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1 Introduction

In this paper we discuss the dynamics of certain members of the family of
rational maps of the complex plane given by
A

F)\(Z) = Z2 + Z—2

Of particular interest is the dynamical behavior of these maps on the Julia

set of F), which we denote by J(F)). The following Theorem was proved in
[5]:
Theorem. There are infinitely many open sets O; in the A-plane for this

family having the following properties:

1. For each A € O;, the Julia set of Fy is a Sierpinski curve; as a conse-

quence, any two of these Julia sets are homeomorphic.

2. However, if A\ € O; and p € Oy with j # k, then Fy is not topologically

conjugate to F,, on their respective Julia sets.

A Sierpinski curve is a planar set that is homeomorphic to the well known
Sierpinski carpet fractal (see Figure 2). More generally, it is known that any
planar set that is compact, connected, nowhere dense, locally connected,
and has the property that any two complementary domains are bounded by
mutually disjoint simple closed curves is a Sierpinski curve.

In Figure 1 we display the parameter plane (the A-plane) for the family
F. The bounded white regions in this figure contain parameters for which
J(F)) is a Sierpinski curve; we call these regions Sierpinski holes.

By the above Theorem, any two Julia sets drawn from Sierpinski holes
in parameter space are necessarily homeomorphic and hence these sets are
identical from a topological point of view. But there are infinitely many

of these holes in which the dynamics are different (i.e., the maps are not
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Figure 1: The parameter plane for the family F). The white regions in this
set are the Sierpinski holes.

conjugate on their Julia sets). The basic reason for the difference in the
dynamical behavior is the following. In each Sierpinski hole, all of the critical
points of F) eventually escape to oo, which is a superattracting fixed point.
That is, the critical orbits eventually enter the immediate basin of attraction
of co. If it takes a different number of iterations for the critical orbits to
land in the immediate basin for different maps, then the corresponding maps
cannot be conjugate as shown in [5]. Since there exist Sierpinski holes in
which the critical orbits escape after exactly k iterations for each & > 3,
this explains why we have different dynamical behavior in certain of these
regions.

However, this fact does not provide a method for understanding the dy-
namics on the Sierpinski curve Julia sets of these maps. Our goal in this
paper is to use symbolic dynamics to provide a complete description of this
dynamical behavior on these sets. Rather than deal with the general case,

we concentrate on a single example, namely when A = —1/16. This A value



Figure 2: The Sierpinski carpet.

is the center of the largest Sierpinski hole visible in the center of Figure 1.
The Julia set of F), when A = —1/16 is displayed in Figure 3. This param-
eter value has dynamical behavior that is the simplest to understand, but
it should be clear from the analysis below how to extend this analysis to
other, more complicated maps drawn from different Sierpinski holes. Our

main result is:

Theorem. There is a quotient space X2 of the space of one-sided sequences
on four symbols on which the shift map is conjugate to the dynamics of F)

on 1ts Julia set.

We thank the referees for numerous suggestions and simplifications con-

cerning this paper.



Figure 3: The Julia set for F(z) = 22 — 1/1622.

2 Elementary Properties

We begin by considering the basic mapping properties of maps in the family
A
F A (Z) = 22 + ;

in the more general case where A € C and A # 0. For each such map, we
have several symmetries: F\(—z) = Fy(z) and F)(iz) = —F\(z) so that
F}(iz) = F}(z) for all z € C. Note that 0 is the only pole for each function
in this family. The four critical points for F) occur at A'/4, while the points
(=A)'/4 are prepoles.

The point at oo is a superattracting fixed point for F. Let B be the
immediate basin of attraction of co and denote by 3 the boundary of B. The
map F) has degree 2 at oo and so F), is conjugate to z — 22 on B, at least in
a neighborhood of co. The set B is forward invariant under F) in the sense
that, if z € B, then F(z) € B for all n > 0. The same is true for 3.

Let J = J(F)) denote the Julia set of Fy. J is the set of points at which

the family of iterates of F), fails to be a normal family in the sense of Montel.
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Equivalently, J is the closure of the set of repelling periodic points of F) and
it is also the boundary of the set of points whose orbits escape to co (see [9]).
As is the case for quadratic polynomials, F) is chaotic on .J.

We denote by K = K(F)) the set of points whose orbit under F) is
bounded. K is the filled Julia set of Fy. K is given by C — UF; " (B). Both
J and K are completely invariant sets in the sense that if z € J (resp., K)
then F{(z) € J (resp., K) for all n € Z. It is known that J is the boundary
of K (see [9]). It is straightforward to check that each of the sets B, 3, J,
and K are invariant under z — 2.

The following result is reminiscent of a similar result for quadratic poly-

nomials. See [1] for a proof.

Proposition. Suppose none of the critical points of Fy lie in B. Then J(F))
and K(F)) are connected sets. If one (and hence all) of the critical points
lie in the immediate basin of oo, then J(Fy) = K(F)) is a Cantor set and

F\|J(F)) is conjugate to the one-sided shift map on four symbols.

The external white region in Figure 1 contains all of the A-values for
which J(F)) is a Cantor set. The complementary region in the parameter
plane (including the Sierpinski holes) is the connectedness locus.

In the case where none of the critical points lie in B, it follows that F)
is two-to-one on B and that 0 ¢ B. Let T = F;'(B) — B. Note that T is
a simply connected open set which is mapped in two-to-one fashion onto B,
since 0 € T is a pole of order two. T is called the trap door since any orbit
of F)\ that enters T immediately “falls through” it and enters the basin at

oo. As above, T is also invariant under z — iz.



3 A Special Case

In this section we restrict attention to
1
1622
that is, the case where A\ = —1/16. We denote F_1,16 by F for the remainder

Ff1/16(2) =2 -

of this paper. In this section we give two especially simple examples of how
symbolic dynamics can be used to analyze the dynamics of F' on a pair of
important invariant subsets of J. Later we use these two subsets as the
cornerstone of the more complicated analysis of the dynamics on all of J.

The four critical points of F lie at the points w/2 where w is a fourth root
of —1. The critical values are given by +v = +i/2 and we have F(+v) = 0.
Thus the second iterate of each of the critical points lands on the pole at the
origin; this is what makes the case A = —1/16 special. There are prepoles at
+1/2 as well as at +i/2.

We first investigate the dynamics of F' on R. Note that F' preserves the
real axis. The graph of F' on this axis shows that there is a pair of repelling
fixed points in R (see Figure 4). Let p be the fixed point in R*. The graph
of F also shows that the orbit of 2 € R tends directly to oo if |z| > p, so
(p,00) and (—oo, —p) lie in B and +p € B.

Let I denote the interval [—p, p] and let " be the set of points whose orbits
remain in [ for all iterations. Let +¢ € I be the points for which F(+q) = —p
so that F?(+q) = p. If z € (—q,q) then F(z) < —p and F?(x) > p. Hence
F™(z) = oo for all z € (—q, q). This interval is the trap door in R; any orbit
in I that enters this open interval falls through the trap door and then tends

to oo.

Proposition. The set of points I' whose orbits remain in [—p,p] for all
iterations is a Cantor set, and F' is conjugate to the one-sided shift map on

two symbols on this set. Moreover I' C J(F).
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Figure 4: The graph of F' on the real line.

Proof: An easy computation shows that |F'(z)| has a minimum in R at
+31/4/2, and that the minimum value of |F'(x)| is 3/4+373/* ~ 1.75. Hence
F is expanding on [—p,p|. Let I, = [¢,p] and [, = [—p, —q]. Let X5 be
the sequence space on the two symbols a and b, and let S : ' — X5 be the
itinerary map that assigns the sequence (sgs1s2...) to € I' where s; = a if
Fi(z) € I, or s; = b otherwise. Then standard arguments show that S is a
homeomorphism that conjugates F'|I" to the shift map on ¥,. Therefore I’
is a Cantor set.

Since the orbits of points in I' are bounded, it follows that I' is contained
in the filled Julia set of F. The set of points in I' whose orbits eventually
land on p are dense in I', and these points lie in the boundary of the set of
escaping points. Hence the closure of this set of points, namely I', lies in
J(F).

O

The preimage of R under F) consists of the real and imaginary axes; each
of these axes is mapped two-to-one over R. Hence there is a Cantor set on
the imaginary axis that is mapped in two-to-one fashion onto I' in R, and all

other points on the imaginary axis lie in B.



The preimage of the imaginary axis consists of two sets: the four rays
0 = £ /4, +£37/4 and the circle of radius » = 1/2 centered at the origin.
We call this circle the critical circle. Note that the four rays meet the critical
circle at the four critical points of F. A point on the critical circle given by
r = (1/2)e? is mapped to points of the form (i/2) sin(26) on the imaginary
axis. Therefore the critical circle is mapped in four-to-one fashion over the
interval [—1/2,1/2] on the imaginary axis (except at the endpoints). Each
of the four rays is mapped in two-to-one fashion over either [1/2,00) or
(—00, —1/2] on the imaginary axis.

We now investigate the behavior of F) near co.

Proposition. The boundary of the basin of attraction of oo is an invariant

simple closed curve 8 on which F is conjugate to the map z — 22.

Proof: Let W denote the annulus given by 3/4 < |z| < 2. We claim that F’
is an expanding, two-to-one covering map on W. To see this, first consider

the circle r = (3/4)e. For z on this circle, we have

9 %0 1 _o
|F(z)| — ‘_6210 _ _e—2z9

1
< — + = .
16 9 _16+9

4

Hence F' maps this circle strictly inside itself. If |z| > 2, then we have

[F(2)] > |” -

Therefore F' maps the circle |z| = 2 strictly outside itself and we have
[F™(2)] > (1.5)"[2]

for all n > 1 and |z| > 2. Therefore the entire region |z| > 2 lies in B.
If |z| > 3/4, we also have that

1 3 8

! > — > - — —

> 1,
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so it follows that F' is expanding on the annulus W. Since the critical points
lie inside the circle |z| = 3/4, it follows that F) is a two-to-one covering
map on W, and F)\(W) D W. Standard arguments then show that the set
of points whose orbits remain for all iterations inside W is a simple closed
curve, and F) is conjugate to 22 on this curve. Moreover, all points outside
this curve lie in B, and so this invariant curve is /.

O

As a consequence of this result, the boundary of the trap door is also a
simple closed curve in C, as are all other preimages of 5. We denote the
boundary of the trap door by 7. Note that F maps 7 onto S in two-to-one
fashion and that 7 is disjoint from . By the Proposition, we also have the
fact that K (F') is the set of all points whose orbits remain for all time on or
inside 8. We also remark that a similar result holds for other A-values for
which the critical orbit eventually enters 7T'; the proof is more complicated
as it involves quasiconformal surgery and the Measurable Riemann Mapping
Theorem (see [5]).

With an eye toward our discussion of the full symbolic dynamics on the
Julia set, we introduce the usual coding of orbits on 3. Let ¥, be the sequence
space on the two symbols 0 and 1 (not a and b, as before). In ¥} we identify
two sequences that begin with the same finite string of digits and end in
either all zeroes or ones. That is, if s = (s¢...5,0) and ¢t = (sg...5s,1), then
we identify these two points in 3. Let 3, denote the corresponding quotient
space.

There is a natural conjugacy between the dynamics of F' on § and the
one-sided shift map on 53’2 determined as follows. Let Ky denote the portion
of B lying on or above the real axis, and let K; denote that portion lying on
or below this axis. Note that, by our previous work, we know that 5 meets

the real axis only at the points +p. We then associate an itinerary S(z) in ¥



to each z € 8 by recording how the orbit of z visits either K, or K; exactly
as in the case of the dynamics on the real line. Since Ko N K; = {+£p}, it
follows immediately that this assignment respects the identifications in fJ’Z

and yields a conjugacy.

Proposition. The itinerary map S gives a conjugacy between F'| B and the

one-sided shift map on the quotient space %Y.

4 Cantor Necklaces

One of the principal objects contained in the Julia set of F' is a Cantor
necklace. To define this set, let A denote the Cantor middle thirds set in the
unit interval [0, 1]. We regard this interval as a subset of the real axis in the
plane. For each open interval of length 1/3™ removed from the unit interval
in the construction of A, we replace this interval by a circle of diameter 1/3"
centered at the midpoint of the removed interval. Thus this circle meets the
Cantor set at the two endpoints of the removed interval. We call the resulting
set the Cantor middle-thirds necklace (see Figure 5). Any set homeomorphic

to the Cantor middle-thirds necklace is called a Cantor necklace.

Oof YO

Figure 5: The Cantor middle-thirds necklace.

There is a natural invariant Cantor necklace contained in J(F'). Recall
that the boundary 7 of the trap door 7" is mapped in two-to-one fashion

onto the boundary g of B. Moreover, 7 and [ are disjoint and 7 meets R
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only at the two points +£¢q. There are four preimages of 7" in C, but only
two of them meet R. These two preimages of 7" meet the real axis in the
two open intervals that were removed at the first stage of the construction
of the invariant Cantor set I' described in the previous section. Hence their
boundaries are simple closed curves that meet I in two points that are the
preimages of +q. Since § and 7 are disjoint, it follows that these two curves
are also disjoint from 3 and 7. Continuing in this fashion, at the n'* stage,
we replace the n'* intervals removed in the Cantor set construction with the
corresponding n'* preimage of 7. The resulting set is then a Cantor necklace
N, and N C J(F) since every point in this set lies in the closure of UF~"(B).

Now consider 8 U N. This set is invariant under F. Any point in the
Cantor set portion I' of A has orbit that remains in I, whereas any other
point in NV eventually maps to 3, where the orbit is then trapped. We could
use symbolic dynamics to expand our previous symbolic description to this
set, but we will instead take a wider viewpoint and use this set as the skeleton

of a larger symbolic description.

5 Symbolic Dynamics on the Julia Set

In this section we give a symbolic description of the itinerary of each point
in the Julia set of F'. Let A be the closed annulus bounded by 5 and 7.
All points in J(F') are contained in A. Indeed, J(F) is A minus all of the
preimages of T. We divide A into four overlapping closed sets Iy, I1, I, and
I3, each of which is a semi-annulus. I, and I, lie in the upper half plane
while I; and I3 lie in the lower half plane. I, and I; are bounded by portions
of 3, the critical circle, and R, while /5 and I3 are bounded by portions of 7,
the critical circle, and R (see Figure 6).

Note that F' maps each I; onto all of C — B. For example, the boundary
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L]0

Figure 6: The regions I; for j = 0,1, 2, 3.

of Iy is mapped by F' as follows:
1. Iy N B is mapped one-to-one to all of § (two-to-one to p);
2. Iy NR*' is mapped one-to-one to [0, p] C RT;
3. IyNR™ is mapped one-to-one to [—p,0] C R™;

4. the portion of the critical circle bounding I, is mapped two-to-one to

the interval [—v, v] on the imaginary axis.

Let X denote the set of one-sided sequences on the four symbols 0,1, 2,
and 3. We assign a sequence S(z) = (595152...) € ¥ to each z € J(F) in the
usual fashion so that the entry s; = k if and only if F7(z) € I;. S(z) is the
itinerary of z. Since F'(I;) D C — B for each j, it follows easily that there is
at least one point in C — B associated to each sequence in . These points
have bounded orbits and so must lie in J. So S gives a map from J(F') onto
3.

In order for S to capture the precise dynamics of F' on the Julia set, we
need to modify this picture in several ways. First, certain points in J(F)
correspond to two different sequences since the I; overlap, so we must first

make a number of identifications in ¥, much as we did earlier on 5. Second,
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F will not be conjugate to the shift map on this quotient space, but rather
to a “quotient” of the shift map.

We first modify X to take into account the identifications necessary along
B. As is Section 3, we identify any pair of sequences in Y of the form
(5051 ---8,0) and (sg81...5,1). Let 2! denote the resulting quotient space.

Then we have:

Proposition. Let s = (s¢5152...) € X! be a sequence consisting of only 0s
or 1s. Then there is a unique point in J(F) whose itinerary is s and this

point lies in [3.

Proof: Let I;,. s, denote the set of points whose itinerary begins sysi . . . Sy.
If each of the s; is either 0 or 1, then I, , is a closed, simply connected set
that is properly contained in I,,. s, , and F™ maps Iy, s, in one-to-one
fashion onto I;,. Note that each Iy, s, intersects S in an arc. Using the
appropriate branches of the inverse of F', we have that F'~" is a contraction
in the Poincaré metric on I, taking I, onto I,,. s, . Hence the intersection
of these sets as n — oo is a unique point which necessarily lies in 3, and this
point has the itinerary s.
O
The description of the further identifications that must be made in X! is
more complicated. The reason for this is that the sets Is,. s, are not always
simply connected if the s; involve 2s or 3s. For example, the interior of the
set, Ipo consists of two disjoint components whose boundaries meet at a single

critical point.

5.1 Symbolic Dynamics on the Real Line

To describe the further identifications in 3!, we begin on the real axis. Note

that our previous symbolic description of points in J(F)NR (using the sym-
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bols a and b) is no longer valid. Now we have four symbols describing such
points and each point in J(F) N R will have two distinct symbolic represen-
tations.

Recall that N denotes the Cantor necklace lying along R and that T’
denotes the Cantor set given by N NR. We have F(N) = N UB. If we
remove the set of points in N/ whose images do not lie in N/, then we are
left with a pair of Cantor subnecklaces, one to the left of the trap door T
(extending from —p to —g along R~ ) and one to the right of 7' (extending
from ¢ to p along R"). Indeed, we simply remove the upper and lower open
semicircles on the boundary of 7' (i.e., 7 — {#¢}) from N to produce these
subnecklaces.

The preimage in R of this pair of subnecklaces then consists of four Cantor
subnecklaces, and then the preimage in R of these subnecklaces consists of
eight subnecklaces. Call this set of eight subnecklaces N.

Points that lie the upper or lower portions of a subnecklace in N/ can
be distinguished using a pair of symbols. Recall that I3 denotes the set
of points in J whose itinerary begins with the string 5. Each of the eight
subnecklaces in N’ is associated to a pair of distinct I,s; one of the I,g
contains all points in the upper half of a subnecklace in N, the other to the
bottom half. Using the dynamics of F' on R, we see that the upper pieces of

the subnecklaces in N’ are contained from left to right in
To1, Loz, Ios, Io1, L2, I22, Lo2, Loo-
The bottom pieces are contained from left to right in
Lo, Iz, I3g, I3o, I31, I33, 113, [11-

See Figure 7.
Applying F', we then see that, for example,

F(I()o) D) IO() U 102
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01 03 23 21 20 22 02 00
O c»o»O Q«&Oﬂ@
10 12 32 30 31 33 13 11

Figure 7: Symbolic dynamics on the Cantor necklace.

and
F(Iy3) D I3o U I.

This implies that points in Iy have itineraries that begin 000 or 002 while
points in I3 have itineraries that begin 230 or 232. We write this more
succinctly as

00 — 00{0,2} and 23 — 23{0, 2}.

A straightforward computation shows that we have, in order,
00 — 00{0, 2}, 02 — 02{0,2}, 22 — 22{1,3}, 20 — 20{1, 3},

21 — 210, 2}, 23 — 23{0,2}, 03 — 03{1,3}, 01 — 01{1,3},
11 — 11{1,3}, 13 — 13{1,3}, 33 — 33{0,2}, 31 — 31{0,2},
30 — 30{1,3}, 32 — 32{1,3}, 12 — 12{0,2}, 10 — 10{0,2},

Note that, in this recipe, if an even digit is preceded by a 0 or 1, then the
following digit must also be even. If the even digit is preceded by a 2 or 3,
the following digit must be odd. Similarly, an odd digit preceded by 0 or 1
is followed by an odd digit while it is followed by an even digit if preceded

by a 2 or 3. More succinctly, we have:

Proposition (The Criterion for Real Itineraries.) Suppose s = (898183 - ..) is

a sequence that corresponds to a point in JNR. Then for each j, s; satisfies
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1. If s; =0 or 1, then sj;1 and sj;o have the same parity;
2. If s; =2 or 3, then sj;1 and sjio have different parities.

Conversely, any sequence that satisfies this rule for each s; corresponds to a

unique point in J NR.

We say that a sequence in Y! corresponds to a real itinerary if it obeys
this criterion for all j. Using the criterion for real itineraries, we can now
“identify” all of the sequences corresponding to points in JNR. Let R : ¥t —
! be the map that exchanges 0’s and 1’s or 2’s and 3’s in each sequence
in ¥!. Then we have that, if s € X! corresponds to a point in J N R, then
R(s) also corresponds to such a point and, moreover, these two points are the
same. Therefore we identify any two such sequences in X!. Note that, under
this identification, the sequences (0) and (1) are identified, as are (01) and
(10). These represent the two points where this new identification coincides
with the previous identification.

Now suppose we have a sequence in X! that does not correspond to a real

itinerary. Then there are two possibilities:

1. Either there are only finitely many s; for which the criterion for a real

itinerary fails, or
2. There are infinitely many s; for which this criterion fails.

In the first case, such a sequence must be of the form

(SO e Sntn+1tn+2 .. )

where n is the largest digit for which the criterion for real itineraries fails.
We say that n is the real itinerary marker. If the real itinerary marker is

0, then any point with such an itinerary lies along the imaginary axis. Any
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such point corresponds to two distinct itineraries having the form (4, (s)) and
(4, R(s)) where j =0, 1,2, or 3 and s is a sequence that corresponds to a real
itinerary. Therefore we identify these two sequences in X! as well.

If the real itinerary marker is 1, then the situation is different. In this
case the corresponding points in J lie either on the critical circle or on the
four straight rays connecting the origin to oo and passing through one of
the critical points. The points lying on the critical circle are mapped to the
portion of the imaginary axis in I, U I3 while the other points are mapped to
the portion in Iy U ;. The former case presents a problem since points on the
critical circle lie on the boundaries between two of the I;; we deal with this
more complicated case in the next section. In the latter case, the itinerary
of such a point is either (s, 7, (s)) or (so,j, R(s)) where j =0 or j = 1 and
s is a sequence that corresponds to a real itinerary. Hence we identify two
such sequences as above.

Finally, if the real itinerary marker is j > 2 and s; = 0 or 1, we have
a similar pair of sequences that correspond to the same point. Again these
two sequences are identified. With all of these identifications, we now have

a quotient space of X! that we call 32.

5.2 Symbolic Dynamics on the Critical Circle

The only other points where the I; intersect lie along the critical circle,
so we now describe the identifications that these intersections cause in 2.
Sequences that correspond to points on the critical circle have the form
(80,7, (s)) where j =2 or j = 3 and s corresponds to a real itinerary.

Let C denote the critical circle. Recall that F' maps C' four-to-one onto
the portion of the imaginary axis lying between the two critical values +wv.
One of these critical values is located at the intersection of Iy and I5 on the

positive imaginary axis; the other is located at the intersection of I; and I3
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on the negative imaginary axis.

Recall also that F' maps the portion of the imaginary axis lying in 5 in
one-to-one fashion onto the interval [0, p| where we recall that p is the fixed
point in RT and ¢ is the preimage of —p lying in RT. So there is a Cantor
subnecklace along this portion of the imaginary axis that is mapped onto
the portion of the Cantor necklace N along the interval [¢,p]. We call this
subnecklace U. There is a similar Cantor subnecklace V = —U in I3 that is

also mapped homeomorphically onto the same portion of A (see Figure 8).

F
o
oV

Figure 8: The Cantor subnecklaces U and V.

For simplicity, in our figures we will henceforth represent the subnecklaces
U and V by lines (see Figure 9).

U can be divided into two equal sized subnecklaces which we will denote
Uin and U,y with U,y lying above Uy, on iR. We create this division by
removing the set in U that is mapped onto 7 — {+¢} in two iterations.
Likewise, let V;, = —U;, and Vi = —Upy (see Figure 10). Any point in the
Cantor set portion of these subnecklaces lying in I; has itinerary (jsos; . ..)
where each entry in the sequence (sgs1$s . ..) satisfies the criterion for a real
itinerary but the initial digit ;7 does not, so the real itinerary marker is 0.

For the identifications that occurred along the real line we needed dis-

tinct notations for the upper and lower pieces of the Cantor necklace along
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Figure 9: The Cantor subnecklaces U and V represented by lines.

Figure 10: Location of U;, and U,,; within C'.

R. Similarly, we will speak of the left and right pieces of U and V. Our
convention will be that points in the right pieces have nonnegative real parts
while points in the left pieces have nonpositive real parts. For example, we
will denote the left piece of Uy by Ugous,r) and the right piece by Uus,r)-
Since U C I, and V' C I3 it follows that any point in U has itinerary that
begins with 2 while any point in V' has itinerary that begins with with 3. It
is a matter of computation to see that F'(Uu,r)) C I and that F@®) (Ulout,r))
is contained is Iy or I. Hence, itineraries of points in Uy, ry must begin
with 220 or 222. We will write this as

U(out,R) — 22{0, 2}.
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Adopting this notation we compute immediately that
U(out,R) — 22{07 2}7 U(out,L) — 23{17 3}: U(’in,L) — 21{17 3}7 U(in,R) — 20{0: 2}

Viin,r) = 31{1, 3}, Viout,r) = 33{1, 3}, Viin,r) = 30{0, 2}, Viour,z) — 32{0, 2}.

We turn now to the identifications in X2 corresponding to points in C.
Recall that C' is mapped four-to-one onto the interval [—v, v] on the imaginary
axis. Consider the preimage of the Cantor necklace U along the critical circle.
This preimage consists of four Cantor necklaces, two in each of the first and
third quadrants. Each of these preimages is mapped one-to-one onto U.
Similarly the necklace V' has four preimage necklaces, two each in the second
and fourth quadrants. Let C; denote the two preimages of U lying in the
first quadrant. Continuing counterclockwise from C;, we label the other

preimages of U or V' by Cy, Cs, and Cjy (see Figure 11).
B

Figure 11: The location of the Cantor subnecklaces C; for 1 = 1,2, 3, 4.

Note that C; and C, lie along the critical circle separating I, from I
while C's and C, lie on the critical circle separating I; from I35. We next
break each of the C; into four equal sized subnecklaces by removing the
middle preimage of 7 from each. Equivalently, we consider the preimages of

the smaller subnecklaces U;,, Uy, Vin, and V. This yields sixteen Cantor
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subnecklaces lying along the critical circle, each of which is mapped to the one
of the subnecklaces on the imaginary axis. Each of these sixteen subnecklaces
has two pieces; one outside C' and one inside C. The outside piece of C'; that
lies in Iy and meets the preimage of 7 along R is mapped to Ugn,r). Starting
at this piece and continuing counterclockwise along the critical circle, the
outer pieces of the sixteen Cantor subnecklaces lying in Iy U I; are mapped

to
U(in,R)a U(out,R)a U(out,L)a U(in,L)a Vv(in,L): ‘/(out,L)a ‘/(out,R): ‘/(in,R)a

U(in,R)a U(out,R)a U(out,L)a U(z'n,L)a Vv(in,L): ‘/(out,L)a ‘/(out,R): ‘/Ein,R)a

respectively. Figure 12 shows the pieces of C; in Iy (as well as the pieces in
I,) marked by where they are mapped via F. The first eight of these pieces
of necklaces live in Iy while the second eight live in Iy, giving us itineraries

that begin, in the above order, with
020{0, 2}, 022{0,2}, 023{1, 3}, 021{1, 3},
030{0, 2}, 032{0,2}, 033{1, 3}, 031{1, 3},
120{0, 2}, 122{0,2}, 123{1,3}, 121{1,3},

130{0, 2}, 132{0,2}, 133{1,3}, 131{1,3}.

Now, starting at the inner piece of C; that lies in I, and intersects the
preimage of 7 on the positive real axis and continuing counterclockwise along
the critical circle we see that the inner pieces of the sixteen Cantor subneck-

laces lying in I, U I3 are mapped to
U(in,L)a U(out,L); U(out,R)a U(in,R)a ‘/(in,R): ‘/(out,R)a ‘/Zout,L)a Vv(in,L)a

U(in,L)a U(out,L)a U(out,R)a U(in,R)a ‘/(in,R): Vv(out,R)a Vv(out,L)a Vv(in,L)a
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Figure 12: The locations of the eight pieces of C; marked via their images.

respectively. The itineraries of points in these sets begin
221{1, 3}, 223{1, 3}, 222{0,2}, 220{0, 2},

231{1,3}, 233{1,3}, 232{0,2}, 230{0,2},
321{1,3}, 323{1,3}, 322{0,2}, 320{0,2},
331{1,3}, 333{1,3}, 332{0,2}, 330{0,2}.

Note that the second entry for all 32 of these itineraries is either a 2 or a 3.
This is because the critical circle is mapped onto the portion of the imaginary
axis between the boundary of the trap door and the critical value, and this
region is in Iy U 3.

With this information, we can now identify the itineraries of points lying

on the critical circle.

Proposition (Criterion for a Critical Circle Itinerary.) Any point in J(F)NC
has itinerary of the form (sos18s...) where the real itinerary marker is 1
and either s; = 2 or s; = 3. Conwversely, any itinerary that satisfies these

conditions corresponds to a point in J(F)NC.

Finally, let s = (sgs182...) be a sequence in X2 corresponding to a point
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in JNC and let H : ¥* — X? denote the map that changes sy and s; for

each 7 > 2 as follows:
1. Os are interchanged with 2s and 1s are interchanged with 3s in s,

2. Os are interchanged with 1s and 2s are interchanged with 3s in s; if
J>2

If s € X% corresponds to a point in J N C then H(s) also corresponds
to such a point and, moreover, the points corresponding to s and H(s) are
the same. Hence we identify these sequences in 2. Similarly any pair of
sequences whose first n entries are the same and whose tail is one of these
two identified sequences should also be identified in 2. This then gives a
new quotient space 3.

We remark that there are two points in C; that are mapped to the same
point on the imaginary axis. If one of these points corresponds to the iden-
tified sequences (02s) and (22R(s)), then the other point corresponds to the
pair of identified sequences (22s) and (02R(s)). So the sequences correspond-
ing to the images of these points are (2s) and (2R(s)), both of which have
already been identified in 3.

Note also that the sequences that have been identified to form the quotient
space X% correspond to points in J(F') whose orbits eventually land in the

invariant Cantor set in R.

5.3 Symbolic Dynamics

Given all of our work constructing the space X3, we can now prove:

Theorem. The map F on J(F) is conjugate to the shift map on the quotient

space Y3,
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Proof: Recall that A is the annulus bounded by 8 and 7, i.e., the closed
annulus between the basin of co and the trap door. Let s = (ss182...) € 33
and recall that

Lys,.s., ={z€Alz€1,,F(z) € Iy,,...,F"(z) € I, }.

As we have seen, I; is a closed set that is homeomorphic to a closed disk for

each j. We also have
15031...sn C 15051...sn_1 c---C Iso

for each n. If F' were one-to-one on each I;, then we would have a well defined
branch of

F_n : Isn — Isosl...sn

and this map would then be a contraction in the Poincaré metric on these

spaces. Standard arguments would then show that

o
() Zeos..sn
n=0

is a unique point with the given itinerary, and this would then give the
conjugacy.

Unfortunately, F' is not one-to-one on I;. However, the only places where
this fails is on the portions of the boundary of I; that meet the critical circle
and the real axis. We remedy this situation as follows.

For clarity, let us restrict to Iy; the other cases are similar. Consider
the subsets of Iy of the form I; (see Figure 13). We now stipulate that Iy;
corresponds to a closed subset of I that meets the interior of I, i.e., this set
itself has interior. This eliminates certain intervals from Iy; along the real
axis that previously made up portions of Iy;. In particular, every point in
RN Iy now belongs to a unique Jy;. So the map F': Iy; — I; is now one-to-one

on R.
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21 20

03 23 / \ 22 02

Figure 13: Some of the subsets I,g.

Next note that Iy, and Iy3 now consist of a pair of closed disks that
are joined at a single critical point. Preimages of these sets have a similar
structure. On the other hand, both Iy, and I;; are now homeomorphic to
a closed disk. So we now adopt the convention that Iy, is one of these
two closed disks. That is, two sets bear the name Iy;. We make the same
convention for other sets I,.s,. s, that are similarly joined at isolated points.
This presents no ambiguity since F' maps one of the sets Iy; onto the portion
of I, lying in the right half plane and F' maps the other set I, to the left half
plane. Hence one of the sets Iy contains only Iyoo and Iyoy while the other
contains only Ipe; and Ipes. That is, the subsequent digit in the sequence
s determines which disk to consider in the chain I, 5,. The set Iy has
similar properties.

With this specification of I, . s,, it now follows that F™ : I, s, s — Is,

is one-to-one for each n. This completes the proof.
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