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Our goal in this paper is to describe a new type of structure that exists
in both the parameter plane and dynamical planes of the families of rational
maps given by

A

where z € C and n > 3. Called Cantor webs, these sets are homeomorphic
to a model set constructed as follows. Start with an open disk in the plane.
Surround this disk with £ smaller open disks that are symmetrically arranged
around the original disk. Then surround each of these k£ disks with k£ smaller
disks again symmetrically arranged and continue ad infinitum. These disks
are arranged so that they can then be connected by a Cantor set.

This construction generalizes the construction of a Cantor necklace that
was described in [4]. A Cantor necklace is a planar set obtained as follows.
Start with the Cantor middle-thirds set lying on the x-axis in the plane.
Replace each removed open interval with an open disk whose diameter is
the length of the removed interval. The union of the Cantor set and these
countably many open disks is a Cantor necklace. So a Cantor necklace is a
particular example of a Cantor web when k = 2.

In the dynamical plane, the behavior of the map F) on the Cantor web
is as follows. The Cantor set portion of the web is an invariant set on which
the map is conjugate to a one-sided shift map on 2n — 2 symbols, while the
open disks consist of points whose orbits eventually land in the immediate
basin of attraction of co. Each member of this family of maps for which the
Julia set is a connected set possesses a homeomorphic copy of this set, and
each of these maps has the same dynamics on these sets.

In the parameter plane, the Cantor web is a collection of parameters for
which the corresponding map has a Julia set that, with certain exceptions,

is a Sierpinski curve. See Figures 1 and 2.



Figure 1: The Julia set of F)\(z) = z° + 0.125/2z and a magnification illus-
trating a Cantor web.

1 Preliminaries

Let F\(z) = 2" 4+ A/z" where A € C is a parameter and n > 3. The reason
for choosing n > 3 will be explained below. When |z| is large, F)(z) =~ 2",
so F\ has an immediate basin of attraction at co that we denote by B). As
is well known [9], there is a Bottcher coordinate ¢, that conjugates F) to
z +— 2" in a neighborhood of oco.

Each F) also has a pole of order n at the origin; hence there is an open
neighborhood of 0 that is mapped into B). Now, either this neighborhood is
disjoint from the immediate basin B) or else this neighborhood is contained
in By. In the former case, we denote the entire preimage of B) that contains
the origin by 7). We call this region the trap door since any point z ¢ B)
but such that Ff(z) does lie in By for some k > 0 has the property that
there is a unique point on the orbit of z that lies in 7).

Besides 0 and oo, F has 2n additional critical points ¢y given by (cy)** =
\. However, F) has only two critical values given by vy = £2v/X. In fact,

there is only one free critical orbit for F) up to symmetry. For, if n is even,



Figure 2: The parameter plane for the family F)(z) = 2% + \/z* and a
magnification illustrating a Cantor web together with a further magnification
showing a portion of the web.

we have F)\(2v/\) = F\(—2V/)\), so each of the critical orbits land on the
same orbit after two iterations. If n is odd, then we have F\(—z) = —F\(2),
so the orbits of £2v/\ are always symmetric under z — —z.

We call the straight rays given by tc) with ¢ > 0 the critical point rays.
Note that

1
F)\(tC)\) = )\1/2 (tn + t_n> ,
so it follows that each critical point ray is mapped two-to-one onto the

straight ray that extends from vy to co. We call this ray the critical value



ray.

Each F) also has 2n prepoles py given by (py)** = —\, so Fi(py) = 0.
The rays tp, with £ > 0 are called prepole rays. These rays are mapped one-
to-one onto the entire line segment passing through +iv, and extending to
oo in both directions. Note that these lines are perpendicular to the critical
value rays.

For each A, there is a unique critical point lying in the sector 0 < Argz <
7/n. Call this critical point ¢y = ¢y(A). We denote the remaining critical
points by ¢; and order them in the clockwise direction around the origin. We
call the open sector bounded by two adjacent critical point rays a prepole
sector since each such sector contains a unique prepole. Let P; = P;(\)
denote the prepole sector bounded by the critical point rays through c¢; and
cj+1, and let p; = p;(A) denote the unique prepole that lies in P;. An easy
computation shows that F, maps each P; univalently onto the complement
of the two critical value rays in C. Henceforth, we denote the image of ¢y by
vy, 80 we have F)(cy) = vy whereas F)(cop11) = —vy for each k. (Note that
the notation c¢; and p; becomes ambiguous in the special case where A = 1, 2;
however, we will never specifically deal with these special cases.)

Recall that the Julia set J(F)) for the rational map F) has several equiv-
alent characterizations. It is known that the Julia set is the closure of the
set of repelling periodic points as well as the boundary of the set of points
whose orbits tend to oo [9]. The complement of the Julia set is called the
Fatou set.

There are several symmetries in the dynamical plane. First let v =
exp(mi/n). Then we have F\(vz) = —F\(2), so, as above, either the or-
bits of z and vz coincide after two iterations (when n is even), or else they
behave symmetrically under z — —z (when n is odd). In either event, the

dynamical plane and the Julia set both possess 2n-fold symmetry, as do



By and Ty. Let Hy(z) be one of the n involutions given by A'/"/z. Then
F\(Hx(2)) = Fa(%2), so the dynamical plane and Julia set are also symmetric
under each Hy. Note that Hy(B)) = T\.

The following result is proved in [5].

Theorem (The Escape Trichotomy). Let Fx(z) = 2™ + /2" and consider
the orbit of v,.

1. If vy lies in By, then J(F)) is a Cantor set;

2. Ifvy lies in T\, then J(F)) is a Cantor set of simple closed curves, each

of which surrounds the origin;
8. If F¥(vy) lies in Ty where k > 1, then J(F)) is a Sierpinski curve.

Finally, if vy does not lie in either By or T, then J(F)\) is a connected set.

We remark that case 2 of the above result was proved by McMullen [8].
This part of the Theorem does not hold if n =1 or n = 2; this is one of the
reasons we restrict attention in this paper to the case n > 3.

A Sierpinski curve is any planar set that is homeomorphic to the well-
known fractal called the Sierpinski carpet. By a result of Whyburn [12], there
is a topological characterization of such sets: any planar set that is compact,
connected, locally connected, nowhere dense, and has the property that any
pair of complementary domains are bounded by simple closed curves that
are pairwise disjoint is known to be homeomorphic to the Sierpinski carpet.
A Sierpinski curve also has the interesting property that it is a universal
plane continuum in the sense that it contains a homeomorphic copy of any
compact, connected, one-dimensional planar set.

We turn now to the parameter plane for these families, i.e., the A-plane.

There are some different symmetries in the parameter planes for these maps.



Let w = exp(27/(n — 1)). Then the parameter plane is easily seen to be

symmetric under the maps

1. A=
2. A= wA;
3. A = w.

In particular, the parameter plane can be separated into n — 1 symmetry

sectors of the form
2m <Arg\ < M
n—1 n—1

Because of the Escape Trichotomy, the parameter plane for F) (the -
plane) divides into three distinct regions. Let £ be the set of parameters for
which vy € By so J(F)) is a Cantor set. We call £ the Cantor set locus. As
in the case of the Mandelbrot set and quadratic polynomials, there is a well
defined Bottcher coordinate ® defined on L. It is known that ® : £ — C—D
is an analytic homeomorphism and that the preimages of all rational rays in
C — D land on a unique point in the boundary of £ (see [10]).

Let M denote the set of parameters for which vy, € Ty; M is called the
McMullen domain. It is known that M is an open disk punctured at the
origin and bounded by a simple closed curve [1].

Let C denote the complement of £ U M. C is called the connectedness
locus since J(F)) is a connected set if A € C. It is known that C contains
precisely (2n)¥=3(n — 1) Sierpinski holes with escape time k > 3 [2], [11].
These are open disks in C in which each corresponding map has the property
that the critical orbit lands in B, at iteration k or, equivalently, the orbit of
the critical value lands in 7} at iteration £ — 2. See Figure 3. There is also

a Bottcher coordinate on each Sierpinski hole. Let & be a Sierpinski hole

with escape time k so that F} *(vy) € Ty. Fix a choice of the involution



H)y. Then the Bottcher coordinate on S is given by ¥ : § — C — D where
U(N) = o (HA(F¥2(vy))). See [2], [11].

Figure 3: The parameter plane when n = 4. The open disks marked S* are
the Sierpinski holes with escape time 3.

In Figure 3, there are three clearly visible copies of the Mandelbrot set.
Indeed, it is known that there are n — 1 copies of the Mandelbrot set that
straddle the rays given by Arg A = sw” for s > 0 [3]. These sets are called
the principal Mandelbrot sets in the parameter plane. The cusps of the main
cardioids of these sets all lie on the boundary of £ while the tips of the
tails of these sets (i.e., the parameters corresponding to ¢ = —2 in the usual
Mandelbrot set for z? + ¢) all lie in the boundary of M. In fact, there are
infinitely many other copies of the Mandelbrot set in C [2].

2 Cantor Webs

In this section we define a set S, C R? for each k& > 2 together with a specific
dynamical system defined on Sy. A Cantor k-web will then be any set that



is homeomorphic to Si. The set Sy will consist of a Cantor set portion on
which there is defined a natural one-sided shift map on 2k symbols, together
with another portion that is a countable union of simply connected open sets.
The union of both portions of Sy will be a connected set that is neither open
nor closed.

For simplicity, we begin with the case £ = 2. Let U be the closed unit
square in the plane. Consider the four closed subsquares of sidelength 1/3
and that touch one of the corners of U. Call these subsquares Uy, ... ,Us
with Uy touching the lower right corner of U and the other subsquares ar-
ranged around the square in the clockwise direction. We shall construct an
orientation-preserving map F' defined on the U; that expands each subsquare
by a factor of 3 and maps it onto U. The map F' is defined as follows: on
Uy and U,, F takes the top and bottom as well as the left and right sides of
Uj to the corresponding sides of U. Thus F has fixed points at 1 and . On
U, and Us, F' first maps these subsquares to U as in the previous case, but
then a half-turn rotation is applied. So F' has a 2-cycle at 0 and 1 + 4. A
computation shows that F'is given by z +— 32 —2 on Uy; 2 — =32+ 1+1
on Uy; 2+ 32— 2t on Uy; and 2 — —32 + 3 + 3¢ on Us.

Let A denote the set of points whose orbits remain in U U; for all iterations
of F'. Standard arguments from planar dynamics imply that A is a Cantor set
and F'| A is conjugate to the one-sided shift on the four symbols {0, ... ,3}.
Indeed, in this case A is just the product of a pair of middle-third Cantor
sets, one on the z-axis and one on the y-axis in U. The set A is the Cantor
set portion of Ss.

We call the pair of horizontal lines y = 0 and y = 1 in U the horizontal
boundary of U. Note that we can compute explicitly the symbol sequences
that correspond to points that lie in the intersection of the horizontal bound-

ary of U (or any of its preimages) and the Cantor set A. For example, if a



point in A lies in the horizontal boundary of U, then in the corresponding
sequence a 0 may only be followed by a 0 or 1 while a 1 may only be followed
by a 2 or 3. Similarly, 2 may only be followed by 2 or 3, while 3 may only
be followed by 0 or 1. That is, the intersection of the horizontal boundary
of U with A consists of all itineraries generated by the subshift of finite type

whose transition matrix is

1 100
0011
0 011
1 100

Points in the preimage of the boundary of U therefore have itineraries that
end in a sequence generated by this subshift.

To complete the construction of Sy, we add in certain open horizontal
“middle-third” rectangles to A. First let Ry be the open rectangle given by
0<z<l1, 1/3<y<2/3. Let Ry be the preimage of Ry under F, so R,
is the union of four horizontal “middle-thirds” rectangles, one in each Uj.
Then, for each j > 1, let R; denote the preimage of ; ; under F'. So R;
consists of 47 open horizontal rectangles. Finally, we let S, be the union of
A together with all of the R;’s.

To define the k-web when k > 2, we put 2k subsquares Uy, ... ,Us;_1 into
the unit square as follows. Each of the subsquares has sidelength 1/(k + 1)
and Uy, ... ,U,_; are arranged equally spaced along the bottom boundary
of U with Uy containing 1 on the z-axis and Uy ; containing the origin.
Ug,...,Uy_, are similarly arranged along the top boundary of U with Uy
containing ¢ and Uy, ; containing 1 +¢. The map F' is now just expansion
by a factor of k + 1 with the boundaries of the U; mapped by F' as follows.
The boundaries of the subsquares Uy, Us, Uy, etc. are mapped to the cor-
responding boundaries of the unit square S, while the upper and lower as

well as the right and left boundaries of the other subsquares are interchanged

9



with those of S. Let X be the space of one-sided infinite sequences on the 2k
symbols {0, ... ,2k}. Then, as above, the set of points whose orbits remain
in the U; for all iterations is a Cantor set A and F'|A is conjugate to the
one-sided shift on X. Then the open rectangles R; are defined exactly as in
the case k = 2: Ry is a single open horizontal rectangle given by 0 < x <1
and 1/k <y <1—1/k and the R; are the j*" preimages of Ry. As before, A
is a product of a pair of Cantor sets, one on the z-axis and one on the y-axis.

Note that certain points in A lie in the boundaries of the Ry and U; we
call the set of such points the unburied portion of A. All other points in
A lie in the buried portion of A. Using the symbolic dynamics as above,
we compute that the set of points lying in the intersection of the horizontal
boundary of U and A are again generated by a subshift of finite type whose
2k x 2k transition matrix has rows that consist of n consecutive 0’s and 1’s
in the form (0...01...1) or (1...10...0). For example, when k = 3, the

transition matrix is

111000
0001T171
111000
111000
0001T1T1
111000

We denote by I' the subset of ¥ consisting of sequences determined by this
subshift.

3 Cantor Webs in the Dynamical Plane

In this section we prove that there is a Cantor (n—1)-web A, in the dynamical
plane of Fy(z) = 2" 4+ A/z" for each A in the connectedness locus and that
A, moves holomorphically with A as A varies in each symmetry sector. The

Cantor set portion of the web will lie in J(F)) while the adjoined open disks
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will consist of certain preimages of B).
Lemma. Suppose |\ < 2. If |z| > 3/2, then z € B,.

Proof: If |z| > 3/2, then we have

By gntl 3\
[Fa(2)] = [2]" = T2 2 o' = > " = 1> (5 2] = [2].

Since ((3/2)" ' —1) > 1 forn > 3, Ff(z) — oo and it follows that the region
|z| > 3/2 lies in B,.
O

Let v denote the circle of radius 2 in the dynamical plane, and let p =
px = Hy (7). By the previous Lemma, F)\ maps both v and p, strictly outside
of . It follows that ~y lies in By and p lies in Ty (provided A ¢ L; otherwise,
there is no trap door and p C B)).

Let S denote the portion of the symmetry sector in the parameter plane
defined by |A|] < 2 and 0 < ArgA < 27/(n — 1). We first construct A,
for each A € § N C. Then we extend the construction to C N R". By the
symmetry in the parameter plane, this produces a Cantor (n — 1)-web for
each A\ € C.

For A\ € S, consider the 2n prepole sectors Py,..., P,_1. Since 0 <
Arg A < 27/(n — 1), we have that
Arg A s

2g < n—1

0 <Arguvy, =

If 2 lies in the prepole sector P,,_; that is bounded by the critical point rays

through ¢y and c¢y,_1, then we also have

Arg A Arg A
Argey = AlgA <Argz < = + T_ Argeo, .
2n n n
But
Arg A Arg) Arg A
'8 < A _ Arguy < 8 T
2n 2 2n n

11



since A € S, so the critical value vy always lies in P, _; for these parameters.
Similarly, —v, lies in P,_; for each A € §. In particular, the critical value
rays also lie in these two sectors. So we exclude from consideration the two
sectors P,_; and P»,_; for the moment.

Consider the remaining prepole sectors Py, ..., P, o and P,,... , Py, .
Let I; = I;(\) denote the region in P; lying between v and p,. By construc-
tion, each I; is open and simply connected. Let Z, denote the union of the
I; where again j = 0,...,n—2,n,...,2n — 2. Let A, be the set of points
whose orbits remain in 7, for all iterations of F. A, will be the Cantor set

portion of the web in the dynamical plane.

Proposition. The set Ay is homeomorphic to a Cantor set for each A\ € S.
F\| Ay is conjugate to the shift on the 2n—2 symbols 0,... ,n—2,n,... ,2n—
2. The sets Ay vary analytically with A € S.

Proof: For each A € S, F)\ maps the boundary curves v and pu, strictly
outside 7, and hence outside Z,. Moreover, F\ maps the critical point ray
boundaries of each of the I; in Z, to the critical value rays, both of which lie
in P,_; U P,,_» for each A and hence also outside Z,. Therefore it follows
that F\ maps each I; univalently onto a region that completely covers each
other Ij, (except k = n — 1 or k = 2n — 1). Standard arguments from
complex dynamics then give that A, is a Cantor set with F) | A conjugate
to the one-sided shift map on the 2(n—1) symbols 0,... ,n—2,n,...,2n—2.
Since the I; vary analytically with A, we have that the points in A, also vary
analytically with A.
|
Now let X be the space of one-sided sequences consisting of the symbols
0,...,mn—2,n,...,2n—2. Since the symbolic dynamics on Ay and A C S5,,_;
are the same (up to the slightly different names of the symbols), the set A,

is the Cantor set portion of the web in the dynamical plane. To complete
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the construction of Ay, we assume further that A € S N C. Hence, for each
such A\, B, and T, are disjoint open disks, although the boundaries of B,
and T may intersect. This happens, for example, for certain parameters on
the boundary of C; see [7]. In particular, T} lies strictly inside .

We next adjoin the open disk T to A,. Then, there is a unique prepole
inside each I;. Consider the 2n — 2 preimages of T\ that surround these
prepoles. Since the critical values do not lie in T}, it follows that each of
these preimages is an open disk. So we adjoin these 2n — 2 open disks to
Ay U Ty. We now continue inductively. Since each I; is mapped univalently
over all the other I;’s, it follows that there are exactly 2n — 2 points in each
I; that are mapped to the 2n —2 prepoles in Z,. These points are surrounded
by open disks that are mapped to Ty by FZ. So we adjoin these (2n — 2)?
second preimages of T to the set. Continuing in this fashion, we produce a
set that is the union of A, and a countable collection of open disks. This is

the set A,.

Proposition. If A € S, the set Ay is homeomorphic to the Cantor (n — 1)-

web, and the homeomorphism depends analytically on .

Proof: We only need to show that By, T), and the preimages of T\ meet
the Cantor set A, in points with the appropriate itineraries under F). First
consider the boundary of By, 0B,. Note that each I; contains a subset of
0B),. There may be several components of the set I; N JB,, but we claim
that there is a unique component of this set whose closure meets both of the
straight line boundaries of I;. If there were two or more such components,
then by symmetry, the same would be true in each of the sets I;. Since each
of these components is then stretched by F\ over n — 1 of the I;’s, it follows
that there would be more than one point sharing the same itinerary in Aj,
and this cannot happen. So let 3; denote this component of I; N dB,. By
construction of the prepole sectors, we have that F)\(5y) D fo U --- U B2

13



whereas F)\(81) D B, U -+ P, 9. Using symmetry, F)\(fy) (resp. Fx(51))
cannot contain points in 3; where n < j < 2n —2 (resp. 0 < j < n — 1),
for otherwise there would be too many preimages of points in dB, in this

boundary. Proceeding clockwise around 0B,, we have

Fy(B25) D BoU---UPBuy
Fx(Bojr1) D BpU---Pons

for each 7 <n — 1. Forn < j < 2n — 2 we have

Fx(Bon—2) D BoU---UpBy
F)\(BZn—?:) 0 577, Uu--- 5271,—2

and this pattern continues alternately as j decreases from 2n — 2 to n. Thus,
the set of points in A, that also lie in dB) can be coded by the subshift of
finite type on 2n— 2 symbols whose transition matrix has rows that contain n
I’s and n 0’s and, as before, are of the form (0...01...1) or (1...10...0).
But, as shown in the previous section, this is precisely the same set of points
that lie in the upper and lower boundaries of the unit square U in the model
web S,, 1. Taking preimages of these sets of points in 07 and its preimages.
yields the points on the boundaries of the rectangles Ry. This proves the
result in case A € S.
(|
We now extend the construction of A, to the boundaries of the symmetry
sectors. To accomplish this, it suffices by symmetry to consider the case
where A € Rt N C. For such parameters, we still have the situation where
each /; is mapped univalently over all of the other I},’s (excluding, as before,
I, 1 and Iy, ;). However, not all sequences in ¥ correspond now to single

points: there are three special sequences in ¥ that correspond to multiple
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points in the dynamical plane. Consequently, any preimage of these special
sequences also corresponds to multiple points. The first case is that any point
on RT whose orbit is bounded corresponds to the sequence s = 0 and hence
there may be multiple points in I; with this property. Also, any point on
R~ whose orbit is bounded has itinerary 7 (if n is odd) or n0 (if n is even).
This latter dichotomy results from the fact that R™ is invariant if n is odd,
whereas R™ is mapped into R if n is even. As a result, any sequence that
ends in one of these three sequences corresponds to more than one point in
the dynamical plane. However, we may choose a particular point that has
such an itinerary in a natural manner and add this point to Ay. Then we
can show that this extended Ay with A € RT N C is actually the limit of any
other such set as the parameter approaches A.

Given A € § and a sequence s € X, let z; = z,(A\) be the point in A that
corresponds to s. As we have shown, there is a unique such point in A, for

each A € §. Moreover, z,()) varies analytically with A.

Lemma. For \* € Rt N C, let g\~ be the unique fized point of F\- that lies
in 0By~ N RY. Let {\;} be a sequence of parameters in S such that \j — \*

as j — 00. Then zg(Nj) = qx=-

Proof: Note that there is only one parameter in Rt N C for which ¢y~ is
parabolic, namely, the parameter that corresponds to the cusp of the main
cardioid of the Mandelbrot set lying along R*. So we first assume that we
are not in this case, i.e., that ¢ - is a repelling fixed point. Choose ¢ > 0
and let B, be the disk of radius € centered at ¢,-. We may assume that € is
small enough so that F)« expands B, univalently onto a region that properly
contains B, so ¢~ is the unique fixed point in this disk. Now we have that
F{.(gx-) > 1, so the portion of this disk below Rt (that is, below the critical
point ray for F)-) is mapped over itself.

There exists 0 > 0 such that, if |\ — A*| < 4, then F) also expands B,

15



univalently over a region that strictly contains B.. Therefore F) also has a
unique fixed point in B.. If A lies in &, then we claim that this fixed point
is 25 (A). Indeed, if we look at the portion of B, that lies below the critical
point ray through c,, then this region is mapped univalently over itself by
F)\. This follows since, when A\ € S, the critical value ray lies strictly above
the critical point ray in the upper half plane and the lower portion of B, is
mapped below the critical value ray. Hence the fixed point in B, for such a
map lies in the corresponding set Iy(\), and so this is the fixed point z5(\).
Therefore, as € — 0, we have z5(\) — ¢x-.
If g\ is the parabolic fixed point along RT, the same result holds by
continuity with respect to .
(|
Similar arguments also hold in the case of the sequences 7 or n0, so, as
above, we can choose a unique point in the dynamical plane for F\- that is
the limit of zz () or 2,5 (A) as A — A* in the other exceptional cases. With
a slight abuse of notation, we call these points z7 (\) and z,5(A\) even when
A € Rt N C. Extending this to preimages of such points, we see that we can
extend the definition of Ay continuously to any parameter in Rt N C. This

completes the proof of the Theorem.

4 Cantor Webs in the Parameter Plane

Our goal in this section is to prove that there is a collection of Cantor (n—1)-
webs in the parameter plane for the family F)\(z) = 2" + \/z", one in each
of the n — 1 symmetry sectors. The open disks in these webs will be certain
Sierpinski holes in the symmetry sector, so any parameter in this portion of
the web corresponds to a map with a Sierpinski curve Julia set. The Cantor

set portion of these webs will consist of parameters for which F)(v,) lies in
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A,, i.e., in the corresponding Cantor set portion of the web in the dynamical
plane. In the following section, we shall use the symbolic dynamics associated
to the itineraries of the critical orbits to identify the different types of Julia
sets that correspond to these types of parameters.

As in the previous section, it suffices (with three exceptions) to restrict
attention to A € §. For such values of the parameter we have shown that
each region I; in the dynamical plane is mapped univalently over the set 7,
which is the union of Iy,... , I, o, 1I,,...,Is, 5. Note that F) also takes the
two omitted regions I,, | and Iy, ; univalently over Z,. As earlier, given any
itinerary s = (sps152...) € X, let z,(A\) denote the corresponding point in
A,. Since F) takes Iy, ; univalently over Z,, there is a unique preimage of
each z;(A) that lies in Iy, ;. Call this preimage wy(A), so Fy(ws(A)) = 2z5(N).
(Note that the itinerary of wy(\) is not s; rather, it is 2n — 1, s, but we will
not use this fact.) Hence we have an analytic function A — wg(A) that takes
S into the union of all possible sets of the form Iy, ;(\) as A ranges over S.
If z € I, 1(\) and A € S, we have

Arg A Arg A
0 < Arg CU()\) == rg < ArgZ < Arg CZn—l()\) = rg + E < T .
2n 2n n n-—1

Let
R={z]0<]z] <2, 0<Argz <7w/(n—1)},

i.e., R is exactly one-half of the sector S. So the analytic function A — w,(\)
takes § into R.

We have another analytic function taking & into the dynamical plane.
Let G()\) = vy where vy = 2v/X lies in the upper half plane. So G takes S

univalently over the region
{z]0<|2] <2V2, 0 < Argz < /(n—1)}
which contains R. So we can consider the function L,(\) = G7H(w,(\)) =

17



(ws(A))?/4 which maps S into itself. The following result gives the Cantor
set portion of the web in the symmetry region 0 < Arg A < 27/(n — 1).

Proposition. For each sequence s € ¥, there is a unique A = \y € S such
that Lg(A\s) = s, i.e., a critical value of Fy, lands on the point ws(As) € Ay, .

Moreover, \s varies continuously with s.

As we shall show, for all but three sequences in X, the map L, takes S
into a compact subset of itself, and so by the Schwarz Lemma, there is a
unique fixed point in S for this map. This fixed point is A\;. Later we shall
deal with the three exceptional sequences for which A lies on the boundary
of S.

To prove the result we need the following lemmas.

Lemma. Suppose

n 1
ny
|)\|2 S on+2°
If |z| < |vpl, then F)\(z) € Bi.

Proof: Since |A| < 1, we have

n n 1
2" Az < 2"|\2 7 < T
If |z| < |va| = 2|A|"/?, then
Al x 1
F > —— — 2" > ——s— —2"|A|2 >4 — -
B 2 g = Bl 2 oy~ 28 24— g

So |F)\(z)| > 2 and therefore F\(z) € B,.

Lemma. Suppose s € ¥ satisfies
1. s #£0;
2. s#n—2 (if n is even);

18



3. s#2n—2,n—2 (if n is odd).

Then {ws(X) | A € S} is contained inside a compact subset of R U {0}.

Proof: To prove the result, we need to show that ws()) cannot accumulate
on the boundary of R (except at the origin) as A varies in S.

For each A € S, the circle of radius 3/2 centered at the origin is contained
in B), as we showed in the previous section. Hence we have |wg()\)| < 3/2
and so ws(\) cannot accumulate on the outer circular boundary of R given
by |z| = 2.

For each A € S, wy(A) lies in the sector

Arg\ w

Arg A\
'8 < Argz < + —.
2n 2n n

Therefore w,(\) can accumulate on the straight line boundaries of R only if

Arg A — 0 or Arg A\ — 27 /(n — 1), since

2m +7r_ m
(n—1)2n) n n-1

So suppose first that Arg A = 0. Then the positive real axis is invariant
under F. Then, as in the previous section, if we were to assign an itinerary
to such a point, that itinerary would only contain the digits 0 (and/or 2n—1
since this point lies on the intersection of the boundaries of Iy and I, ;).
So let s € ¥ be such that s # 0. Say s = s35182... where s; = 0 for
j=0,...,n—1but s, # 0. Let I, ,, be the set of points in I, whose
itinerary begins with sy...s,. Then, since Arg A = 0 but s, # 0,2n — 1,
the closure of the set Iy, . (A\) is bounded away from the real axis. It then
follows that wy(A) is bounded away from this axis as A varies in S.

As Arg A\ — 0, note that the other straight line boundary of Iy, 1(A)
approaches a portion of the ray Argz = 7/2n, which is properly contained

in the set R, so there is no problem in this case.
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Now suppose that ArgA — 27/(n — 1). In this case the situation is
somewhat different. If Arg\ = 27/(n — 1) and Argz = 7/(n — 1), then
Arg F)\(z) = nm/(n—1). But one checks easily that the ray Arg z = n7w/(n—1)
is invariant under F) if n is even. If n is odd, then this ray is interchanged
with its negative by F}.

Now the ray Arg z = nnw/(n — 1) forms part of the boundary of the sets
I, 5 and I, ; when Arg A = 27 /(n — 1), while the negative of this ray is
part of the boundary of I, 5 and I, ;. Therefore points on the ray Argz =
nm/(n — 1) have itinerary in X given by n — 2 (when n is even) or itinerary
n—2,2n — 2 (when n is odd). So when n is odd, points on the negative of
this ray have itinerary 2n — 2, n — 2. Hence, arguing exactly as in the case
Arg A = 0, only when s =n —2 (n even) or s =2n — 2, n— 2 (n odd) does
ws(A) accumulate on the straight line boundary of R as Arg A — 27/(n—1).

(|

We now complete the proof of the Proposition. The result follows im-
mediately from the Schwarz Lemma provided that wy(A) is contained in a
compact subset of R for all s € §. Thus there are two situations that we
must address. The first is the possibility that, for certain sequences s, wy(\)
may accumulate at the origin, and the second is what happens in the case of
the three special itineraries listed above.

So suppose first that s is not one of the exceptional sequences 0, n — 2
with n even, or 2n — 2, n — 2 with n odd. Recall that L, : S — S is given
by Ly(A\) = G7(wy(\)) and is analytic on S. By the previous Lemma, L,(S)
is contained in a compact subset of S U {0}. We claim that L has a fixed
point in the interior of S. By the earlier Lemma, if [A|27! < (1/2)"*2, then
we have |wg(A)| > |vy| since all points with |z| < |v,| are mapped into B,.
Hence |Lg(A)| > |A| for these values of \. So L, maps the portion of S

(n+2)
outside the circle of radius (1/2)271—+12

into a compact subset of this region.
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So by the Schwarz Lemma, there is a fixed point in this region, and hence
this must be the unique fixed point for L, in all of S. Moreover, since L
varies continuously with s, the parameter A, also varies continuously with s.
This proves the result except in the case of the three exceptional sequences.
Now suppose that s = 0. Let A be the parameter value that lies at the
point of intersection of RT with the boundary of the McMullen domain. This
parameter is the tip of the “tail” of the Mandelbrot set lying along R*, i.e.,
the parameter that corresponds to ¢ = —2 in the standard Mandelbrot set
for 22 + ¢. Consequently, Fj(v;) is the fixed point that lies in dBj, namely
the point we called z()) in the previous section. So, in terms of the above
notation, v; lands on wg(\).
By the results in [1], given any point in 07\ with prescribed itinerary
s, there is a unique A for which v, lands on the point in 07\ with this
itinerary. Furthermore, the boundary of the McMullen domain is a simple
closed curve that may be parameterized continuously by the parameters with
the corresponding itineraries. Hence it follows that \ is the unique parameter
for which v5 = wg(A). Moreover, for itineraries s close to 0, A, is close
to A. This extends the Cantor set portion of the web in parameter space
to A. The extension to the other two special parameters is similar: both
correspond to points at the tip of the tail of the Mandelbrot set lying along
Arg A = 27/(n — 1). This completes the proof of the Proposition.
(|
Let A be the Cantor set portion of the web in the parameter plane that
consists of the parameters A, for s € ¥. Recall that I' C ¥ is the set of
all sequences corresponding to points in the dynamical plane that lie in the
boundary of B,, i.e., the subset corresponding to allowable sequences for the

subshift of finite type discussed earlier.

Proposition. Suppose s € I'. Then A\, lies in either OL or OM.
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Proof: First note that, if s is one of the three special sequences above, then
we have already shown that Ay € OM. For other values of s, it suffices to
prove that there is a parameter A arbitrarily close to A, for which F5(vy) lies
in B;. Toward that end, since periodic sequences are dense in I', we may
assume that s is a periodic sequence. Then z,(\;) is a periodic point lying
in 0B,,. Hence there is an external ray 7;()\s) defined for ¢ > 1 and having
rational angle in B, that lands at z,(\s), i.e., that satisfies v;(As) = 25(\s).
Now for A in a neighborhood of A, we have that the function A — z,(\)
is analytic. As above, there is an external ray 7;(\) that also lands at z4(\)
and, for fixed ¢, 7;()) is also analytic in A. Now A, is a root of the function
of A given by z,(A\) — v). Hence, for ¢ close enough to 1, there is a nearby
root of the function v(\) — vx. But this root is a A-value for which v, lies
on an external ray By, and this therefore yields the nearby parameter A with
the required properties.
|
We will denote the Cantor web that lies in the symmetry sector S by
A. Thus the set of parameters Ay with s € [' gives the portion of A that
corresponds to points in the model web on the boundary of the unit square.
To complete the construction of A, we adjoin certain Sierpinski holes to A
exactly as we added certain preimages of B, to A, to obtain the Cantor web
in the dynamical plane. To begin this construction, let py = (—)*/?" be the
unique prepole in Iy, ;. Consider the function K(\) = G~'(p,) defined on

S. We have
(X"

4
and a straightforward computation shows that K has a fixed point at

, oy (1)
N = (=)o (=

K()) =

which lies in §. So we have vy = py. Therefore X lies at the center of a
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Sierpinski hole with escape time 3. So we adjoin this open disk to the Cantor
set A. This corresponds to adding the rectangle Ry in the construction of the
model Cantor web S,,_;. As above, parameters of the form A\, with s = syt
where sj is one of the allowed digits in a sequence in ¥ and ¢ € I" lie on the
boundary of this Sierpinski hole.

For the other Sierpinski holes, let t = ty...t,_1 be a finite sequence
where the digits ¢; are as usual drawn from 0,... ,n —2,n,...,2n — 2. Let
pi(\) be the point in I, that satisfies F} (p,()\)) € Ii; for j =0,...,n—1
and F7(pi(A)) = 0, i.e., the orbit of p;(\) stays in Z, until landing on 0 at
iteration n. Let g;(A\) be the preimage of p;(\) that lies in Iy, ;.

Proposition. Suppose A € C N'S. For each allowable finite sequence t =

to, ... st 1, there exists a unique Ay such that q(\;) = vy,.

Proof: The proof is essentially the same as in the case of the parameter
values in A. Let K; : & — S be given by G *(¢;()\)). There are no special
sequences in this case, since the point ¢;(\) lies in a compact subset of R U
{0}. This follows from the fact that, when Arg A = 0 or 27/(n—1), there are
no points on the corresponding boundary lines that are eventually mapped
to the origin. Hence, by the Schwarz Lemma, there exists a unique fixed
point for K, and this parameter is \;.
|
This completes the construction of the Cantor web A C §. By symmetry,
there is a copy of A in each of the other symmetry sectors. In fact, we can
combine all of these Cantor webs with the McMullen domain to produce a

single larger Cantor web in the parameter plane.
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5 Julia Sets Corresponding to Parameters in
the Cantor Web

In this section we provide a classification of the types of Julia sets that
occur for parameters lying in the Cantor web in the parameter plane. Before
turning to these sets, we first show that the open set C— B is a connected and
simply connected set for any parameter in C — £. Note that this situation is
very different from the corresponding situation in the Mandelbrot set: in that
case, for Julia sets such as the Douady rabbit or the basilica, the complement
of the closure of the basin of oo consists of infinitely many disjoint open disks.
Then we use this fact to show that, for any parameter in the Cantor web,

the boundary of B, is always a simple closed curve.

Proposition. If A\ € C UM, then the open set C — B, is connected and

stmply connected.

Proof: Let IV, denote the open connected component of C— B, that contains
0. Note that W} contains all of T since the boundary of B, does not meet

Ty. Hence the closure of W, contains 0T}.
Lemma. Wy is symmetric under z — vz where v = exp(in/n).

Proof: Let X denote the set of points z in W, for which vz also lies in
Wy. Note that X is an open subset of W,. Note also that X D T since
T’ possesses 2n-fold symmetry and lies in Wy. Hence X is nonempty. Now
suppose that X # W,. Then there must be a point z; € dX N Wj,. So
z1 € Wy but vz; € Wy. Therefore vz, lies in 0W,, which is contained in 0B,
Since vz; € 0B, and 0B, has 2n-fold symmetry we have that z; € 0B,,

contradicting our assumption that z; € Wj.

Lemma. All 2n preimages of any point in Wy lie in Wy.
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Proof: Since Hy(By) = Ty and Ty C Wy, we have Hy(0B)) C Wy. Therefore
H,(0W,) € Wy and so Hy maps C — Wy, into W,

Now H, maps prepoles to prepoles. If one of the prepoles lies in C — W,
then its image under H) lies in W,. This cannot occur since, by the previous
lemma, Wy has 2n-fold symmetry. Hence each prepole lies in W. In fact,
each prepole must lie in W} since 0W,, is mapped to 0B, and 0 € 0B,.

It follows that all 2n preimages of 0 lie in W,. Therefore the entire
set F), '(W,) is contained in W, for, otherwise, there would be points in
oW, C 0B, that are mapped into Wy. This cannot happen since 0B, is
invariant.

(|

We now complete the proof that C — By is connected and simply con-
nected. It suffices to show that W is the only component of C — By. By the
above, all preimages of a point in Wy lie in Wj. Hence all preimages of any
point in W, must lie in W,. But points in W} lie in the Julia set, and it is
known that the the union of preimages of such a point under F¥ for all  is
dense in the Julia set. Hence it follows that the entire Julia set is contained
in Wy. But then W, = 0B,, and the result follows.

(|

As a remark, the fact that there is only one component in the complement
of B, does not preclude the existence of quadratic-like filled Julia sets with
infinitely many pinch points along the boundary. These sets arise when the
parameter is drawn from any of the Mandelbrot sets in C. But these sets are

properly contained in W.

Corollary. For each \ € A, the Julia set of Fy is locally connected and the

boundary of By is a simple closed curve.

Proof: If A lies in any of the Sierpinski holes in A, the critical orbits tend

to oo. If A lies in the Cantor set portion of A, then the critical orbits land
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in the Cantor set portion of A, after two iterations of F). In either case
we have that the critical orbit is non-recurrent. Furthermore, there are no
parabolic orbits for F), since the fate of all of the critical orbits is accounted
for. It follows that F) is semi-hyperbolic. By the results in [13], J(F)) is
locally connected. Therefore 0B, = 0W) is also locally connected. Since the
complement of 9B, in C consists of two open, disjoint, and simply connected
regions, namely B, and W}, and their common boundary 0B, is locally
connected, it follows that 0B, is a simple closed curve.

(|

We finally turn attention to the different types of Julia sets that occur
for parameters in A. For A € A, we have that J(F)) is compact, connected,
locally connected, and nowhere dense. Also, all of the complementary do-
mains are preimages of B, and are therefore bounded by simple closed curves.
However, certain of these curves may touch each other, so the Julia set is not
always a Sierpinski curve.

By the Escape Trichotomy, if A resides in one of the Sierpinski holes in A,
then J(F)) is a Sierpinski curve. If A resides in the Cantor set portion of A,
then there are four possible types of Julia sets. First, if A lies in the portion
of A'in 0L, then J(F)) is a generalized Sierpinski gasket. See Figure 4. Here
the critical points lie at the intersection of the boundaries of T, and B,. See
[7] for details about these types of sets.

If A lies in OM, then the preimage of 07), is a chain of 2n simple closed
curves each of which meets two other such curves at adjacent critical points.
Equivalently, 0T), is bounded by a pair of concentric simple closed curves that
meet each other at 2n points. Then the preimage of this chain is a pair of
chains, each with 2n? simple closed curves that meet two other such curves.
The preimage of each of these chains is a similar chain, but this time there

are 2n® simple closed curves in the chain. And so on. This yields countably
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Figure 4: Generalized Sierpinski gasket Julia sets drawn from the family
2% + \/2?. Similar Julia sets occur in the families with n > 2.

many chains in J(F)). As in the McMullen domain, however, there are
uncountably many other components in J(F)). Each of these components
are buried components that are simple closed curves surrounding the origin
and without pinches. We call this type of Julia set a pinched Cantor set of
circles. See Figure 5.

When A lies on the boundaries of any of the Sierpinski holes in A, then
J(F\) is a hybrid Sierpinski curve. In these sets, all of the complementary
domains are bounded by simple closed curves, but infinitely many of them
touch exactly one other such boundary curve, while the rest (infinitely many)
do not meet other bounding curves. See Figure 6.

This accounts for all of the non-buried parameters in the Cantor set
portion of A. Finally, if A is a buried parameter (i.e., not on the boundaries
of M, L, or any Sierpinski hole), then J(F)) is again a Sierpinski curve.
However, the maps on these Julia sets are, unlike those drawn from Sierpinski

holes, structurally unstable. Arbitrarily close to any such parameter are
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Figure 5: A Julia set that is a pinched Cantor set of circles (drawn from the
family 23 + \/23).

infinitely many other parameters whose maps are all dynamically distinct
from one another. See [4].
Many thanks to the referee for suggesting a number of substantial im-

provements to this paper.
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