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Our goal in this paper is to des
ribe a new type of stru
ture that existsin both the parameter plane and dynami
al planes of the families of rationalmaps given by F�(z) = zn + �znwhere z 2 C and n � 3. Called Cantor webs, these sets are homeomorphi
to a model set 
onstru
ted as follows. Start with an open disk in the plane.Surround this disk with k smaller open disks that are symmetri
ally arrangedaround the original disk. Then surround ea
h of these k disks with k smallerdisks again symmetri
ally arranged and 
ontinue ad in�nitum. These disksare arranged so that they 
an then be 
onne
ted by a Cantor set.This 
onstru
tion generalizes the 
onstru
tion of a Cantor ne
kla
e thatwas des
ribed in [4℄. A Cantor ne
kla
e is a planar set obtained as follows.Start with the Cantor middle-thirds set lying on the x-axis in the plane.Repla
e ea
h removed open interval with an open disk whose diameter isthe length of the removed interval. The union of the Cantor set and these
ountably many open disks is a Cantor ne
kla
e. So a Cantor ne
kla
e is aparti
ular example of a Cantor web when k = 2.In the dynami
al plane, the behavior of the map F� on the Cantor webis as follows. The Cantor set portion of the web is an invariant set on whi
hthe map is 
onjugate to a one-sided shift map on 2n� 2 symbols, while theopen disks 
onsist of points whose orbits eventually land in the immediatebasin of attra
tion of 1. Ea
h member of this family of maps for whi
h theJulia set is a 
onne
ted set possesses a homeomorphi
 
opy of this set, andea
h of these maps has the same dynami
s on these sets.In the parameter plane, the Cantor web is a 
olle
tion of parameters forwhi
h the 
orresponding map has a Julia set that, with 
ertain ex
eptions,is a Sierpinski 
urve. See Figures 1 and 2.1



Figure 1: The Julia set of F�(z) = z3 + 0:125=z3 and a magni�
ation illus-trating a Cantor web.1 PreliminariesLet F�(z) = zn + �=zn where � 2 C is a parameter and n � 3. The reasonfor 
hoosing n � 3 will be explained below. When jzj is large, F�(z) � zn,so F� has an immediate basin of attra
tion at 1 that we denote by B�. Asis well known [9℄, there is a B�ott
her 
oordinate �� that 
onjugates F� toz 7! zn in a neighborhood of 1.Ea
h F� also has a pole of order n at the origin; hen
e there is an openneighborhood of 0 that is mapped into B�. Now, either this neighborhood isdisjoint from the immediate basin B� or else this neighborhood is 
ontainedin B�. In the former 
ase, we denote the entire preimage of B� that 
ontainsthe origin by T�. We 
all this region the trap door sin
e any point z 62 B�but su
h that F k� (z) does lie in B� for some k > 0 has the property thatthere is a unique point on the orbit of z that lies in T�.Besides 0 and1, F� has 2n additional 
riti
al points 
� given by (
�)2n =�. However, F� has only two 
riti
al values given by v� = �2p�. In fa
t,there is only one free 
riti
al orbit for F� up to symmetry. For, if n is even,2



Figure 2: The parameter plane for the family F�(z) = z3 + �=z3 and amagni�
ation illustrating a Cantor web together with a further magni�
ationshowing a portion of the web.we have F�(2p�) = F�(�2p�), so ea
h of the 
riti
al orbits land on thesame orbit after two iterations. If n is odd, then we have F�(�z) = �F�(z),so the orbits of �2p� are always symmetri
 under z 7! �z.We 
all the straight rays given by t
� with t > 0 the 
riti
al point rays.Note that F�(t
�) = �1=2�tn + 1tn� ;so it follows that ea
h 
riti
al point ray is mapped two-to-one onto thestraight ray that extends from v� to 1. We 
all this ray the 
riti
al value3



ray.Ea
h F� also has 2n prepoles p� given by (p�)2n = ��, so F�(p�) = 0.The rays tp� with t > 0 are 
alled prepole rays. These rays are mapped one-to-one onto the entire line segment passing through �iv� and extending to1 in both dire
tions. Note that these lines are perpendi
ular to the 
riti
alvalue rays.For ea
h �, there is a unique 
riti
al point lying in the se
tor 0 � Arg z <�=n. Call this 
riti
al point 
0 = 
0(�). We denote the remaining 
riti
alpoints by 
j and order them in the 
lo
kwise dire
tion around the origin. We
all the open se
tor bounded by two adja
ent 
riti
al point rays a prepolese
tor sin
e ea
h su
h se
tor 
ontains a unique prepole. Let Pj = Pj(�)denote the prepole se
tor bounded by the 
riti
al point rays through 
j and
j+1, and let pj = pj(�) denote the unique prepole that lies in Pj. An easy
omputation shows that F� maps ea
h Pj univalently onto the 
omplementof the two 
riti
al value rays in C . Hen
eforth, we denote the image of 
0 byv�, so we have F�(
2k) = v� whereas F�(
2k+1) = �v� for ea
h k. (Note thatthe notation 
j and pj be
omes ambiguous in the spe
ial 
ase where � = 1; 2;however, we will never spe
i�
ally deal with these spe
ial 
ases.)Re
all that the Julia set J(F�) for the rational map F� has several equiv-alent 
hara
terizations. It is known that the Julia set is the 
losure of theset of repelling periodi
 points as well as the boundary of the set of pointswhose orbits tend to 1 [9℄. The 
omplement of the Julia set is 
alled theFatou set.There are several symmetries in the dynami
al plane. First let � =exp(�i=n). Then we have F�(�z) = �F�(z), so, as above, either the or-bits of z and �z 
oin
ide after two iterations (when n is even), or else theybehave symmetri
ally under z 7! �z (when n is odd). In either event, thedynami
al plane and the Julia set both possess 2n-fold symmetry, as do4



B� and T�. Let H�(z) be one of the n involutions given by �1=n=z. ThenF�(H�(z)) = F�(z), so the dynami
al plane and Julia set are also symmetri
under ea
h H�. Note that H�(B�) = T�.The following result is proved in [5℄.Theorem (The Es
ape Tri
hotomy). Let F�(z) = zn + �=zn and 
onsiderthe orbit of v�.1. If v� lies in B�, then J(F�) is a Cantor set;2. If v� lies in T�, then J(F�) is a Cantor set of simple 
losed 
urves, ea
hof whi
h surrounds the origin;3. If F k� (v�) lies in T� where k � 1, then J(F�) is a Sierpinski 
urve.Finally, if v� does not lie in either B� or T�, then J(F�) is a 
onne
ted set.We remark that 
ase 2 of the above result was proved by M
Mullen [8℄.This part of the Theorem does not hold if n = 1 or n = 2; this is one of thereasons we restri
t attention in this paper to the 
ase n � 3.A Sierpinski 
urve is any planar set that is homeomorphi
 to the well-known fra
tal 
alled the Sierpinski 
arpet. By a result of Whyburn [12℄, thereis a topologi
al 
hara
terization of su
h sets: any planar set that is 
ompa
t,
onne
ted, lo
ally 
onne
ted, nowhere dense, and has the property that anypair of 
omplementary domains are bounded by simple 
losed 
urves thatare pairwise disjoint is known to be homeomorphi
 to the Sierpinski 
arpet.A Sierpinski 
urve also has the interesting property that it is a universalplane 
ontinuum in the sense that it 
ontains a homeomorphi
 
opy of any
ompa
t, 
onne
ted, one-dimensional planar set.We turn now to the parameter plane for these families, i.e., the �-plane.There are some di�erent symmetries in the parameter planes for these maps.5



Let ! = exp(2�=(n � 1)). Then the parameter plane is easily seen to besymmetri
 under the maps1. � 7! �;2. � 7! !�;3. � 7! !�.In parti
ular, the parameter plane 
an be separated into n � 1 symmetryse
tors of the form 2j�n� 1 < Arg � < 2(j + 1)�n� 1 :Be
ause of the Es
ape Tri
hotomy, the parameter plane for F� (the �-plane) divides into three distin
t regions. Let L be the set of parameters forwhi
h v� 2 B� so J(F�) is a Cantor set. We 
all L the Cantor set lo
us. Asin the 
ase of the Mandelbrot set and quadrati
 polynomials, there is a wellde�ned B�ott
her 
oordinate � de�ned on L. It is known that � : L ! C � Dis an analyti
 homeomorphism and that the preimages of all rational rays inC � D land on a unique point in the boundary of L (see [10℄).Let M denote the set of parameters for whi
h v� 2 T�; M is 
alled theM
Mullen domain. It is known that M is an open disk pun
tured at theorigin and bounded by a simple 
losed 
urve [1℄.Let C denote the 
omplement of L [ M. C is 
alled the 
onne
tednesslo
us sin
e J(F�) is a 
onne
ted set if � 2 C. It is known that C 
ontainspre
isely (2n)k�3(n � 1) Sierpinski holes with es
ape time k � 3 [2℄, [11℄.These are open disks in C in whi
h ea
h 
orresponding map has the propertythat the 
riti
al orbit lands in B� at iteration k or, equivalently, the orbit ofthe 
riti
al value lands in T� at iteration k � 2. See Figure 3. There is alsoa B�ott
her 
oordinate on ea
h Sierpinski hole. Let S be a Sierpinski holewith es
ape time k so that F k�2� (v�) 2 T�. Fix a 
hoi
e of the involution6



H�. Then the B�ott
her 
oordinate on S is given by 	 : S ! C � D where	(�) = ��(H�(F k�2� (v�))). See [2℄, [11℄.
M LS3

S3S3
Figure 3: The parameter plane when n = 4. The open disks marked S3 arethe Sierpinski holes with es
ape time 3.In Figure 3, there are three 
learly visible 
opies of the Mandelbrot set.Indeed, it is known that there are n � 1 
opies of the Mandelbrot set thatstraddle the rays given by Arg � = s!k for s > 0 [3℄. These sets are 
alledthe prin
ipal Mandelbrot sets in the parameter plane. The 
usps of the main
ardioids of these sets all lie on the boundary of L while the tips of thetails of these sets (i.e., the parameters 
orresponding to 
 = �2 in the usualMandelbrot set for z2 + 
) all lie in the boundary of M. In fa
t, there arein�nitely many other 
opies of the Mandelbrot set in C [2℄.2 Cantor WebsIn this se
tion we de�ne a set Sk � R2 for ea
h k � 2 together with a spe
i�
dynami
al system de�ned on Sk. A Cantor k-web will then be any set that7



is homeomorphi
 to Sk. The set Sk will 
onsist of a Cantor set portion onwhi
h there is de�ned a natural one-sided shift map on 2k symbols, togetherwith another portion that is a 
ountable union of simply 
onne
ted open sets.The union of both portions of Sk will be a 
onne
ted set that is neither opennor 
losed.For simpli
ity, we begin with the 
ase k = 2. Let U be the 
losed unitsquare in the plane. Consider the four 
losed subsquares of sidelength 1=3and that tou
h one of the 
orners of U . Call these subsquares U0; : : : ; U3with U0 tou
hing the lower right 
orner of U and the other subsquares ar-ranged around the square in the 
lo
kwise dire
tion. We shall 
onstru
t anorientation-preserving map F de�ned on the Uj that expands ea
h subsquareby a fa
tor of 3 and maps it onto U . The map F is de�ned as follows: onU0 and U2, F takes the top and bottom as well as the left and right sides ofUj to the 
orresponding sides of U . Thus F has �xed points at 1 and i. OnU1 and U3, F �rst maps these subsquares to U as in the previous 
ase, butthen a half-turn rotation is applied. So F has a 2-
y
le at 0 and 1 + i. A
omputation shows that F is given by z 7! 3z � 2 on U0; z 7! �3z + 1 + ion U1; z 7! 3z � 2i on U2; and z 7! �3z + 3 + 3i on U3.Let � denote the set of points whose orbits remain in [Uj for all iterationsof F . Standard arguments from planar dynami
s imply that � is a Cantor setand F j� is 
onjugate to the one-sided shift on the four symbols f0; : : : ; 3g.Indeed, in this 
ase � is just the produ
t of a pair of middle-third Cantorsets, one on the x-axis and one on the y-axis in U . The set � is the Cantorset portion of S2.We 
all the pair of horizontal lines y = 0 and y = 1 in U the horizontalboundary of U . Note that we 
an 
ompute expli
itly the symbol sequen
esthat 
orrespond to points that lie in the interse
tion of the horizontal bound-ary of U (or any of its preimages) and the Cantor set �. For example, if a8



point in � lies in the horizontal boundary of U , then in the 
orrespondingsequen
e a 0 may only be followed by a 0 or 1 while a 1 may only be followedby a 2 or 3. Similarly, 2 may only be followed by 2 or 3, while 3 may onlybe followed by 0 or 1. That is, the interse
tion of the horizontal boundaryof U with � 
onsists of all itineraries generated by the subshift of �nite typewhose transition matrix is 0BB�1 1 0 00 0 1 10 0 1 11 1 0 01CCA :Points in the preimage of the boundary of U therefore have itineraries thatend in a sequen
e generated by this subshift.To 
omplete the 
onstru
tion of S2, we add in 
ertain open horizontal\middle-third" re
tangles to �. First let R0 be the open re
tangle given by0 < x < 1; 1=3 < y < 2=3. Let R1 be the preimage of R0 under F , so R1is the union of four horizontal \middle-thirds" re
tangles, one in ea
h Uj.Then, for ea
h j > 1, let Rj denote the preimage of Rj�1 under F . So Rj
onsists of 4j open horizontal re
tangles. Finally, we let S2 be the union of� together with all of the Rj's.To de�ne the k-web when k > 2, we put 2k subsquares U0; : : : ; U2k�1 intothe unit square as follows. Ea
h of the subsquares has sidelength 1=(k + 1)and U0; : : : ; Uk�1 are arranged equally spa
ed along the bottom boundaryof U with U0 
ontaining 1 on the x-axis and Uk�1 
ontaining the origin.Uk; : : : ; U2k�1 are similarly arranged along the top boundary of U with Uk
ontaining i and U2k�1 
ontaining 1 + i. The map F is now just expansionby a fa
tor of k + 1 with the boundaries of the Uj mapped by F as follows.The boundaries of the subsquares U0, U2, U4, et
. are mapped to the 
or-responding boundaries of the unit square S, while the upper and lower aswell as the right and left boundaries of the other subsquares are inter
hanged9



with those of S. Let � be the spa
e of one-sided in�nite sequen
es on the 2ksymbols f0; : : : ; 2kg. Then, as above, the set of points whose orbits remainin the Uj for all iterations is a Cantor set � and F j� is 
onjugate to theone-sided shift on �. Then the open re
tangles Rj are de�ned exa
tly as inthe 
ase k = 2: R0 is a single open horizontal re
tangle given by 0 < x < 1and 1=k < y < 1� 1=k and the Rj are the jth preimages of R0. As before, �is a produ
t of a pair of Cantor sets, one on the x-axis and one on the y-axis.Note that 
ertain points in � lie in the boundaries of the Rk and U ; we
all the set of su
h points the unburied portion of �. All other points in� lie in the buried portion of �. Using the symboli
 dynami
s as above,we 
ompute that the set of points lying in the interse
tion of the horizontalboundary of U and � are again generated by a subshift of �nite type whose2k � 2k transition matrix has rows that 
onsist of n 
onse
utive 0's and 1'sin the form (0 : : : 0 1 : : : 1) or (1 : : : 1 0 : : : 0). For example, when k = 3, thetransition matrix is 0BBBBBB�1 1 1 0 0 00 0 0 1 1 11 1 1 0 0 01 1 1 0 0 00 0 0 1 1 11 1 1 0 0 0
1CCCCCCA :We denote by � the subset of � 
onsisting of sequen
es determined by thissubshift.3 Cantor Webs in the Dynami
al PlaneIn this se
tion we prove that there is a Cantor (n�1)-web �� in the dynami
alplane of F�(z) = zn + �=zn for ea
h � in the 
onne
tedness lo
us and that�� moves holomorphi
ally with � as � varies in ea
h symmetry se
tor. TheCantor set portion of the web will lie in J(F�) while the adjoined open disks10



will 
onsist of 
ertain preimages of B�.Lemma. Suppose j�j � 2. If jzj � 3=2, then z 2 B�.Proof: If jzj � 3=2, then we havejF�(z)j � jzjn � j�jjzjn � jzjn � 2n+13n > jzjn � 1 > �32�n�1 jzj � jzj:Sin
e ((3=2)n�1�1) > 1 for n � 3, F k� (z)!1 and it follows that the regionjzj � 3=2 lies in B�. 2Let 
 denote the 
ir
le of radius 2 in the dynami
al plane, and let � =�� = H�(
). By the previous Lemma, F� maps both 
 and �� stri
tly outsideof 
. It follows that 
 lies in B� and � lies in T� (provided � 62 L; otherwise,there is no trap door and � � B�).Let S denote the portion of the symmetry se
tor in the parameter planede�ned by j�j < 2 and 0 < Arg � < 2�=(n � 1). We �rst 
onstru
t ��for ea
h � 2 S \ C. Then we extend the 
onstru
tion to C \ R+ . By thesymmetry in the parameter plane, this produ
es a Cantor (n � 1)-web forea
h � 2 C.For � 2 S, 
onsider the 2n prepole se
tors P0; : : : ; P2n�1. Sin
e 0 <Arg � < 2�=(n� 1), we have that0 < Arg v� = Arg�2 < �n� 1 :If z lies in the prepole se
tor P2n�1 that is bounded by the 
riti
al point raysthrough 
0 and 
2n�1, then we also haveArg 
0 = Arg�2n < Arg z < Arg �2n + �n = Arg 
2n�1:But Arg �2n < Arg �2 = Arg v� < Arg �2n + �n11



sin
e � 2 S, so the 
riti
al value v� always lies in P2n�1 for these parameters.Similarly, �v� lies in Pn�1 for ea
h � 2 S. In parti
ular, the 
riti
al valuerays also lie in these two se
tors. So we ex
lude from 
onsideration the twose
tors Pn�1 and P2n�1 for the moment.Consider the remaining prepole se
tors P0; : : : ; Pn�2 and Pn; : : : ; P2n�2.Let Ij = Ij(�) denote the region in Pj lying between 
 and ��. By 
onstru
-tion, ea
h Ij is open and simply 
onne
ted. Let I� denote the union of theIj where again j = 0; : : : ; n � 2; n; : : : ; 2n � 2. Let �� be the set of pointswhose orbits remain in I� for all iterations of F�. �� will be the Cantor setportion of the web in the dynami
al plane.Proposition. The set �� is homeomorphi
 to a Cantor set for ea
h � 2 S.F� j�� is 
onjugate to the shift on the 2n�2 symbols 0; : : : ; n�2; n; : : : ; 2n�2. The sets �� vary analyti
ally with � 2 S.Proof: For ea
h � 2 S, F� maps the boundary 
urves 
 and �� stri
tlyoutside 
, and hen
e outside I�. Moreover, F� maps the 
riti
al point rayboundaries of ea
h of the Ij in I� to the 
riti
al value rays, both of whi
h liein Pn�1 [ P2n�2 for ea
h � and hen
e also outside I�. Therefore it followsthat F� maps ea
h Ij univalently onto a region that 
ompletely 
overs ea
hother Ik (ex
ept k = n � 1 or k = 2n � 1). Standard arguments from
omplex dynami
s then give that �� is a Cantor set with F� j�� 
onjugateto the one-sided shift map on the 2(n�1) symbols 0; : : : ; n�2; n; : : : ; 2n�2.Sin
e the Ij vary analyti
ally with �, we have that the points in �� also varyanalyti
ally with �. 2Now let � be the spa
e of one-sided sequen
es 
onsisting of the symbols0; : : : ; n�2; n; : : : ; 2n�2. Sin
e the symboli
 dynami
s on �� and � � Sn�1are the same (up to the slightly di�erent names of the symbols), the set ��is the Cantor set portion of the web in the dynami
al plane. To 
omplete12



the 
onstru
tion of ��, we assume further that � 2 S \ C. Hen
e, for ea
hsu
h �, B� and T� are disjoint open disks, although the boundaries of B�and T� may interse
t. This happens, for example, for 
ertain parameters onthe boundary of C; see [7℄. In parti
ular, T� lies stri
tly inside 
.We next adjoin the open disk T� to ��. Then, there is a unique prepoleinside ea
h Ij. Consider the 2n � 2 preimages of T� that surround theseprepoles. Sin
e the 
riti
al values do not lie in T�, it follows that ea
h ofthese preimages is an open disk. So we adjoin these 2n � 2 open disks to�� [ T�. We now 
ontinue indu
tively. Sin
e ea
h Ij is mapped univalentlyover all the other Ik's, it follows that there are exa
tly 2n� 2 points in ea
hIj that are mapped to the 2n�2 prepoles in I�. These points are surroundedby open disks that are mapped to T� by F 2� . So we adjoin these (2n � 2)2se
ond preimages of T� to the set. Continuing in this fashion, we produ
e aset that is the union of �� and a 
ountable 
olle
tion of open disks. This isthe set ��.Proposition. If � 2 S, the set �� is homeomorphi
 to the Cantor (n� 1)-web, and the homeomorphism depends analyti
ally on �.Proof: We only need to show that B�, T�, and the preimages of T� meetthe Cantor set �� in points with the appropriate itineraries under F�. First
onsider the boundary of B�, �B�. Note that ea
h Ij 
ontains a subset of�B�. There may be several 
omponents of the set Ij \ �B�, but we 
laimthat there is a unique 
omponent of this set whose 
losure meets both of thestraight line boundaries of Ij. If there were two or more su
h 
omponents,then by symmetry, the same would be true in ea
h of the sets Ij. Sin
e ea
hof these 
omponents is then stret
hed by F� over n� 1 of the Ij's, it followsthat there would be more than one point sharing the same itinerary in ��,and this 
annot happen. So let �j denote this 
omponent of Ij \ �B�. By
onstru
tion of the prepole se
tors, we have that F�(�0) � �0 [ � � � [ �n�213



whereas F�(�1) � �n [ � � ��2n�2. Using symmetry, F�(�0) (resp. F�(�1))
annot 
ontain points in �j where n � j < 2n � 2 (resp. 0 � j < n � 1),for otherwise there would be too many preimages of points in �B� in thisboundary. Pro
eeding 
lo
kwise around �B�, we haveF�(�2j) � �0 [ � � � [ �n�1F�(�2j+1) � �n [ � � ��2n�2for ea
h j < n� 1. For n � j � 2n� 2 we haveF�(�2n�2) � �0 [ � � � [ �n�1F�(�2n�3) � �n [ � � ��2n�2and this pattern 
ontinues alternately as j de
reases from 2n�2 to n. Thus,the set of points in �� that also lie in �B� 
an be 
oded by the subshift of�nite type on 2n�2 symbols whose transition matrix has rows that 
ontain n1's and n 0's and, as before, are of the form (0 : : : 0 1 : : : 1) or (1 : : : 1 0 : : : 0).But, as shown in the previous se
tion, this is pre
isely the same set of pointsthat lie in the upper and lower boundaries of the unit square U in the modelweb Sn�1. Taking preimages of these sets of points in �T� and its preimages.yields the points on the boundaries of the re
tangles Rk. This proves theresult in 
ase � 2 S. 2We now extend the 
onstru
tion of �� to the boundaries of the symmetryse
tors. To a

omplish this, it suÆ
es by symmetry to 
onsider the 
asewhere � 2 R+ \ C. For su
h parameters, we still have the situation whereea
h Ij is mapped univalently over all of the other Ik's (ex
luding, as before,In�1 and I2n�1). However, not all sequen
es in � 
orrespond now to singlepoints: there are three spe
ial sequen
es in � that 
orrespond to multiple14



points in the dynami
al plane. Consequently, any preimage of these spe
ialsequen
es also 
orresponds to multiple points. The �rst 
ase is that any pointon R+ whose orbit is bounded 
orresponds to the sequen
e s = 0 and hen
ethere may be multiple points in I0 with this property. Also, any point onR� whose orbit is bounded has itinerary n (if n is odd) or n 0 (if n is even).This latter di
hotomy results from the fa
t that R� is invariant if n is odd,whereas R� is mapped into R+ if n is even. As a result, any sequen
e thatends in one of these three sequen
es 
orresponds to more than one point inthe dynami
al plane. However, we may 
hoose a parti
ular point that hassu
h an itinerary in a natural manner and add this point to ��. Then we
an show that this extended �� with � 2 R+ \ C is a
tually the limit of anyother su
h set as the parameter approa
hes �.Given � 2 S and a sequen
e s 2 �, let zs = zs(�) be the point in �� that
orresponds to s. As we have shown, there is a unique su
h point in �� forea
h � 2 S. Moreover, zs(�) varies analyti
ally with �.Lemma. For �� 2 R+ \ C, let q�� be the unique �xed point of F�� that liesin �B�� \ R+ . Let f�jg be a sequen
e of parameters in S su
h that �j ! ��as j !1. Then z 0 (�j)! q��.Proof: Note that there is only one parameter in R+ \ C for whi
h q�� isparaboli
, namely, the parameter that 
orresponds to the 
usp of the main
ardioid of the Mandelbrot set lying along R+ . So we �rst assume that weare not in this 
ase, i.e., that q�� is a repelling �xed point. Choose � > 0and let B� be the disk of radius � 
entered at q��. We may assume that � issmall enough so that F�� expands B� univalently onto a region that properly
ontains B�, so q�� is the unique �xed point in this disk. Now we have thatF 0��(q��) > 1, so the portion of this disk below R+ (that is, below the 
riti
alpoint ray for F��) is mapped over itself.There exists Æ > 0 su
h that, if j� � ��j < Æ, then F� also expands B�15



univalently over a region that stri
tly 
ontains B�. Therefore F� also has aunique �xed point in B�. If � lies in S, then we 
laim that this �xed pointis z 0 (�). Indeed, if we look at the portion of B� that lies below the 
riti
alpoint ray through 
�, then this region is mapped univalently over itself byF�. This follows sin
e, when � 2 S, the 
riti
al value ray lies stri
tly abovethe 
riti
al point ray in the upper half plane and the lower portion of B� ismapped below the 
riti
al value ray. Hen
e the �xed point in B� for su
h amap lies in the 
orresponding set I0(�), and so this is the �xed point z 0 (�).Therefore, as �! 0, we have z 0 (�)! q��.If q�� is the paraboli
 �xed point along R+ , the same result holds by
ontinuity with respe
t to �. 2Similar arguments also hold in the 
ase of the sequen
es n or n 0, so, asabove, we 
an 
hoose a unique point in the dynami
al plane for F�� that isthe limit of zn (�) or zn 0 (�) as �! �� in the other ex
eptional 
ases. Witha slight abuse of notation, we 
all these points zn (�) and zn 0(�) even when� 2 R+ \ C. Extending this to preimages of su
h points, we see that we 
anextend the de�nition of �� 
ontinuously to any parameter in R+ \ C. This
ompletes the proof of the Theorem.4 Cantor Webs in the Parameter PlaneOur goal in this se
tion is to prove that there is a 
olle
tion of Cantor (n�1)-webs in the parameter plane for the family F�(z) = zn + �=zn, one in ea
hof the n� 1 symmetry se
tors. The open disks in these webs will be 
ertainSierpinski holes in the symmetry se
tor, so any parameter in this portion ofthe web 
orresponds to a map with a Sierpinski 
urve Julia set. The Cantorset portion of these webs will 
onsist of parameters for whi
h F�(v�) lies in16



��, i.e., in the 
orresponding Cantor set portion of the web in the dynami
alplane. In the following se
tion, we shall use the symboli
 dynami
s asso
iatedto the itineraries of the 
riti
al orbits to identify the di�erent types of Juliasets that 
orrespond to these types of parameters.As in the previous se
tion, it suÆ
es (with three ex
eptions) to restri
tattention to � 2 S. For su
h values of the parameter we have shown thatea
h region Ij in the dynami
al plane is mapped univalently over the set I�whi
h is the union of I0; : : : ; In�2; In; : : : ; I2n�2. Note that F� also takes thetwo omitted regions In�1 and I2n�1 univalently over I�. As earlier, given anyitinerary s = (s0s1s2 : : : ) 2 �, let zs(�) denote the 
orresponding point in��. Sin
e F� takes I2n�1 univalently over I�, there is a unique preimage ofea
h zs(�) that lies in I2n�1. Call this preimage ws(�), so F�(ws(�)) = zs(�).(Note that the itinerary of ws(�) is not s; rather, it is 2n� 1; s, but we willnot use this fa
t.) Hen
e we have an analyti
 fun
tion � 7! ws(�) that takesS into the union of all possible sets of the form I2n�1(�) as � ranges over S.If z 2 I2n�1(�) and � 2 S, we have0 < Arg 
0(�) = Arg�2n < Arg z < Arg 
2n�1(�) = Arg �2n + �n < �n� 1 :Let R = fz j 0 < jzj < 2; 0 < Arg z < �=(n� 1)g;i.e., R is exa
tly one-half of the se
tor S. So the analyti
 fun
tion � 7! ws(�)takes S into R.We have another analyti
 fun
tion taking S into the dynami
al plane.Let G(�) = v� where v� = 2p� lies in the upper half plane. So G takes Sunivalently over the regionfz j 0 < jzj < 2p2; 0 < Arg z < �=(n� 1)gwhi
h 
ontains R. So we 
an 
onsider the fun
tion Ls(�) = G�1(ws(�)) =17



(ws(�))2=4 whi
h maps S into itself. The following result gives the Cantorset portion of the web in the symmetry region 0 < Arg � < 2�=(n� 1).Proposition. For ea
h sequen
e s 2 �, there is a unique � = �s 2 S su
hthat Ls(�s) = �s, i.e., a 
riti
al value of F�s lands on the point ws(�s) 2 ��s.Moreover, �s varies 
ontinuously with s.As we shall show, for all but three sequen
es in �, the map Ls takes Sinto a 
ompa
t subset of itself, and so by the S
hwarz Lemma, there is aunique �xed point in S for this map. This �xed point is �s. Later we shalldeal with the three ex
eptional sequen
es for whi
h �s lies on the boundaryof S.To prove the result we need the following lemmas.Lemma. Suppose j�jn2�1 � 12n+2 :If jzj � jv�j, then F�(z) 2 B�.Proof: Sin
e j�j < 1, we have2nj�jn2 < 2nj�jn2�1 � 14 :If jzj � jv�j = 2j�j1=2, thenjF�(z)j � j�jjzjn � jzjn � 12nj�jn2�1 � 2nj�jn2 � 4� 14 :So jF�(z)j > 2 and therefore F�(z) 2 B�. 2Lemma. Suppose s 2 � satis�es1. s 6= 0;2. s 6= n� 2 (if n is even); 18



3. s 6= 2n� 2; n� 2 (if n is odd).Then fws(�) j� 2 Sg is 
ontained inside a 
ompa
t subset of R [ f0g.Proof: To prove the result, we need to show that ws(�) 
annot a

umulateon the boundary of R (ex
ept at the origin) as � varies in S.For ea
h � 2 S, the 
ir
le of radius 3=2 
entered at the origin is 
ontainedin B�, as we showed in the previous se
tion. Hen
e we have jws(�)j < 3=2and so ws(�) 
annot a

umulate on the outer 
ir
ular boundary of R givenby jzj = 2.For ea
h � 2 S, ws(�) lies in the se
torArg �2n < Arg z < Arg�2n + �n:Therefore ws(�) 
an a

umulate on the straight line boundaries of R only ifArg �! 0 or Arg �! 2�=(n� 1), sin
e2�(n� 1)(2n) + �n = �n� 1 :So suppose �rst that Arg � = 0. Then the positive real axis is invariantunder F�. Then, as in the previous se
tion, if we were to assign an itineraryto su
h a point, that itinerary would only 
ontain the digits 0 (and/or 2n�1sin
e this point lies on the interse
tion of the boundaries of I0 and I2n�1).So let s 2 � be su
h that s 6= 0. Say s = s0s1s2 : : : where sj = 0 forj = 0; : : : ; n � 1 but sn 6= 0. Let Is0:::sn be the set of points in Is0 whoseitinerary begins with s0 : : : sn. Then, sin
e Arg � = 0 but sn 6= 0; 2n � 1,the 
losure of the set Is0:::sn(�) is bounded away from the real axis. It thenfollows that ws(�) is bounded away from this axis as � varies in S.As Arg� ! 0, note that the other straight line boundary of I2n�1(�)approa
hes a portion of the ray Arg z = �=2n, whi
h is properly 
ontainedin the set R, so there is no problem in this 
ase.19



Now suppose that Arg� ! 2�=(n � 1). In this 
ase the situation issomewhat di�erent. If Arg � = 2�=(n � 1) and Arg z = �=(n � 1), thenArgF�(z) = n�=(n�1). But one 
he
ks easily that the ray Arg z = n�=(n�1)is invariant under F� if n is even. If n is odd, then this ray is inter
hangedwith its negative by F�.Now the ray Arg z = n�=(n� 1) forms part of the boundary of the setsIn�2 and In�1 when Arg � = 2�=(n � 1), while the negative of this ray ispart of the boundary of I2n�2 and I2n�1. Therefore points on the ray Arg z =n�=(n� 1) have itinerary in � given by n� 2 (when n is even) or itineraryn� 2; 2n� 2 (when n is odd). So when n is odd, points on the negative ofthis ray have itinerary 2n� 2; n� 2. Hen
e, arguing exa
tly as in the 
aseArg � = 0, only when s = n� 2 (n even) or s = 2n� 2; n� 2 (n odd) doesws(�) a

umulate on the straight line boundary of R as Arg �! 2�=(n�1).2We now 
omplete the proof of the Proposition. The result follows im-mediately from the S
hwarz Lemma provided that ws(�) is 
ontained in a
ompa
t subset of R for all s 2 S. Thus there are two situations that wemust address. The �rst is the possibility that, for 
ertain sequen
es s, ws(�)may a

umulate at the origin, and the se
ond is what happens in the 
ase ofthe three spe
ial itineraries listed above.So suppose �rst that s is not one of the ex
eptional sequen
es 0, n� 2with n even, or 2n� 2; n� 2 with n odd. Re
all that Ls : S ! S is givenby Ls(�) = G�1(ws(�)) and is analyti
 on S. By the previous Lemma, Ls(S)is 
ontained in a 
ompa
t subset of S [ f0g. We 
laim that L has a �xedpoint in the interior of S. By the earlier Lemma, if j�jn2�1 < (1=2)n+2, thenwe have jws(�)j > jv�j sin
e all points with jzj � jv�j are mapped into B�.Hen
e jLs(�)j > j�j for these values of �. So Ls maps the portion of Soutside the 
ir
le of radius (1=2) 2(n+2)n�1 into a 
ompa
t subset of this region.20



So by the S
hwarz Lemma, there is a �xed point in this region, and hen
ethis must be the unique �xed point for Ls in all of S. Moreover, sin
e Lsvaries 
ontinuously with s, the parameter �s also varies 
ontinuously with s.This proves the result ex
ept in the 
ase of the three ex
eptional sequen
es.Now suppose that s = 0. Let �̂ be the parameter value that lies at thepoint of interse
tion of R+ with the boundary of the M
Mullen domain. Thisparameter is the tip of the \tail" of the Mandelbrot set lying along R+ , i.e.,the parameter that 
orresponds to 
 = �2 in the standard Mandelbrot setfor z2 + 
. Consequently, F�̂(v�̂) is the �xed point that lies in �B�̂, namelythe point we 
alled z 0(�̂) in the previous se
tion. So, in terms of the abovenotation, v�̂ lands on w 0(�̂).By the results in [1℄, given any point in �T� with pres
ribed itinerarys, there is a unique � for whi
h v� lands on the point in �T� with thisitinerary. Furthermore, the boundary of the M
Mullen domain is a simple
losed 
urve that may be parameterized 
ontinuously by the parameters withthe 
orresponding itineraries. Hen
e it follows that �̂ is the unique parameterfor whi
h v�̂ = w 0(�̂). Moreover, for itineraries s 
lose to 0, �s is 
loseto �̂. This extends the Cantor set portion of the web in parameter spa
eto �̂. The extension to the other two spe
ial parameters is similar: both
orrespond to points at the tip of the tail of the Mandelbrot set lying alongArg � = 2�=(n� 1). This 
ompletes the proof of the Proposition. 2Let � be the Cantor set portion of the web in the parameter plane that
onsists of the parameters �s for s 2 �. Re
all that � � � is the set ofall sequen
es 
orresponding to points in the dynami
al plane that lie in theboundary of B�, i.e., the subset 
orresponding to allowable sequen
es for thesubshift of �nite type dis
ussed earlier.Proposition. Suppose s 2 �. Then �s lies in either �L or �M.21



Proof: First note that, if s is one of the three spe
ial sequen
es above, thenwe have already shown that �s 2 �M. For other values of s, it suÆ
es toprove that there is a parameter ~� arbitrarily 
lose to �s for whi
h F~�(v~�) liesin B~�. Toward that end, sin
e periodi
 sequen
es are dense in �, we mayassume that s is a periodi
 sequen
e. Then zs(�s) is a periodi
 point lyingin �B�s . Hen
e there is an external ray 
t(�s) de�ned for t � 1 and havingrational angle in B�s that lands at zs(�s), i.e., that satis�es 
1(�s) = zs(�s).Now for � in a neighborhood of �s, we have that the fun
tion � 7! zs(�)is analyti
. As above, there is an external ray 
t(�) that also lands at zs(�)and, for �xed t, 
t(�) is also analyti
 in �. Now �s is a root of the fun
tionof � given by zs(�) � v�. Hen
e, for t 
lose enough to 1, there is a nearbyroot of the fun
tion 
t(�) � v�. But this root is a �-value for whi
h v� lieson an external ray B�, and this therefore yields the nearby parameter ~� withthe required properties. 2We will denote the Cantor web that lies in the symmetry se
tor S by�. Thus the set of parameters �s with s 2 � gives the portion of � that
orresponds to points in the model web on the boundary of the unit square.To 
omplete the 
onstru
tion of �, we adjoin 
ertain Sierpinski holes to �exa
tly as we added 
ertain preimages of B� to �� to obtain the Cantor webin the dynami
al plane. To begin this 
onstru
tion, let p� = (��)1=2n be theunique prepole in I2n�1. Consider the fun
tion K(�) = G�1(p�) de�ned onS. We have K(�) = (��)1=n4and a straightforward 
omputation shows that K has a �xed point at�0 = (�1)1=(n�1) � 14n�1=(n�1)whi
h lies in S. So we have v�0 = p�0. Therefore �0 lies at the 
enter of a22



Sierpinski hole with es
ape time 3. So we adjoin this open disk to the Cantorset �. This 
orresponds to adding the re
tangle R0 in the 
onstru
tion of themodel Cantor web Sn�1. As above, parameters of the form �s with s = s0twhere s0 is one of the allowed digits in a sequen
e in � and t 2 � lie on theboundary of this Sierpinski hole.For the other Sierpinski holes, let t = t0 : : : tn�1 be a �nite sequen
ewhere the digits tj are as usual drawn from 0; : : : ; n� 2; n; : : : ; 2n� 2. Letpt(�) be the point in It0 that satis�es F j�(pt(�)) 2 Itj for j = 0; : : : ; n � 1and F n� (pt(�)) = 0, i.e., the orbit of pt(�) stays in I� until landing on 0 atiteration n. Let qt(�) be the preimage of pt(�) that lies in I2n�1.Proposition. Suppose � 2 C \ S. For ea
h allowable �nite sequen
e t =t0; : : : ; tn�1, there exists a unique �t su
h that qt(�t) = v�t .Proof: The proof is essentially the same as in the 
ase of the parametervalues in �. Let Kt : S ! S be given by G�1(qt(�)). There are no spe
ialsequen
es in this 
ase, sin
e the point qt(�) lies in a 
ompa
t subset of R [f0g. This follows from the fa
t that, when Arg � = 0 or 2�=(n�1), there areno points on the 
orresponding boundary lines that are eventually mappedto the origin. Hen
e, by the S
hwarz Lemma, there exists a unique �xedpoint for Kt, and this parameter is �t. 2This 
ompletes the 
onstru
tion of the Cantor web � � S. By symmetry,there is a 
opy of � in ea
h of the other symmetry se
tors. In fa
t, we 
an
ombine all of these Cantor webs with the M
Mullen domain to produ
e asingle larger Cantor web in the parameter plane.
23



5 Julia Sets Corresponding to Parameters inthe Cantor WebIn this se
tion we provide a 
lassi�
ation of the types of Julia sets thato

ur for parameters lying in the Cantor web in the parameter plane. Beforeturning to these sets, we �rst show that the open set C�B� is a 
onne
ted andsimply 
onne
ted set for any parameter in C �L. Note that this situation isvery di�erent from the 
orresponding situation in the Mandelbrot set: in that
ase, for Julia sets su
h as the Douady rabbit or the basili
a, the 
omplementof the 
losure of the basin of1 
onsists of in�nitely many disjoint open disks.Then we use this fa
t to show that, for any parameter in the Cantor web,the boundary of B� is always a simple 
losed 
urve.Proposition. If � 2 C [ M, then the open set C � B� is 
onne
ted andsimply 
onne
ted.Proof: LetW0 denote the open 
onne
ted 
omponent of C�B� that 
ontains0. Note that W0 
ontains all of T� sin
e the boundary of B� does not meetT�. Hen
e the 
losure of W0 
ontains �T�.Lemma. W0 is symmetri
 under z 7! �z where � = exp(i�=n).Proof: Let X denote the set of points z in W0 for whi
h �z also lies inW0. Note that X is an open subset of W0. Note also that X � T� sin
eT� possesses 2n-fold symmetry and lies in W0. Hen
e X is nonempty. Nowsuppose that X 6= W0. Then there must be a point z1 2 �X \ W0. Soz1 2 W0 but �z1 62 W0. Therefore �z1 lies in �W0, whi
h is 
ontained in �B�.Sin
e �z1 2 �B� and �B� has 2n-fold symmetry we have that z1 2 �B�,
ontradi
ting our assumption that z1 2 W0. 2Lemma. All 2n preimages of any point in W0 lie in W0.24



Proof: Sin
eH�(B�) = T� and T� � W0, we haveH�(�B�) � W 0. ThereforeH�(�W0) � W 0 and so H� maps C �W 0 into W0.Now H� maps prepoles to prepoles. If one of the prepoles lies in C �W 0,then its image under H� lies in W0. This 
annot o

ur sin
e, by the previouslemma, W0 has 2n-fold symmetry. Hen
e ea
h prepole lies in W 0. In fa
t,ea
h prepole must lie in W0 sin
e �W0 is mapped to �B� and 0 62 �B�.It follows that all 2n preimages of 0 lie in W0. Therefore the entireset F�1� (W0) is 
ontained in W0 for, otherwise, there would be points in�W0 � �B� that are mapped into W0. This 
annot happen sin
e �B� isinvariant. 2We now 
omplete the proof that C � B� is 
onne
ted and simply 
on-ne
ted. It suÆ
es to show that W0 is the only 
omponent of C �B�. By theabove, all preimages of a point in W0 lie in W0. Hen
e all preimages of anypoint in W 0 must lie in W 0. But points in �W0 lie in the Julia set, and it isknown that the the union of preimages of su
h a point under F k� for all k isdense in the Julia set. Hen
e it follows that the entire Julia set is 
ontainedin W 0. But then �W0 = �B�, and the result follows. 2As a remark, the fa
t that there is only one 
omponent in the 
omplementof B� does not pre
lude the existen
e of quadrati
-like �lled Julia sets within�nitely many pin
h points along the boundary. These sets arise when theparameter is drawn from any of the Mandelbrot sets in C. But these sets areproperly 
ontained in W 0.Corollary. For ea
h � 2 �, the Julia set of F� is lo
ally 
onne
ted and theboundary of B� is a simple 
losed 
urve.Proof: If � lies in any of the Sierpinski holes in �, the 
riti
al orbits tendto 1. If � lies in the Cantor set portion of �, then the 
riti
al orbits land25



in the Cantor set portion of �� after two iterations of F�. In either 
asewe have that the 
riti
al orbit is non-re
urrent. Furthermore, there are noparaboli
 orbits for F�, sin
e the fate of all of the 
riti
al orbits is a

ountedfor. It follows that F� is semi-hyperboli
. By the results in [13℄, J(F�) islo
ally 
onne
ted. Therefore �B� = �W0 is also lo
ally 
onne
ted. Sin
e the
omplement of �B� in C 
onsists of two open, disjoint, and simply 
onne
tedregions, namely B� and W0, and their 
ommon boundary �B� is lo
ally
onne
ted, it follows that �B� is a simple 
losed 
urve. 2We �nally turn attention to the di�erent types of Julia sets that o

urfor parameters in �. For � 2 �, we have that J(F�) is 
ompa
t, 
onne
ted,lo
ally 
onne
ted, and nowhere dense. Also, all of the 
omplementary do-mains are preimages of B� and are therefore bounded by simple 
losed 
urves.However, 
ertain of these 
urves may tou
h ea
h other, so the Julia set is notalways a Sierpinski 
urve.By the Es
ape Tri
hotomy, if � resides in one of the Sierpinski holes in �,then J(F�) is a Sierpinski 
urve. If � resides in the Cantor set portion of �,then there are four possible types of Julia sets. First, if � lies in the portionof � in �L, then J(F�) is a generalized Sierpinski gasket. See Figure 4. Herethe 
riti
al points lie at the interse
tion of the boundaries of T� and B�. See[7℄ for details about these types of sets.If � lies in �M, then the preimage of �T� is a 
hain of 2n simple 
losed
urves ea
h of whi
h meets two other su
h 
urves at adja
ent 
riti
al points.Equivalently, �T� is bounded by a pair of 
on
entri
 simple 
losed 
urves thatmeet ea
h other at 2n points. Then the preimage of this 
hain is a pair of
hains, ea
h with 2n2 simple 
losed 
urves that meet two other su
h 
urves.The preimage of ea
h of these 
hains is a similar 
hain, but this time thereare 2n3 simple 
losed 
urves in the 
hain. And so on. This yields 
ountably26



Figure 4: Generalized Sierpinski gasket Julia sets drawn from the familyz2 + �=z2. Similar Julia sets o

ur in the families with n > 2.many 
hains in J(F�). As in the M
Mullen domain, however, there areun
ountably many other 
omponents in J(F�). Ea
h of these 
omponentsare buried 
omponents that are simple 
losed 
urves surrounding the originand without pin
hes. We 
all this type of Julia set a pin
hed Cantor set of
ir
les. See Figure 5.When � lies on the boundaries of any of the Sierpinski holes in �, thenJ(F�) is a hybrid Sierpinski 
urve. In these sets, all of the 
omplementarydomains are bounded by simple 
losed 
urves, but in�nitely many of themtou
h exa
tly one other su
h boundary 
urve, while the rest (in�nitely many)do not meet other bounding 
urves. See Figure 6.This a

ounts for all of the non-buried parameters in the Cantor setportion of �. Finally, if � is a buried parameter (i.e., not on the boundariesof M;L, or any Sierpinski hole), then J(F�) is again a Sierpinski 
urve.However, the maps on these Julia sets are, unlike those drawn from Sierpinskiholes, stru
turally unstable. Arbitrarily 
lose to any su
h parameter are27



Figure 5: A Julia set that is a pin
hed Cantor set of 
ir
les (drawn from thefamily z3 + �=z3).in�nitely many other parameters whose maps are all dynami
ally distin
tfrom one another. See [4℄.Many thanks to the referee for suggesting a number of substantial im-provements to this paper.Referen
es[1℄ Devaney, R. L. Stru
ture of the M
Mullen Domain in the ParameterSpa
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ae 185 (2005), 267-285.[2℄ Devaney, R. L. The M
Mullen Domain: Satellite Mandelbrot Setsand Sierpinski Holes. Conformal Geometry and Dynami
s 11 (2007),164-190.
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Figure 6: A hybrid Sierpinski 
urve Julia set (drawn from the family z2+�=z2and a magni�
ation. Note that some of the 
omplementary domains appearto be bounded by isolated simple 
losed 
urves while others are bounded bysimple 
losed 
urves that meet another su
h 
urve at a single point.[3℄ Devaney, R. L. Baby Mandelbrot Sets Adorned with Halos in Fam-ilies of Rational Maps. In Complex Dynami
s: Twenty-Five Yearsafter the Appearan
e of the Mandelbrot Set. Ameri
an Math So
iety,Contemporary Math 396 (2006), 37-50.[4℄ Devaney, R. L. Cantor Ne
kla
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