angle 0 and 1/2 in B,
together with certain of the preimages of these rays that lie in the preimages
of By that meet Py U P;. We include oo in the external rays of angle 0 and
1/2, so the union of these two rays is an open arc in 7,.

Note that F) maps 7, two-to-one over itself. Also, 1, breaks into two
disjoint pieces: the union of the open arcs comprising the external rays and
their preimages together with the complement of this set which is a Cantor
set that we call I'y. We have that F), is conjugate to the full one-sided two
shift on I'). The Cantor set of circles A, consequently meets I' in a set that
is also a Cantor set; indeed, each circle in Ay meets I') in exactly two points,
one in P, and one in P;. One can identify these points symbolically using
the two-shift dynamics on I'y, but we do not need this result here.

Note that there is a preimage of 7, that lies in P, U P, and another
preimage in P, U Ps. By symmetry, the circles in A, also meet the preimages
of I'y in these two regions at another pair of points. Therefore we may
parametrize any circle in Ay as follows. Let s € ¥ and denote by & the
circle in A, corresponding to the itinerary s. Let £}(0) (resp., £2(7)) be the
point on &} lying in 'y N Py (resp., [y N P3). Similarly, let £}(j7/3) be the
point in £ lying in the preimage of Ty lying in P;. Then, using the symbolic
dynamics induced on the bounded orbits in the P;, there is a unique way to
define £}(0) so that Fy |} is conjugate to either § — 36 or § — —36 mod 1
depending on the first digit of the sequence s. Note that this parametrization
therefore depends analytically on A since £}(jm/3) all do and is 27-periodic.

Since £2(0) is constrained to lie in a particular prepole sector for each A,
and since each of these sectors rotates by /3 radians as the argument of A
rotates by 27, we have the following:

Proposition. As the argument of X increases from 0 to 2w, the argument of
£M0) changes by at most 27 /3 radians.

When Arg A = 0 or 27, the situation is a little different. The external
rays of angle 0 and 1/2 now lie on the boundaries of Py U Pj, in each case
along the real axis. Consequently, the endpoints of these rays also lie in R.
But the preimage of this set in T now lies along the rays Argz = —7/3
and Argz = 27/3 when Arg A = 0 and along the rays Argz = 7/3 and
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Argz = —27/3 when Arg A = 27. All other points in 7, then lie in the
interior of Py U P5. Since these prepole sectors differ if ArgA = 0 or 27
(they are rotated by m/3), it follows that the sets n, differ if ArgA = 0 or
Arg A = 2. Hence the parametrizations of £ differ in these two cases. For
this reason, to obtain a parametrization of £} that varies analytically with
A, we must lift these parametrizations to the corresponding covering spaces,
exactly as was done in [5].

Let S denote the universal covering space of S, i.e., the strip log(0.014) <
Rez < —1log(49). In the dynamical plane, one checks easily that if A € S,
then the region |z| > 2 is contained in By. Let W denote the punctured disk
0 < |z| < 2 and let W be the universal covering of W. Also let A be the
universal covering space of A, i.e., the strip log(0.238) < Rez < log(0.28).
So A C W. Let U denote the natural projections from these covering spaces
to the respective portions of the parameter and dynamical planes. Given
) € 8, we denote by \ any point in S that projects to A. Similarly, let 5)‘( )
denote the lift of the circle £(#). We always choose this lift so that Tm £}(0)
lies in the interval [—7/3,7/3]. Finally, let A; denote the set of points in W
that project to Aq,(;\) in the dynamical plane. So the preimage of a circle in

A, in W is now a curve extending from Im z = —o0 to Im z = 400

By the earlier Corollary, we have the existence of I'f, the union of the
certain of the preimages of A, that lie in .A. We may parameterize these
curves as follows. Let & be a circle in Ay and suppose that w3, is the
preimage of £2 in 'K that is mapped by F¥ to ). Then, as above, there is
a unique point on w;\,k that also lies in I'y N FP,. Again we call this point
w(0). We then define w?,(#) by the rule F¥(w},(0)) = £2(#). Note that
this curve is now periodic with period 3%-2w. We define the parameterization
of this curve in the covering space exactly as above. Thus, for each circle in
A, we now have countably many curves in A given by &J;\ (0), each of which
is mapped to that circle by Ff oW for some k. Also, as before, as # increases
from 0 to 2, the argument of the point w},(f) changes by no more than
27/3 radians. In fact, the argument actually increases by much less than
this when |k| is large.

Proposition. Given k,0, and s, there exists a unique parameter A = Ay
that has the property that vy = w;\,k(ﬁ), i.e., the critical orbit lands on the
point E)M0) after k iterations.
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Proof: We have two maps taking S to W. The first is the map A= V3,
where we choose a specific critical value and then lift it continuously to the
covering space. Call this map . Note that o is univalent, so we also have
the inverse of a. The second is the map A — @}1(0). Call this map . Then

consider G(\) = a~'(8())). The map G takes the strip S to itself. We claim
that there is a unique fixed point for this map; this fixed point will be the
unique parameter in S for which v lands at the chosen point on the lift of
the given circle in the dynamical plane, and the projection of X will yield the
unique parameter in the statement of the Proposition.

To prove this, recall that, as A varies in S, v, covers an annulus in dynam-
ical plane that contains A in its interior. Therefore, in the covering spaces,
the image of & under « is a strip that properly contains the closure of the
strip that is the image of 3. Hence G maps the vertical boundaries of § to
vertical curves that lie strictly inside & and extend from the top to the bot-
tom of this strip. Next recall that, as Arg A increases by 27, the imaginary
part of v5 increases by m whereas the imaginary part of &, () increases by
a smaller amount, namely 27 /3. It follows that, if £ is sufficiently large, G
takes the rectangle in S bounded above and below by Im\ = +¢ strictly
inside itself. By the Schwarz Lemma, we therefore have a unique fixed point
for G in S. This is the parameter .

O

Note that the fixed point in the above Proposition depends continuously
on # and s. Hence, this yields the collection of Cantor sets of circles C in the
portion of the parameter plane S having the property that, for each A € C,
the critical orbit lands in A, after a certain number of iterations. This then
gives:

Theorem. Suppose A € C. Then the Julia set of F\ is a Sierpinski curve.

Proof: We must show that J(F)) is compact, connected, locally connected,
nowhere dense, and has the property that each pair of complementary do-
mains is bounded by a simple closed curve. Since we have a basin of oo, we
have that J(F)) # C so it follows that the Julia set is compact and nowhere
dense. Since vy € By UT), it is known that J(F)) is connected [7]. Since the
critical orbits all eventually land in A, we have that the critical orbits are not
recurrent. Furthermore, since F) is hyperbolic on A,, there are no parabolic
periodic points. By the results in [14], it follows that J(F)) is locally con-
nected. Finally, since |v,| < |c)|, we have that By and all of its preimages
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are bounded by simple closed curves [1]. Since A, separates 0B, from 07},
it follows that these two curves are disjoint. Hence all of the preimages of
0B, are disjoint from one another. Therefore J(F)) is a Sierpinski curve.
O
Since we completely understand the dynamics on the invariant set of
simple closed curves for Ay, and this dynamical behavior must be preserved
by any conjugacy, we have:

Corollary. Suppose A, i € C. Then Fy is topologically conjugate to F,, only
if the critical orbits land on points in the invariant Cantor sets of circles Ay
and A, that have symmetric itineraries, i.e., they land on points on the same
circles and that correspond to points in (s, 0y), (s,0,) € ¥ x S where 0 and
0, have the same itineraries under the maps on St (up to symmetry).
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