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1 Introduction

In this paper we consider the family of rational maps
€
Fe(Z) = 22 + ;

where z € C and € is a parameter. Our goal is to investigate the Julia set
of F,, which we denote by J(F,). By definition, J(F) is the set of points
in C at which the family of iterates of F fails to be a normal family in the
sense of Montel. Equivalently, J(F;) is the closure of the set of repelling
periodic points of F,. It is also the set on which F, behaves chaotically. The
complement of the Julia set is called the Fatou set.

When € = 0 we have the simple map Fy(z) = 2z? whose dynamics are well
understood. This is a degree two mapping of C whose Julia set is the unit
circle. All orbits in |z| < 1 tend to the attracting fixed point at the origin;
all orbits in |z| > 1 tend to co. So the dynamics are quite simple in this case.

When € # 0, the map is now a degree four rational map; we say that Fj
has undergone a singular perturbation when € becomes nonzero. In this case
we witness a dramatic change in the dynamics of F,. We shall prove:

Theorem. In any neighborhood of the origin in the complex e-plane, there
are infinitely many open sets O, such that, if ¢ € O, the Julia set of F,
is a Sierpinski curve. Hence any two such Julia sets are homeomorphic.
However, if ¢ and €5 lie in distinct O, s, then the corresponding maps are
not conjugate on their respective Julia sets.

Recall that a Sierpinski curve is, by definition, a compact, connected,
locally connected, nowhere dense subset of the plane that has the property
that any two boundaries of complementary domains are pairwise disjoint
simple closed curves. See Figure 1 for several examples of these types of
Julia sets. The Sierpinski carpet is perhaps the most well known example of
a Sierpinski curve; this set is obtained by dividing the unit square into nine
equal-sized subsquares, and then removing the (open) middle square. Next,
the open middle subsquare of each of the remaining eight smaller squares is
removed leaving 64 smaller closed subsquares. This process is repeated ad
infinitum to produce the Sierpinski carpet.

Any two Sierpinski curves homeomorphic. The importance of Sierpinski
curves lies in the fact that they are universal objects in the sense that there



e=—1/4 e = —0.001

Figure 1: The Julia sets for various values of e.

is a homeomorphic copy of any compact, connected, one-dimensional, planar
set contained as a subset of any Sierpinski curve. See [9].

Julia sets that are Sierpinski curves have been observed in other complex
dynamical systems. For example, building on work of Wittner [10], Milnor
and Tan-Lei [7] have shown that there is a specific degree two rational map
having superattracting cycles of periods three and four for which the Julia set
is a Sierpinski curve. The examples presented below are somewhat different.
In our family we produce infinitely many open intervals [, on the negative €
axis with n > 2 for which the following properties hold for each € € I,:

1. J(F,) is a Sierpinski curve;



2. There is a unique attracting cycle for F,, namely the attracting fixed
point at oo;

3. The complementary domains in the Sierpinski curve Julia set are the
components of the basin of attraction of oc;

4. All four nonzero critical points of F, enter the immediate basin of at-
traction of oo at iteration n.

The intervals I, sit inside simply connected open regions O, in the complex
e-plane. For any complex € € O,,, the map F, has similar properties as those
fore € I,.

McMullen [5] has considered the family of function 2" +€/2™ in the case
where n and m satisfy 1/n+ 1/m < 1. He finds that, with these restrictions
on n and m and e sufficiently small, the Julia set of these maps are given by a
Cantor set of simple closed curves surrounding the origin. Hence the singular
perturbation that arises in these cases is significantly different from the one
that arises in our case. The case where n = 2 but m = 1 was discussed in
[4]. Combining the techniques in that paper with those below shows that a
similar collection of Sierpinski curve Julia sets exists in this family when € is
small.

The authors wish to thank John Mayer and James Rogers for helpful
conversations regarding the topological properties of Sierpinski curves and
Curt McMullen, John Milnor, and Kevin Pilgrim regarding their appearance
in complex dynamics.

2 Basic properties

In this paper we shall only consider the case where ¢ < 0. However, many of
the results are easily extended to the case of certain complex €. The following
is a straightforward computation.

Proposition. For each € < 0:
1. F, has a single pole of order two at 0 and four pre-poles at (—e)'/*;

2. The point at oo is a superattracting fized point; we have F!(cc) = 0
and F!'(oc0) # 0.

3. The four nonzero critical points of F, are given by €'/*;



4. The two critical values of F, are given by +v(e) = £2./€;

5. The second iterates of the nonzero critical points all land on the same
point, namely F(£v(e)) = 1/4 + 4e.

As we are primarily interested in the singular perturbation that occurs
when e becomes nonzero, we henceforth restrict to the case where e belongs
to the interval [—1/16,0). Many of the results below extend to certain values
to the left of —1/16 as well as to € complex.

The graph of F, on the real axis shows that there is a pair of repelling
fixed points in R. See Figure 2. Let p = p(e) be the fixed point in Rt. The
graph of F, also shows that the orbit of x € R tends directly to oo if |z| > p.

\

Figure 2: The graph of F. on the real line for e = —1/16.

Let I, denote the interval [—p, p]. Let +q(e¢) = +q € I, be the points for
which F.(+q) = —p so that F?(+q) = p. If z € (—q, q) then F.(z) < —p and
F?(x) > p. Hence F"(x) — oo for all x € (—q, q). We call this interval the
trap door in R; any orbit in I, that enters this open interval falls through the
trap door and then tends to oo.

The preimage of R under F, consists of the real and imaginary axes; each
of these axes is mapped two-to-one over R. The preimage of the imaginary
axis consists of two sets: the four rays § = £7/4, £37/4 and the circle of
radius 7. = |¢|'/* centered at the origin. Note that these rays meet this circle
at the four critical points of F.. Points on the circle given by r = r.e? are
mapped to points of the form 2\/@ i sin(26) on the imaginary axis. Therefore
this circle is mapped in four-to-one fashion over the interval [—v(e), v(e)] on
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this axis (except at the endpoints). Each of the four rays is mapped in two-
to-one fashion over either [v(e), 00) or (—oo, —v(€)] on the imaginary axis.
We now investigate the behavior of F, near oo.

Proposition. For each ¢ € [—1/16,0), there is an invariant simple closed
curve v, encircling the origin on which F, is conjugate to the map z — 22.
All orbits outside vy, tend to oo.

Proof: Consider the circle 7 = (3/4)e. For z on this circle, we have
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Let U be the set of z € C such that |z| > 3/4 and let U’ = F-'(U)NU.
Then F : U' — U is a quadratic-like map (see [3]). As a quadratic-like map
on U, its filled Julia set is

9 ..
F . 2160

Kp, ={2 € U|F(z) € U for all n}.

Using the Douady-Hubbard theory, we know that F, is quasiconformally
conjugate to a quadratic polynomial ) on a neighborhood of Kp. Since
F.|KF, has a superattracting fixed point, Q(z) = z%. The invariant curve -,
is the image of the Julia set of ), i.e., the unit circle, under the quasiconformal
conjugacy.

O

3 Sierpinski curve Julia sets

In this section we first restrict attention to the special case where e = —1/16.
We write F' = F_;,6. In this case the four critical points of F' lie at the
points w/2 where w is a fourth root of —1. The critical values are +i/2 and
we have F'(+i/2) = 0. Thus the second iterate of each of the critical points
lands on the pole at the origin; this is what makes the case e = —1/16 special.
There are prepoles at +1/2 as well as at +i/2.

As in the previous section, let I denote the interval [—p,p|, where p is
the repelling fixed point for F' that lies in R*. Let +¢ € I be the points for
which F(4q) = —p so that F?(+q) = p. The open interval (—gq,q) is the
trap door in R. Below we show that the set of points whose orbits remain for
all time in I forms a Cantor set; these are the only points in R whose orbits
do not escape to oo.



As above, the preimage of R under F' consists of the real and imaginary
axes while the preimage of the imaginary axis consists of two sets: the four
rays § = +m/4, £37/4 and the circle of radius 1/2 centered at the origin.
Note that all four critical points as well as the four pre-poles lie on this circle.
For this reason we call the circle r = 1/2 the critical circle. Points on the
critical circle given by e /2 are mapped to points of the form (i/2) sin(26)
on the imaginary axis. Therefore this circle is mapped in four-to-one fashion
over the interval [—1/2,1/2] on this axis (except at the endpoints, which are
the critical values). Each of the four rays is mapped in two-to-one fashion
over either [1/2,00) or (—oo, —1/2] on the imaginary axis.

Let v denote the boundary of the basin of attraction of the superattracting
fixed point at oo. By the Proposition in the previous section, 7 is a simple
closed curve on which F, is conjugate to z — z?. Note that the immediate
basin B of oo is the exterior of v and that F' is two-to-one on this basin.
Since F is conjugate to z? on <, there is a unique fixed point on . This
must be the fixed point p € R, since we know that this point lies on the
boundary of B.

One of the principal objects contained in the Julia set of F' is a Cantor
necklace. To define this set, we let I' denote the Cantor middle thirds set
in the unit interval [0,1]. We regard this interval as a subset of the real
axis in the plane. For each open interval of length 1/3™ removed from the
unit interval in the construction of I', we replace this interval by a circle of
diameter 1/3™ centered at the midpoint of the removed interval. Thus this
circle meets the Cantor set at the two endpoints of the removed interval. We
call the resulting set the Cantor middle-thirds necklace. See Figure 3. Any
set homeomorphic to the Cantor middle-thirds necklace is called a Cantor
necklace.

oOof Yoo

Figure 3: The Cantor middle-thirds necklace.

Let 7" denote the component of the preimage of B that contains the origin.
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We call T' the trap door in C. The function F maps 7" in two-to-one fashion
(except at the pole at the origin) onto B. The boundary of 7" which we call 7
is mapped in two-to-one fashion onto . Note that 7 and ~ are disjoint; this
follows from the fact that the circle of radius 3/4 about the origin is mapped
strictly inside itself.

Let V] denote the sector given in polar coordinates in the plane by —r/4 <
6 < m/4. Let V5 be the sector 37/4 < 0 < 5w /4. Let V. =V, U V;,. Observe
that, since the image of each of the rays bounding the Vj is the imaginary
axis, these rays meet 7 in exactly one point, namely a point whose image
under F? is —p.

Let U be the closed set V — (T'U B). The set U consists of two closed
simply connected regions given by U; =U NV for j =1, 2.

Proposition. Let Ay be the set of points whose orbits remain for all itera-
tions in U. Then Ay is a Cantor set and F'| Ay is conjugate to the one-sided
shift on two symbols.

Proof: Each of the U; are mapped in essentially one-to-one fashion onto the
complement of B in C. Technically, F' maps the boundary lines of the V; in
U; in two-to-one fashion onto the intervals [+1/2, £(] on the imaginary axis,
where +( denotes the point of intersection of this axis with . The map is
one-to-one at all other points in U;. Also, the portion of the critical circle
r = 1/2 in each U, is mapped onto the interval (—1/2,1/2) on the imaginary
axis. Note that each of these intervals lies in the complement of the U;. Let
O be the complement of B minus the intervals [+1/2, £(] on the imaginary
axis. So we have a pair of well-defined inverses G; of F' that map O into U;.
Standard arguments then show that these inverses are contractions in the
Poincaré metric on O. (Technically, we must remove small strips along the
imaginary axis and also fatten 7 in order to find a simply connected region
on which the Poincaré metric resides.) Moreover, for any one-sided sequence
(s0s182...) of 1I’s and 2’s, the set

ﬂ Gsy0...0G;(0)
§=0

is a unique point and the map that takes the sequence (sps18s...) to this
point defines a homeomorphism between the space of one-sided sequences of
1’s and 2’s and Ay. Hence Ay is a Cantor set and standard arguments show
that F'| Ay is conjugate to the one-sided shift on two symbols.
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Now let W denote the union of T, 7, and U. Clearly, W is a closed subset

of C. The function F maps W in essentially a two-to-one fashion over C. The
exceptions are:

1. oo, which has only one preimage in W;

2. v together with the open intervals from +i/2 to v on the imaginary
axis, each point of which has four preimages in W.

We claim that the set of points Ay whose orbits remain for all iterations in
W is the union of v and a Cantor necklace connecting the points +p and
lying along the real axis.

To see this, note that if z € Ay, then either the orbit of z lands on v or
the orbit of z remains for all time in the U;. In the latter case, z is in the
Cantor set Ay lying on the real axis. In the former case, z lies on one of the
preimages of 7. We claim that these preimages form the “circles” making up
the Cantor necklace.

To see this, consider the closed subset T U U in W. This set resembles a
“bow tie”. The preimage of this bow tie is a pair of closed, simply connected
regions, one in each of the U;. Note that each of these preimages is a home-
omorphic copy of T UU that meets both v and the boundary of T in an arc.
That is, each preimage is a smaller bow tie extending across one of the Uj.
In particular, T has a pair of preimages, one in each of the U;. The interior
of the preimages of T is mapped into the trap door by F.

Now we continue: the second preimage of the bow tie consists of four
smaller bow ties, each containing a second preimage of the trap door, and
each connecting either « or 7 to the preimage of the trap door. Continuing
in this fashion, we have:

Proposition. The set of points whose orbit remains for all time in W is a
Cantor necklace extending from —p to p along the real azis together with the
stmple closed curve .

We now turn to the structure of the Julia set of F. Let S = C — B.
Since the orbit of each critical point eventually enters B, it follows that all
of the stable domains in the complement of the Julia set have this property.
Hence J(F) is the set of points whose orbits remain for all time in S. That
is, J(F') is the complement of the basin of attraction of co. Now the points
whose orbits leave S must lie in one of the preimages of the trap door 7.
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Each preimage of T is a finite union of disjoint, open, simply connected sets.
Thus J(F) is just S with countably many open disks removed. Hence J(F)
is connected. Since all critical points tend to oo, it is also known that J(F) is
locally connected. Also, J(F') is nowhere dense, for if J(F') contains an open
subset, then it must be all of C, which it is not. See [1] for these standard
facts about the Julia set.

It remains to show that the boundaries of all of the complementary do-
mains in J(F') are pairwise disjoint. Note that this is indeed the case along
the real axis, where the boundaries of the complementary domains are just
the endpoints of the Cantor set.

Now each of these complementary domains in S is a particular preimage
of the trap door. The preimage of v (not equal to «y) is 7, which we now
denote by F~!(y). We have that v and F~!(y) are disjoint, since we know
that F maps the circle of radius 3/4 strictly inside itself. Hence F~'(7) lies
inside this circle and so is disjoint from . The function ' maps the annular
region in S lying between v and F~'(7) onto S, with both of the boundary
curves mapped onto y. Call this annular region A;. Hence the preimages
of T lie in the interior of A; and so their boundary curves are disjoint from
v and F~1(v). Since none of the critical points lie in these preimages, it
follows that these boundary curves are pairwise disjoint and each is mapped
homeomorphically onto 7. Call these boundary curves F'=2(v).

Now remove from A; each of the four open regions bounded by F~2(v).
The remaining set A, is a disk with five holes (counting 7'). The boundary
curves of Ay are mapped to the boundary curves of A; and so the preimages
of F72(y) lie in the interior of A,. There are only twelve such preimages,
since four of the preimages contain critical points and these are mapped two-
to-one onto their images. Nonetheless, each is contained in the interior of
A,y and so their bounding curves are disjoint from the previous boundaries.
They are also pairwise disjoint, since there are no critical points along these
boundaries.

Continuing in this fashion, we see that all of the preimages of 7y are disjoint
from each other. We have thus shown that J(F') is a Sierpinski curve.

For the more general case, we consider € in the interval (—1/16,0). We as-
sume further that there exists n > 2 such that the n'* iterate of F. maps each
of the critical values into the trap door T, that is, F"(e!/*) € (—q(e), q(¢)) C
T,.. The proof that there is an invariant Cantor set on the real line goes
through without change. The only modification necessary to prove the ex-
istence of a Cantor necklace along R is to note that the image of the rays
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bounding the V; are now intervals in the imaginary axis extending from

+2./|€| to the points +(, on .. Also, the image of the critical circle r = |¢|'/4

in each U; is now the interval [—24/]e], 2\/E | along the imaginary axis. This
interval is then mapped by F; into R and its image is strictly contained in
the interval (—p(e),p(¢€)) for each e. In particular, the critical values do not
lie in B¢. The proof now goes through as above. We have proved:

Theorem. If ¢ € [~1/16,0) and F"™(e'/*) lies in the trap door for some n,
then J(F,) is a Sierpinski curve.

If the orbit of the critical point meets the boundary of the trap door,
then certain preimages of the trap door have boundaries that meet at a
single point. This point is one of the critical points (or their preimages).
Hence J(F) is not a Sierpinski curve in this case.

4 Conjugacy questions

We continue to deal with the case where € is negative with —1/16 < € < 0.
Let T, and B, be the trap door and the basin of oo respectively for F,. Let
¢ be any of the four critical points of F,. We have

1
F%(c.) = 4e+ ~.
4
Thus, after two iterations, each of the critical points land on the same point
on the real axis.

Proposition. There is an increasing sequence €, €3, ... with ¢; — 0 and
Fl(cg) = 0.

Proof: Since F?(c.) = 4e+1/4, it increases monotonically toward 1/4 as € —
0. Now the orbit of 1/4 remains in R* under Fj and decreases monotonically
to 0. Hence, given N, for € sufficiently small, F?(c,) liesin R for 2 < j < N
and moreover this finite sequence is decreasing.

Now suppose f < a < 0. We have Fi(z) < F,(z) for all z € R*.
Also, F}(cg) < F2(ca) < 1/4. Hence Fj(cg) < Fi(co) for all j for which
Fg (cg) € RT. The result then follows by continuity of F, with respect to e.

O

10



Note that e, = —1/16. If €5 < € < 0, then the Proposition in Section 1
shows that the boundary 7, is a simple closed curve and F, |, is conjugate
to z — 22.

Using the previous Proposition, we may find open intervals I; about ¢;
for j = 2,3,... having the property that, if € € I;, then F7(c.) € T, and
so Fitl(c) € B.. Therefore, F"(c.) — oo as n — oo, and so J(F,) is a
Sierpinski curve.

Now let C'(c) denote the component of the Fatou set of F, containing c..
Note that F is two-to-one on each of the four components containing these
critical points, and we have F?(C(c.)) = T.. Now suppose that F.|J(F.)
is conjugate to Fy|J(Fy,) for some o € UI;. This conjugacy must take the
boundaries of B, and 7T to the corresponding boundaries of B, and 7.
Similarly the boundaries of the four regions C(c.) must be mapped to the
corresponding regions by the conjugacy, since these are the only complemen-
tary domains (besides B, and 7T,) on which F, is two-to-one. If, however,
€ € I; and o € I;; with j # k, then these maps cannot be conjugate, since a
conjugacy maps each of the j** preimages of the 7. to one of the j* preim-
ages of T,,. Such a conjugacy would also have to map boundaries of domains
on which F, and F, were two-to-one to each other. Since j # k, this is
impossible. We therefore have:

Theorem. Let € € I; and o € I, with j # k. Then F, is not conjugate to
F,, on their corresponding Julia sets.
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