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Our goal in this paper is to desribe a new type of struture that existsin both the parameter plane and dynamial planes of the families of rationalmaps given by F�(z) = zn + �znwhere z 2 C and n � 3. Called Cantor webs, these sets are homeomorphito a model set onstruted as follows. Start with an open disk in the plane.Surround this disk with k smaller open disks that are symmetrially arrangedaround the original disk. Then surround eah of these k disks with k smallerdisks again symmetrially arranged and ontinue ad in�nitum. These disksare arranged so that they an then be onneted by a Cantor set.This onstrution generalizes the onstrution of a Cantor neklae thatwas desribed in [4℄. A Cantor neklae is a planar set obtained as follows.Start with the Cantor middle-thirds set lying on the x-axis in the plane.Replae eah removed open interval with an open disk whose diameter isthe length of the removed interval. The union of the Cantor set and theseountably many open disks is a Cantor neklae. So a Cantor neklae is apartiular example of a Cantor web when k = 2.In the dynamial plane, the behavior of the map F� on the Cantor webis as follows. The Cantor set portion of the web is an invariant set on whihthe map is onjugate to a one-sided shift map on 2n� 2 symbols, while theopen disks onsist of points whose orbits eventually land in the immediatebasin of attration of 1. Eah member of this family of maps for whih theJulia set is a onneted set possesses a homeomorphi opy of this set, andeah of these maps has the same dynamis on these sets.In the parameter plane, the Cantor web is a olletion of parameters forwhih the orresponding map has a Julia set that, with ertain exeptions,is a Sierpinski urve. See Figures 1 and 2.1



Figure 1: The Julia set of F�(z) = z3 + 0:125=z3 and a magni�ation illus-trating a Cantor web.1 PreliminariesLet F�(z) = zn + �=zn where � 2 C is a parameter and n � 3. The reasonfor hoosing n � 3 will be explained below. When jzj is large, F�(z) � zn,so F� has an immediate basin of attration at 1 that we denote by B�. Asis well known [9℄, there is a B�otther oordinate �� that onjugates F� toz 7! zn in a neighborhood of 1.Eah F� also has a pole of order n at the origin; hene there is an openneighborhood of 0 that is mapped into B�. Now, either this neighborhood isdisjoint from the immediate basin B� or else this neighborhood is ontainedin B�. In the former ase, we denote the entire preimage of B� that ontainsthe origin by T�. We all this region the trap door sine any point z 62 B�but suh that F k� (z) does lie in B� for some k > 0 has the property thatthere is a unique point on the orbit of z that lies in T�.Besides 0 and1, F� has 2n additional ritial points � given by (�)2n =�. However, F� has only two ritial values given by v� = �2p�. In fat,there is only one free ritial orbit for F� up to symmetry. For, if n is even,2



Figure 2: The parameter plane for the family F�(z) = z3 + �=z3 and amagni�ation illustrating a Cantor web together with a further magni�ationshowing a portion of the web.we have F�(2p�) = F�(�2p�), so eah of the ritial orbits land on thesame orbit after two iterations. If n is odd, then we have F�(�z) = �F�(z),so the orbits of �2p� are always symmetri under z 7! �z.We all the straight rays given by t� with t > 0 the ritial point rays.Note that F�(t�) = �1=2�tn + 1tn� ;so it follows that eah ritial point ray is mapped two-to-one onto thestraight ray that extends from v� to 1. We all this ray the ritial value3



ray.Eah F� also has 2n prepoles p� given by (p�)2n = ��, so F�(p�) = 0.The rays tp� with t > 0 are alled prepole rays. These rays are mapped one-to-one onto the entire line segment passing through �iv� and extending to1 in both diretions. Note that these lines are perpendiular to the ritialvalue rays.For eah �, there is a unique ritial point lying in the setor 0 � Arg z <�=n. Call this ritial point 0 = 0(�). We denote the remaining ritialpoints by j and order them in the lokwise diretion around the origin. Weall the open setor bounded by two adjaent ritial point rays a prepolesetor sine eah suh setor ontains a unique prepole. Let Pj = Pj(�)denote the prepole setor bounded by the ritial point rays through j andj+1, and let pj = pj(�) denote the unique prepole that lies in Pj. An easyomputation shows that F� maps eah Pj univalently onto the omplementof the two ritial value rays in C . Heneforth, we denote the image of 0 byv�, so we have F�(2k) = v� whereas F�(2k+1) = �v� for eah k. (Note thatthe notation j and pj beomes ambiguous in the speial ase where � = 1; 2;however, we will never spei�ally deal with these speial ases.)Reall that the Julia set J(F�) for the rational map F� has several equiv-alent haraterizations. It is known that the Julia set is the losure of theset of repelling periodi points as well as the boundary of the set of pointswhose orbits tend to 1 [9℄. The omplement of the Julia set is alled theFatou set.There are several symmetries in the dynamial plane. First let � =exp(�i=n). Then we have F�(�z) = �F�(z), so, as above, either the or-bits of z and �z oinide after two iterations (when n is even), or else theybehave symmetrially under z 7! �z (when n is odd). In either event, thedynamial plane and the Julia set both possess 2n-fold symmetry, as do4



B� and T�. Let H�(z) be one of the n involutions given by �1=n=z. ThenF�(H�(z)) = F�(z), so the dynamial plane and Julia set are also symmetriunder eah H�. Note that H�(B�) = T�.The following result is proved in [5℄.Theorem (The Esape Trihotomy). Let F�(z) = zn + �=zn and onsiderthe orbit of v�.1. If v� lies in B�, then J(F�) is a Cantor set;2. If v� lies in T�, then J(F�) is a Cantor set of simple losed urves, eahof whih surrounds the origin;3. If F k� (v�) lies in T� where k � 1, then J(F�) is a Sierpinski urve.Finally, if v� does not lie in either B� or T�, then J(F�) is a onneted set.We remark that ase 2 of the above result was proved by MMullen [8℄.This part of the Theorem does not hold if n = 1 or n = 2; this is one of thereasons we restrit attention in this paper to the ase n � 3.A Sierpinski urve is any planar set that is homeomorphi to the well-known fratal alled the Sierpinski arpet. By a result of Whyburn [12℄, thereis a topologial haraterization of suh sets: any planar set that is ompat,onneted, loally onneted, nowhere dense, and has the property that anypair of omplementary domains are bounded by simple losed urves thatare pairwise disjoint is known to be homeomorphi to the Sierpinski arpet.A Sierpinski urve also has the interesting property that it is a universalplane ontinuum in the sense that it ontains a homeomorphi opy of anyompat, onneted, one-dimensional planar set.We turn now to the parameter plane for these families, i.e., the �-plane.There are some di�erent symmetries in the parameter planes for these maps.5



Let ! = exp(2�=(n � 1)). Then the parameter plane is easily seen to besymmetri under the maps1. � 7! �;2. � 7! !�;3. � 7! !�.In partiular, the parameter plane an be separated into n � 1 symmetrysetors of the form 2j�n� 1 < Arg � < 2(j + 1)�n� 1 :Beause of the Esape Trihotomy, the parameter plane for F� (the �-plane) divides into three distint regions. Let L be the set of parameters forwhih v� 2 B� so J(F�) is a Cantor set. We all L the Cantor set lous. Asin the ase of the Mandelbrot set and quadrati polynomials, there is a wellde�ned B�otther oordinate � de�ned on L. It is known that � : L ! C � Dis an analyti homeomorphism and that the preimages of all rational rays inC � D land on a unique point in the boundary of L (see [10℄).Let M denote the set of parameters for whih v� 2 T�; M is alled theMMullen domain. It is known that M is an open disk puntured at theorigin and bounded by a simple losed urve [1℄.Let C denote the omplement of L [ M. C is alled the onnetednesslous sine J(F�) is a onneted set if � 2 C. It is known that C ontainspreisely (2n)k�3(n � 1) Sierpinski holes with esape time k � 3 [2℄, [11℄.These are open disks in C in whih eah orresponding map has the propertythat the ritial orbit lands in B� at iteration k or, equivalently, the orbit ofthe ritial value lands in T� at iteration k � 2. See Figure 3. There is alsoa B�otther oordinate on eah Sierpinski hole. Let S be a Sierpinski holewith esape time k so that F k�2� (v�) 2 T�. Fix a hoie of the involution6



H�. Then the B�otther oordinate on S is given by 	 : S ! C � D where	(�) = ��(H�(F k�2� (v�))). See [2℄, [11℄.
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Figure 3: The parameter plane when n = 4. The open disks marked S3 arethe Sierpinski holes with esape time 3.In Figure 3, there are three learly visible opies of the Mandelbrot set.Indeed, it is known that there are n � 1 opies of the Mandelbrot set thatstraddle the rays given by Arg � = s!k for s > 0 [3℄. These sets are alledthe prinipal Mandelbrot sets in the parameter plane. The usps of the mainardioids of these sets all lie on the boundary of L while the tips of thetails of these sets (i.e., the parameters orresponding to  = �2 in the usualMandelbrot set for z2 + ) all lie in the boundary of M. In fat, there arein�nitely many other opies of the Mandelbrot set in C [2℄.2 Cantor WebsIn this setion we de�ne a set Sk � R2 for eah k � 2 together with a spei�dynamial system de�ned on Sk. A Cantor k-web will then be any set that7



is homeomorphi to Sk. The set Sk will onsist of a Cantor set portion onwhih there is de�ned a natural one-sided shift map on 2k symbols, togetherwith another portion that is a ountable union of simply onneted open sets.The union of both portions of Sk will be a onneted set that is neither opennor losed.For simpliity, we begin with the ase k = 2. Let U be the losed unitsquare in the plane. Consider the four losed subsquares of sidelength 1=3and that touh one of the orners of U . Call these subsquares U0; : : : ; U3with U0 touhing the lower right orner of U and the other subsquares ar-ranged around the square in the lokwise diretion. We shall onstrut anorientation-preserving map F de�ned on the Uj that expands eah subsquareby a fator of 3 and maps it onto U . The map F is de�ned as follows: onU0 and U2, F takes the top and bottom as well as the left and right sides ofUj to the orresponding sides of U . Thus F has �xed points at 1 and i. OnU1 and U3, F �rst maps these subsquares to U as in the previous ase, butthen a half-turn rotation is applied. So F has a 2-yle at 0 and 1 + i. Aomputation shows that F is given by z 7! 3z � 2 on U0; z 7! �3z + 1 + ion U1; z 7! 3z � 2i on U2; and z 7! �3z + 3 + 3i on U3.Let � denote the set of points whose orbits remain in [Uj for all iterationsof F . Standard arguments from planar dynamis imply that � is a Cantor setand F j� is onjugate to the one-sided shift on the four symbols f0; : : : ; 3g.Indeed, in this ase � is just the produt of a pair of middle-third Cantorsets, one on the x-axis and one on the y-axis in U . The set � is the Cantorset portion of S2.We all the pair of horizontal lines y = 0 and y = 1 in U the horizontalboundary of U . Note that we an ompute expliitly the symbol sequenesthat orrespond to points that lie in the intersetion of the horizontal bound-ary of U (or any of its preimages) and the Cantor set �. For example, if a8



point in � lies in the horizontal boundary of U , then in the orrespondingsequene a 0 may only be followed by a 0 or 1 while a 1 may only be followedby a 2 or 3. Similarly, 2 may only be followed by 2 or 3, while 3 may onlybe followed by 0 or 1. That is, the intersetion of the horizontal boundaryof U with � onsists of all itineraries generated by the subshift of �nite typewhose transition matrix is 0BB�1 1 0 00 0 1 10 0 1 11 1 0 01CCA :Points in the preimage of the boundary of U therefore have itineraries thatend in a sequene generated by this subshift.To omplete the onstrution of S2, we add in ertain open horizontal\middle-third" retangles to �. First let R0 be the open retangle given by0 < x < 1; 1=3 < y < 2=3. Let R1 be the preimage of R0 under F , so R1is the union of four horizontal \middle-thirds" retangles, one in eah Uj.Then, for eah j > 1, let Rj denote the preimage of Rj�1 under F . So Rjonsists of 4j open horizontal retangles. Finally, we let S2 be the union of� together with all of the Rj's.To de�ne the k-web when k > 2, we put 2k subsquares U0; : : : ; U2k�1 intothe unit square as follows. Eah of the subsquares has sidelength 1=(k + 1)and U0; : : : ; Uk�1 are arranged equally spaed along the bottom boundaryof U with U0 ontaining 1 on the x-axis and Uk�1 ontaining the origin.Uk; : : : ; U2k�1 are similarly arranged along the top boundary of U with Ukontaining i and U2k�1 ontaining 1 + i. The map F is now just expansionby a fator of k + 1 with the boundaries of the Uj mapped by F as follows.The boundaries of the subsquares U0, U2, U4, et. are mapped to the or-responding boundaries of the unit square S, while the upper and lower aswell as the right and left boundaries of the other subsquares are interhanged9



with those of S. Let � be the spae of one-sided in�nite sequenes on the 2ksymbols f0; : : : ; 2kg. Then, as above, the set of points whose orbits remainin the Uj for all iterations is a Cantor set � and F j� is onjugate to theone-sided shift on �. Then the open retangles Rj are de�ned exatly as inthe ase k = 2: R0 is a single open horizontal retangle given by 0 < x < 1and 1=k < y < 1� 1=k and the Rj are the jth preimages of R0. As before, �is a produt of a pair of Cantor sets, one on the x-axis and one on the y-axis.Note that ertain points in � lie in the boundaries of the Rk and U ; weall the set of suh points the unburied portion of �. All other points in� lie in the buried portion of �. Using the symboli dynamis as above,we ompute that the set of points lying in the intersetion of the horizontalboundary of U and � are again generated by a subshift of �nite type whose2k � 2k transition matrix has rows that onsist of n onseutive 0's and 1'sin the form (0 : : : 0 1 : : : 1) or (1 : : : 1 0 : : : 0). For example, when k = 3, thetransition matrix is 0BBBBBB�1 1 1 0 0 00 0 0 1 1 11 1 1 0 0 01 1 1 0 0 00 0 0 1 1 11 1 1 0 0 0
1CCCCCCA :We denote by � the subset of � onsisting of sequenes determined by thissubshift.3 Cantor Webs in the Dynamial PlaneIn this setion we prove that there is a Cantor (n�1)-web �� in the dynamialplane of F�(z) = zn + �=zn for eah � in the onnetedness lous and that�� moves holomorphially with � as � varies in eah symmetry setor. TheCantor set portion of the web will lie in J(F�) while the adjoined open disks10



will onsist of ertain preimages of B�.Lemma. Suppose j�j � 2. If jzj � 3=2, then z 2 B�.Proof: If jzj � 3=2, then we havejF�(z)j � jzjn � j�jjzjn � jzjn � 2n+13n > jzjn � 1 > �32�n�1 jzj � jzj:Sine ((3=2)n�1�1) > 1 for n � 3, F k� (z)!1 and it follows that the regionjzj � 3=2 lies in B�. 2Let  denote the irle of radius 2 in the dynamial plane, and let � =�� = H�(). By the previous Lemma, F� maps both  and �� stritly outsideof . It follows that  lies in B� and � lies in T� (provided � 62 L; otherwise,there is no trap door and � � B�).Let S denote the portion of the symmetry setor in the parameter planede�ned by j�j < 2 and 0 < Arg � < 2�=(n � 1). We �rst onstrut ��for eah � 2 S \ C. Then we extend the onstrution to C \ R+ . By thesymmetry in the parameter plane, this produes a Cantor (n � 1)-web foreah � 2 C.For � 2 S, onsider the 2n prepole setors P0; : : : ; P2n�1. Sine 0 <Arg � < 2�=(n� 1), we have that0 < Arg v� = Arg�2 < �n� 1 :If z lies in the prepole setor P2n�1 that is bounded by the ritial point raysthrough 0 and 2n�1, then we also haveArg 0 = Arg�2n < Arg z < Arg �2n + �n = Arg 2n�1:But Arg �2n < Arg �2 = Arg v� < Arg �2n + �n11



sine � 2 S, so the ritial value v� always lies in P2n�1 for these parameters.Similarly, �v� lies in Pn�1 for eah � 2 S. In partiular, the ritial valuerays also lie in these two setors. So we exlude from onsideration the twosetors Pn�1 and P2n�1 for the moment.Consider the remaining prepole setors P0; : : : ; Pn�2 and Pn; : : : ; P2n�2.Let Ij = Ij(�) denote the region in Pj lying between  and ��. By onstru-tion, eah Ij is open and simply onneted. Let I� denote the union of theIj where again j = 0; : : : ; n � 2; n; : : : ; 2n � 2. Let �� be the set of pointswhose orbits remain in I� for all iterations of F�. �� will be the Cantor setportion of the web in the dynamial plane.Proposition. The set �� is homeomorphi to a Cantor set for eah � 2 S.F� j�� is onjugate to the shift on the 2n�2 symbols 0; : : : ; n�2; n; : : : ; 2n�2. The sets �� vary analytially with � 2 S.Proof: For eah � 2 S, F� maps the boundary urves  and �� stritlyoutside , and hene outside I�. Moreover, F� maps the ritial point rayboundaries of eah of the Ij in I� to the ritial value rays, both of whih liein Pn�1 [ P2n�2 for eah � and hene also outside I�. Therefore it followsthat F� maps eah Ij univalently onto a region that ompletely overs eahother Ik (exept k = n � 1 or k = 2n � 1). Standard arguments fromomplex dynamis then give that �� is a Cantor set with F� j�� onjugateto the one-sided shift map on the 2(n�1) symbols 0; : : : ; n�2; n; : : : ; 2n�2.Sine the Ij vary analytially with �, we have that the points in �� also varyanalytially with �. 2Now let � be the spae of one-sided sequenes onsisting of the symbols0; : : : ; n�2; n; : : : ; 2n�2. Sine the symboli dynamis on �� and � � Sn�1are the same (up to the slightly di�erent names of the symbols), the set ��is the Cantor set portion of the web in the dynamial plane. To omplete12



the onstrution of ��, we assume further that � 2 S \ C. Hene, for eahsuh �, B� and T� are disjoint open disks, although the boundaries of B�and T� may interset. This happens, for example, for ertain parameters onthe boundary of C; see [7℄. In partiular, T� lies stritly inside .We next adjoin the open disk T� to ��. Then, there is a unique prepoleinside eah Ij. Consider the 2n � 2 preimages of T� that surround theseprepoles. Sine the ritial values do not lie in T�, it follows that eah ofthese preimages is an open disk. So we adjoin these 2n � 2 open disks to�� [ T�. We now ontinue indutively. Sine eah Ij is mapped univalentlyover all the other Ik's, it follows that there are exatly 2n� 2 points in eahIj that are mapped to the 2n�2 prepoles in I�. These points are surroundedby open disks that are mapped to T� by F 2� . So we adjoin these (2n � 2)2seond preimages of T� to the set. Continuing in this fashion, we produe aset that is the union of �� and a ountable olletion of open disks. This isthe set ��.Proposition. If � 2 S, the set �� is homeomorphi to the Cantor (n� 1)-web, and the homeomorphism depends analytially on �.Proof: We only need to show that B�, T�, and the preimages of T� meetthe Cantor set �� in points with the appropriate itineraries under F�. Firstonsider the boundary of B�, �B�. Note that eah Ij ontains a subset of�B�. There may be several omponents of the set Ij \ �B�, but we laimthat there is a unique omponent of this set whose losure meets both of thestraight line boundaries of Ij. If there were two or more suh omponents,then by symmetry, the same would be true in eah of the sets Ij. Sine eahof these omponents is then strethed by F� over n� 1 of the Ij's, it followsthat there would be more than one point sharing the same itinerary in ��,and this annot happen. So let �j denote this omponent of Ij \ �B�. Byonstrution of the prepole setors, we have that F�(�0) � �0 [ � � � [ �n�213



whereas F�(�1) � �n [ � � ��2n�2. Using symmetry, F�(�0) (resp. F�(�1))annot ontain points in �j where n � j < 2n � 2 (resp. 0 � j < n � 1),for otherwise there would be too many preimages of points in �B� in thisboundary. Proeeding lokwise around �B�, we haveF�(�2j) � �0 [ � � � [ �n�1F�(�2j+1) � �n [ � � ��2n�2for eah j < n� 1. For n � j � 2n� 2 we haveF�(�2n�2) � �0 [ � � � [ �n�1F�(�2n�3) � �n [ � � ��2n�2and this pattern ontinues alternately as j dereases from 2n�2 to n. Thus,the set of points in �� that also lie in �B� an be oded by the subshift of�nite type on 2n�2 symbols whose transition matrix has rows that ontain n1's and n 0's and, as before, are of the form (0 : : : 0 1 : : : 1) or (1 : : : 1 0 : : : 0).But, as shown in the previous setion, this is preisely the same set of pointsthat lie in the upper and lower boundaries of the unit square U in the modelweb Sn�1. Taking preimages of these sets of points in �T� and its preimages.yields the points on the boundaries of the retangles Rk. This proves theresult in ase � 2 S. 2We now extend the onstrution of �� to the boundaries of the symmetrysetors. To aomplish this, it suÆes by symmetry to onsider the asewhere � 2 R+ \ C. For suh parameters, we still have the situation whereeah Ij is mapped univalently over all of the other Ik's (exluding, as before,In�1 and I2n�1). However, not all sequenes in � orrespond now to singlepoints: there are three speial sequenes in � that orrespond to multiple14



points in the dynamial plane. Consequently, any preimage of these speialsequenes also orresponds to multiple points. The �rst ase is that any pointon R+ whose orbit is bounded orresponds to the sequene s = 0 and henethere may be multiple points in I0 with this property. Also, any point onR� whose orbit is bounded has itinerary n (if n is odd) or n 0 (if n is even).This latter dihotomy results from the fat that R� is invariant if n is odd,whereas R� is mapped into R+ if n is even. As a result, any sequene thatends in one of these three sequenes orresponds to more than one point inthe dynamial plane. However, we may hoose a partiular point that hassuh an itinerary in a natural manner and add this point to ��. Then wean show that this extended �� with � 2 R+ \ C is atually the limit of anyother suh set as the parameter approahes �.Given � 2 S and a sequene s 2 �, let zs = zs(�) be the point in �� thatorresponds to s. As we have shown, there is a unique suh point in �� foreah � 2 S. Moreover, zs(�) varies analytially with �.Lemma. For �� 2 R+ \ C, let q�� be the unique �xed point of F�� that liesin �B�� \ R+ . Let f�jg be a sequene of parameters in S suh that �j ! ��as j !1. Then z 0 (�j)! q��.Proof: Note that there is only one parameter in R+ \ C for whih q�� isparaboli, namely, the parameter that orresponds to the usp of the mainardioid of the Mandelbrot set lying along R+ . So we �rst assume that weare not in this ase, i.e., that q�� is a repelling �xed point. Choose � > 0and let B� be the disk of radius � entered at q��. We may assume that � issmall enough so that F�� expands B� univalently onto a region that properlyontains B�, so q�� is the unique �xed point in this disk. Now we have thatF 0��(q��) > 1, so the portion of this disk below R+ (that is, below the ritialpoint ray for F��) is mapped over itself.There exists Æ > 0 suh that, if j� � ��j < Æ, then F� also expands B�15



univalently over a region that stritly ontains B�. Therefore F� also has aunique �xed point in B�. If � lies in S, then we laim that this �xed pointis z 0 (�). Indeed, if we look at the portion of B� that lies below the ritialpoint ray through �, then this region is mapped univalently over itself byF�. This follows sine, when � 2 S, the ritial value ray lies stritly abovethe ritial point ray in the upper half plane and the lower portion of B� ismapped below the ritial value ray. Hene the �xed point in B� for suh amap lies in the orresponding set I0(�), and so this is the �xed point z 0 (�).Therefore, as �! 0, we have z 0 (�)! q��.If q�� is the paraboli �xed point along R+ , the same result holds byontinuity with respet to �. 2Similar arguments also hold in the ase of the sequenes n or n 0, so, asabove, we an hoose a unique point in the dynamial plane for F�� that isthe limit of zn (�) or zn 0 (�) as �! �� in the other exeptional ases. Witha slight abuse of notation, we all these points zn (�) and zn 0(�) even when� 2 R+ \ C. Extending this to preimages of suh points, we see that we anextend the de�nition of �� ontinuously to any parameter in R+ \ C. Thisompletes the proof of the Theorem.4 Cantor Webs in the Parameter PlaneOur goal in this setion is to prove that there is a olletion of Cantor (n�1)-webs in the parameter plane for the family F�(z) = zn + �=zn, one in eahof the n� 1 symmetry setors. The open disks in these webs will be ertainSierpinski holes in the symmetry setor, so any parameter in this portion ofthe web orresponds to a map with a Sierpinski urve Julia set. The Cantorset portion of these webs will onsist of parameters for whih F�(v�) lies in16



��, i.e., in the orresponding Cantor set portion of the web in the dynamialplane. In the following setion, we shall use the symboli dynamis assoiatedto the itineraries of the ritial orbits to identify the di�erent types of Juliasets that orrespond to these types of parameters.As in the previous setion, it suÆes (with three exeptions) to restritattention to � 2 S. For suh values of the parameter we have shown thateah region Ij in the dynamial plane is mapped univalently over the set I�whih is the union of I0; : : : ; In�2; In; : : : ; I2n�2. Note that F� also takes thetwo omitted regions In�1 and I2n�1 univalently over I�. As earlier, given anyitinerary s = (s0s1s2 : : : ) 2 �, let zs(�) denote the orresponding point in��. Sine F� takes I2n�1 univalently over I�, there is a unique preimage ofeah zs(�) that lies in I2n�1. Call this preimage ws(�), so F�(ws(�)) = zs(�).(Note that the itinerary of ws(�) is not s; rather, it is 2n� 1; s, but we willnot use this fat.) Hene we have an analyti funtion � 7! ws(�) that takesS into the union of all possible sets of the form I2n�1(�) as � ranges over S.If z 2 I2n�1(�) and � 2 S, we have0 < Arg 0(�) = Arg�2n < Arg z < Arg 2n�1(�) = Arg �2n + �n < �n� 1 :Let R = fz j 0 < jzj < 2; 0 < Arg z < �=(n� 1)g;i.e., R is exatly one-half of the setor S. So the analyti funtion � 7! ws(�)takes S into R.We have another analyti funtion taking S into the dynamial plane.Let G(�) = v� where v� = 2p� lies in the upper half plane. So G takes Sunivalently over the regionfz j 0 < jzj < 2p2; 0 < Arg z < �=(n� 1)gwhih ontains R. So we an onsider the funtion Ls(�) = G�1(ws(�)) =17



(ws(�))2=4 whih maps S into itself. The following result gives the Cantorset portion of the web in the symmetry region 0 < Arg � < 2�=(n� 1).Proposition. For eah sequene s 2 �, there is a unique � = �s 2 S suhthat Ls(�s) = �s, i.e., a ritial value of F�s lands on the point ws(�s) 2 ��s.Moreover, �s varies ontinuously with s.As we shall show, for all but three sequenes in �, the map Ls takes Sinto a ompat subset of itself, and so by the Shwarz Lemma, there is aunique �xed point in S for this map. This �xed point is �s. Later we shalldeal with the three exeptional sequenes for whih �s lies on the boundaryof S.To prove the result we need the following lemmas.Lemma. Suppose j�jn2�1 � 12n+2 :If jzj � jv�j, then F�(z) 2 B�.Proof: Sine j�j < 1, we have2nj�jn2 < 2nj�jn2�1 � 14 :If jzj � jv�j = 2j�j1=2, thenjF�(z)j � j�jjzjn � jzjn � 12nj�jn2�1 � 2nj�jn2 � 4� 14 :So jF�(z)j > 2 and therefore F�(z) 2 B�. 2Lemma. Suppose s 2 � satis�es1. s 6= 0;2. s 6= n� 2 (if n is even); 18



3. s 6= 2n� 2; n� 2 (if n is odd).Then fws(�) j� 2 Sg is ontained inside a ompat subset of R [ f0g.Proof: To prove the result, we need to show that ws(�) annot aumulateon the boundary of R (exept at the origin) as � varies in S.For eah � 2 S, the irle of radius 3=2 entered at the origin is ontainedin B�, as we showed in the previous setion. Hene we have jws(�)j < 3=2and so ws(�) annot aumulate on the outer irular boundary of R givenby jzj = 2.For eah � 2 S, ws(�) lies in the setorArg �2n < Arg z < Arg�2n + �n:Therefore ws(�) an aumulate on the straight line boundaries of R only ifArg �! 0 or Arg �! 2�=(n� 1), sine2�(n� 1)(2n) + �n = �n� 1 :So suppose �rst that Arg � = 0. Then the positive real axis is invariantunder F�. Then, as in the previous setion, if we were to assign an itineraryto suh a point, that itinerary would only ontain the digits 0 (and/or 2n�1sine this point lies on the intersetion of the boundaries of I0 and I2n�1).So let s 2 � be suh that s 6= 0. Say s = s0s1s2 : : : where sj = 0 forj = 0; : : : ; n � 1 but sn 6= 0. Let Is0:::sn be the set of points in Is0 whoseitinerary begins with s0 : : : sn. Then, sine Arg � = 0 but sn 6= 0; 2n � 1,the losure of the set Is0:::sn(�) is bounded away from the real axis. It thenfollows that ws(�) is bounded away from this axis as � varies in S.As Arg� ! 0, note that the other straight line boundary of I2n�1(�)approahes a portion of the ray Arg z = �=2n, whih is properly ontainedin the set R, so there is no problem in this ase.19



Now suppose that Arg� ! 2�=(n � 1). In this ase the situation issomewhat di�erent. If Arg � = 2�=(n � 1) and Arg z = �=(n � 1), thenArgF�(z) = n�=(n�1). But one heks easily that the ray Arg z = n�=(n�1)is invariant under F� if n is even. If n is odd, then this ray is interhangedwith its negative by F�.Now the ray Arg z = n�=(n� 1) forms part of the boundary of the setsIn�2 and In�1 when Arg � = 2�=(n � 1), while the negative of this ray ispart of the boundary of I2n�2 and I2n�1. Therefore points on the ray Arg z =n�=(n� 1) have itinerary in � given by n� 2 (when n is even) or itineraryn� 2; 2n� 2 (when n is odd). So when n is odd, points on the negative ofthis ray have itinerary 2n� 2; n� 2. Hene, arguing exatly as in the aseArg � = 0, only when s = n� 2 (n even) or s = 2n� 2; n� 2 (n odd) doesws(�) aumulate on the straight line boundary of R as Arg �! 2�=(n�1).2We now omplete the proof of the Proposition. The result follows im-mediately from the Shwarz Lemma provided that ws(�) is ontained in aompat subset of R for all s 2 S. Thus there are two situations that wemust address. The �rst is the possibility that, for ertain sequenes s, ws(�)may aumulate at the origin, and the seond is what happens in the ase ofthe three speial itineraries listed above.So suppose �rst that s is not one of the exeptional sequenes 0, n� 2with n even, or 2n� 2; n� 2 with n odd. Reall that Ls : S ! S is givenby Ls(�) = G�1(ws(�)) and is analyti on S. By the previous Lemma, Ls(S)is ontained in a ompat subset of S [ f0g. We laim that L has a �xedpoint in the interior of S. By the earlier Lemma, if j�jn2�1 < (1=2)n+2, thenwe have jws(�)j > jv�j sine all points with jzj � jv�j are mapped into B�.Hene jLs(�)j > j�j for these values of �. So Ls maps the portion of Soutside the irle of radius (1=2) 2(n+2)n�1 into a ompat subset of this region.20



So by the Shwarz Lemma, there is a �xed point in this region, and henethis must be the unique �xed point for Ls in all of S. Moreover, sine Lsvaries ontinuously with s, the parameter �s also varies ontinuously with s.This proves the result exept in the ase of the three exeptional sequenes.Now suppose that s = 0. Let �̂ be the parameter value that lies at thepoint of intersetion of R+ with the boundary of the MMullen domain. Thisparameter is the tip of the \tail" of the Mandelbrot set lying along R+ , i.e.,the parameter that orresponds to  = �2 in the standard Mandelbrot setfor z2 + . Consequently, F�̂(v�̂) is the �xed point that lies in �B�̂, namelythe point we alled z 0(�̂) in the previous setion. So, in terms of the abovenotation, v�̂ lands on w 0(�̂).By the results in [1℄, given any point in �T� with presribed itinerarys, there is a unique � for whih v� lands on the point in �T� with thisitinerary. Furthermore, the boundary of the MMullen domain is a simplelosed urve that may be parameterized ontinuously by the parameters withthe orresponding itineraries. Hene it follows that �̂ is the unique parameterfor whih v�̂ = w 0(�̂). Moreover, for itineraries s lose to 0, �s is loseto �̂. This extends the Cantor set portion of the web in parameter spaeto �̂. The extension to the other two speial parameters is similar: bothorrespond to points at the tip of the tail of the Mandelbrot set lying alongArg � = 2�=(n� 1). This ompletes the proof of the Proposition. 2Let � be the Cantor set portion of the web in the parameter plane thatonsists of the parameters �s for s 2 �. Reall that � � � is the set ofall sequenes orresponding to points in the dynamial plane that lie in theboundary of B�, i.e., the subset orresponding to allowable sequenes for thesubshift of �nite type disussed earlier.Proposition. Suppose s 2 �. Then �s lies in either �L or �M.21



Proof: First note that, if s is one of the three speial sequenes above, thenwe have already shown that �s 2 �M. For other values of s, it suÆes toprove that there is a parameter ~� arbitrarily lose to �s for whih F~�(v~�) liesin B~�. Toward that end, sine periodi sequenes are dense in �, we mayassume that s is a periodi sequene. Then zs(�s) is a periodi point lyingin �B�s . Hene there is an external ray t(�s) de�ned for t � 1 and havingrational angle in B�s that lands at zs(�s), i.e., that satis�es 1(�s) = zs(�s).Now for � in a neighborhood of �s, we have that the funtion � 7! zs(�)is analyti. As above, there is an external ray t(�) that also lands at zs(�)and, for �xed t, t(�) is also analyti in �. Now �s is a root of the funtionof � given by zs(�) � v�. Hene, for t lose enough to 1, there is a nearbyroot of the funtion t(�) � v�. But this root is a �-value for whih v� lieson an external ray B�, and this therefore yields the nearby parameter ~� withthe required properties. 2We will denote the Cantor web that lies in the symmetry setor S by�. Thus the set of parameters �s with s 2 � gives the portion of � thatorresponds to points in the model web on the boundary of the unit square.To omplete the onstrution of �, we adjoin ertain Sierpinski holes to �exatly as we added ertain preimages of B� to �� to obtain the Cantor webin the dynamial plane. To begin this onstrution, let p� = (��)1=2n be theunique prepole in I2n�1. Consider the funtion K(�) = G�1(p�) de�ned onS. We have K(�) = (��)1=n4and a straightforward omputation shows that K has a �xed point at�0 = (�1)1=(n�1) � 14n�1=(n�1)whih lies in S. So we have v�0 = p�0. Therefore �0 lies at the enter of a22



Sierpinski hole with esape time 3. So we adjoin this open disk to the Cantorset �. This orresponds to adding the retangle R0 in the onstrution of themodel Cantor web Sn�1. As above, parameters of the form �s with s = s0twhere s0 is one of the allowed digits in a sequene in � and t 2 � lie on theboundary of this Sierpinski hole.For the other Sierpinski holes, let t = t0 : : : tn�1 be a �nite sequenewhere the digits tj are as usual drawn from 0; : : : ; n� 2; n; : : : ; 2n� 2. Letpt(�) be the point in It0 that satis�es F j�(pt(�)) 2 Itj for j = 0; : : : ; n � 1and F n� (pt(�)) = 0, i.e., the orbit of pt(�) stays in I� until landing on 0 atiteration n. Let qt(�) be the preimage of pt(�) that lies in I2n�1.Proposition. Suppose � 2 C \ S. For eah allowable �nite sequene t =t0; : : : ; tn�1, there exists a unique �t suh that qt(�t) = v�t .Proof: The proof is essentially the same as in the ase of the parametervalues in �. Let Kt : S ! S be given by G�1(qt(�)). There are no speialsequenes in this ase, sine the point qt(�) lies in a ompat subset of R [f0g. This follows from the fat that, when Arg � = 0 or 2�=(n�1), there areno points on the orresponding boundary lines that are eventually mappedto the origin. Hene, by the Shwarz Lemma, there exists a unique �xedpoint for Kt, and this parameter is �t. 2This ompletes the onstrution of the Cantor web � � S. By symmetry,there is a opy of � in eah of the other symmetry setors. In fat, we anombine all of these Cantor webs with the MMullen domain to produe asingle larger Cantor web in the parameter plane.
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5 Julia Sets Corresponding to Parameters inthe Cantor WebIn this setion we provide a lassi�ation of the types of Julia sets thatour for parameters lying in the Cantor web in the parameter plane. Beforeturning to these sets, we �rst show that the open set C�B� is a onneted andsimply onneted set for any parameter in C �L. Note that this situation isvery di�erent from the orresponding situation in the Mandelbrot set: in thatase, for Julia sets suh as the Douady rabbit or the basilia, the omplementof the losure of the basin of1 onsists of in�nitely many disjoint open disks.Then we use this fat to show that, for any parameter in the Cantor web,the boundary of B� is always a simple losed urve.Proposition. If � 2 C [ M, then the open set C � B� is onneted andsimply onneted.Proof: LetW0 denote the open onneted omponent of C�B� that ontains0. Note that W0 ontains all of T� sine the boundary of B� does not meetT�. Hene the losure of W0 ontains �T�.Lemma. W0 is symmetri under z 7! �z where � = exp(i�=n).Proof: Let X denote the set of points z in W0 for whih �z also lies inW0. Note that X is an open subset of W0. Note also that X � T� sineT� possesses 2n-fold symmetry and lies in W0. Hene X is nonempty. Nowsuppose that X 6= W0. Then there must be a point z1 2 �X \ W0. Soz1 2 W0 but �z1 62 W0. Therefore �z1 lies in �W0, whih is ontained in �B�.Sine �z1 2 �B� and �B� has 2n-fold symmetry we have that z1 2 �B�,ontraditing our assumption that z1 2 W0. 2Lemma. All 2n preimages of any point in W0 lie in W0.24



Proof: SineH�(B�) = T� and T� � W0, we haveH�(�B�) � W 0. ThereforeH�(�W0) � W 0 and so H� maps C �W 0 into W0.Now H� maps prepoles to prepoles. If one of the prepoles lies in C �W 0,then its image under H� lies in W0. This annot our sine, by the previouslemma, W0 has 2n-fold symmetry. Hene eah prepole lies in W 0. In fat,eah prepole must lie in W0 sine �W0 is mapped to �B� and 0 62 �B�.It follows that all 2n preimages of 0 lie in W0. Therefore the entireset F�1� (W0) is ontained in W0 for, otherwise, there would be points in�W0 � �B� that are mapped into W0. This annot happen sine �B� isinvariant. 2We now omplete the proof that C � B� is onneted and simply on-neted. It suÆes to show that W0 is the only omponent of C �B�. By theabove, all preimages of a point in W0 lie in W0. Hene all preimages of anypoint in W 0 must lie in W 0. But points in �W0 lie in the Julia set, and it isknown that the the union of preimages of suh a point under F k� for all k isdense in the Julia set. Hene it follows that the entire Julia set is ontainedin W 0. But then �W0 = �B�, and the result follows. 2As a remark, the fat that there is only one omponent in the omplementof B� does not prelude the existene of quadrati-like �lled Julia sets within�nitely many pinh points along the boundary. These sets arise when theparameter is drawn from any of the Mandelbrot sets in C. But these sets areproperly ontained in W 0.Corollary. For eah � 2 �, the Julia set of F� is loally onneted and theboundary of B� is a simple losed urve.Proof: If � lies in any of the Sierpinski holes in �, the ritial orbits tendto 1. If � lies in the Cantor set portion of �, then the ritial orbits land25



in the Cantor set portion of �� after two iterations of F�. In either asewe have that the ritial orbit is non-reurrent. Furthermore, there are noparaboli orbits for F�, sine the fate of all of the ritial orbits is aountedfor. It follows that F� is semi-hyperboli. By the results in [13℄, J(F�) isloally onneted. Therefore �B� = �W0 is also loally onneted. Sine theomplement of �B� in C onsists of two open, disjoint, and simply onnetedregions, namely B� and W0, and their ommon boundary �B� is loallyonneted, it follows that �B� is a simple losed urve. 2We �nally turn attention to the di�erent types of Julia sets that ourfor parameters in �. For � 2 �, we have that J(F�) is ompat, onneted,loally onneted, and nowhere dense. Also, all of the omplementary do-mains are preimages of B� and are therefore bounded by simple losed urves.However, ertain of these urves may touh eah other, so the Julia set is notalways a Sierpinski urve.By the Esape Trihotomy, if � resides in one of the Sierpinski holes in �,then J(F�) is a Sierpinski urve. If � resides in the Cantor set portion of �,then there are four possible types of Julia sets. First, if � lies in the portionof � in �L, then J(F�) is a generalized Sierpinski gasket. See Figure 4. Herethe ritial points lie at the intersetion of the boundaries of T� and B�. See[7℄ for details about these types of sets.If � lies in �M, then the preimage of �T� is a hain of 2n simple losedurves eah of whih meets two other suh urves at adjaent ritial points.Equivalently, �T� is bounded by a pair of onentri simple losed urves thatmeet eah other at 2n points. Then the preimage of this hain is a pair ofhains, eah with 2n2 simple losed urves that meet two other suh urves.The preimage of eah of these hains is a similar hain, but this time thereare 2n3 simple losed urves in the hain. And so on. This yields ountably26



Figure 4: Generalized Sierpinski gasket Julia sets drawn from the familyz2 + �=z2. Similar Julia sets our in the families with n > 2.many hains in J(F�). As in the MMullen domain, however, there areunountably many other omponents in J(F�). Eah of these omponentsare buried omponents that are simple losed urves surrounding the originand without pinhes. We all this type of Julia set a pinhed Cantor set ofirles. See Figure 5.When � lies on the boundaries of any of the Sierpinski holes in �, thenJ(F�) is a hybrid Sierpinski urve. In these sets, all of the omplementarydomains are bounded by simple losed urves, but in�nitely many of themtouh exatly one other suh boundary urve, while the rest (in�nitely many)do not meet other bounding urves. See Figure 6.This aounts for all of the non-buried parameters in the Cantor setportion of �. Finally, if � is a buried parameter (i.e., not on the boundariesof M;L, or any Sierpinski hole), then J(F�) is again a Sierpinski urve.However, the maps on these Julia sets are, unlike those drawn from Sierpinskiholes, struturally unstable. Arbitrarily lose to any suh parameter are27



Figure 5: A Julia set that is a pinhed Cantor set of irles (drawn from thefamily z3 + �=z3).in�nitely many other parameters whose maps are all dynamially distintfrom one another. See [4℄.Many thanks to the referee for suggesting a number of substantial im-provements to this paper.Referenes[1℄ Devaney, R. L. Struture of the MMullen Domain in the ParameterSpae of Rational Maps. Fundamenta Mathematiae 185 (2005), 267-285.[2℄ Devaney, R. L. The MMullen Domain: Satellite Mandelbrot Setsand Sierpinski Holes. Conformal Geometry and Dynamis 11 (2007),164-190.
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Figure 6: A hybrid Sierpinski urve Julia set (drawn from the family z2+�=z2and a magni�ation. Note that some of the omplementary domains appearto be bounded by isolated simple losed urves while others are bounded bysimple losed urves that meet another suh urve at a single point.[3℄ Devaney, R. L. Baby Mandelbrot Sets Adorned with Halos in Fam-ilies of Rational Maps. In Complex Dynamis: Twenty-Five Yearsafter the Appearane of the Mandelbrot Set. Amerian Math Soiety,Contemporary Math 396 (2006), 37-50.[4℄ Devaney, R. L. Cantor Neklaes and Struturally Unstable SierpinskiCurve Julia Sets for Rational Maps. Qualitative Theory of DynamialSystems 5 (2006), 337-359.[5℄ Devaney, R. L., Look, D. M., and Uminsky, D. The Esape Tri-hotomy for Singularly Perturbed Rational Maps. Indiana UniversityMathematis Journal 54 (2005), 1621-1634.[6℄ Devaney, R. L. and Look, D. M. A Criterion for Sierpinski Curve JuliaSets for Rational Maps. Topology Proeedings 30 (2006), 163-179.29
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