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Abstract

In this paper we describe a new structure that arises in the parame-
ter plane of the family of maps 2"+ \/z% where n > 2 is even but d > 3
is odd. We call these structures Mandelbrot-Sierpinski spokes (or, for
short, “Mandelpinski spokes”). It is known that there are infinitely
many baby Mandelbrot sets in these parameter planes that are part of
what is called the Mandelpinski maze for these maps. We show here
that there are infinitely many “spokes” emanating from each of these
Mandelbrot sets. Each spoke consists of infinitely many alternating
Mandelbrot sets and Sierpinski holes that lie along a certain arc that
tends away from the given Mandelbrot set in a certain direction.

In this paper we will concentrate on the family of maps Fj(z) = 22+ \/23,
though everything we discuss goes over to the more general case of 2" + \/z¢
where n > 2is even d > 3is odd. It is known [4] that there is a very elaborate
structure called a Mandelpinski maze that branches away from the negative
real axis in the parameter planes for these maps. Roughly speaking, this
magze consists of infinitely many baby Mandelbrot sets and Sierpinski holes
that alternate along each edge of a specific planar graph that has infinitely
many vertices. A Sierpinski hole is a disk in which all parameters correspond
to maps whose Julia sets are Sierpinski curves, i.e., they are homeomorphic
to the well known Sierpinski carpet.

In this paper we will look in detail at a neighborhood of each of these
Mandelbrot sets in the maze. We shall show that there are infinitely many
“spokes” emanating from this set. Along these spokes there are infinitely
many alternating copies of Mandelbrot sets and Sierpinski holes. Roughly
speaking, the spokes along which these sets lie are the analogues of the ex-
ternal rays of angle j/2% in the parameter plane for the usual Mandelbrot
set, though, of course, in this case, these rays are not in the region where the
critical values lie in the basin of oc.

In Figures 1 and 2, we display the parameter plane for 2%+ \/23, i.e., the

A-plane. Along the negative real axis, there are infinitely many disks: these
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are the Sierpiniski holes. Between any two Sierpinski holes, there is then
a (very small) Mandelbrot set, as shown in the first magnification in this
figure. Each of the four spokes displayed in this magnification pass through
infinitely many more Mandelbrot sets and Sierpiniski holes. The next two
magnifications in Figure 2 show more of the spokes emanating from this

Mandelbrot set. The Sierpinski holes are again visible, but the intermediate

Mandelbrot sets are too small to be seen at this level.

Figure 1: The parameter plane for z2 + \/z3. The magnification shows a
small Mandelbrot set with four spokes (0,1/4,1/2,3/4) emanating. Figure 2
shows further magnifications around this Mandelbrot set.

As mentioned above, all of the results below hold for the more general
families given by 2" + \/2¢ where n > 1 is even and d > 1 is odd. The
associated structures are then symmetrically located around the origin via
an (n — 1)-fold symmetry. See [1]. This may be seen in Figure 3 where the

parameter plane for z* + \/2® is displayed.



Figure 2: Two further magnifications of the parameter plane. In the first
figure, the spokes with angle j/8 where j =1, 3,5, and 7 are displayed, and,
in the second, those with angle j/16 where j = 1,3,5, and 7 are displayed.
Again, the intermediate Mandelbrot sets are too small to be seen.

1 Preliminaries

This paper describes what we call the Mandelpinski spokes that live in the

parameter plane of the family of rational maps given by
A
Fi(z) =2"+ g

where n > 2 is even and d > 3 is odd. However, for simplicity, we shall

concentrate only on the case
A
F)\(Z) = Z2 + Z—3

The extensions from this case to the more general case are straightforward;
see [4] for more details.
When |z| is large, we have that |Fy(z)| > |z| and so the point at oo is

an attracting fixed point in the Riemann sphere. We denote the immediate
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Figure 3: The parameter plane for the family 2% + \/z3.

basin of attraction of co by B,. There is also a pole at the origin for each of
these maps, and so there is a neighborhood of the origin that is mapped into
B,. If the preimage of B, surrounding the origin is disjoint from B,, we call
this region the trap door and denote it by 7).

The Julia set of F), J(F)), has several equivalent definitions. J(F}) is
the set of all points at which the family of iterates of F) fails to be a normal
family in the sense of Montel. Equivalently, J(F)) is the closure of the set of
repelling periodic points of F), and it is also the boundary of the set of all
points whose orbits tend to oo under iteration of F), not just those in the
boundary of B,. See [11].

There are five critical points for the map F) that are given by (3)A/2)'/°.
We denote the critical point that lies in R~ when A € R~ by ¢y = ¢} (and
then ¢} varies analytically with \). We denote the other critical points by

cj = cj‘ for —2 < j <2 where the ¢; are now arranged in the clockwise order

as j increases. As A moves half way around the origin from R™, ¢y rotates



exactly one-tenth of a turn in the corresponding direction. Thus, when Arg A
decreases from 7 to 0, ¢, lies in RT and when Arg \ increases from 7 to 27,
c_o now lies in R*. The critical values of Fj are then given by v* = xk\%/®
where x is the constant given by 5/(2%/53%/°). One computes easily that
Kk =~ 1.96. We denote by v]’-\ the critical value that is the image of c;‘.

There are also five prepoles for Fy given by (—))'/°. We denote the
prepole that lies in Rt when A\ € R~ by po = p3. The other prepoles are
denoted by p; = p;‘ where again —2 < j < 2 and the p; are arranged in the
clockwise order as j increases. Note that, when A € R™, the critical point ¢
lies between the two rays starting at the origin and passing through py and
P

The straight ray extending from the origin to co and passing through the
critical point c? is called a critical point ray. This ray is mapped two-to-one
onto the portion of the straight ray from the origin to oo that starts at the
critical value U_;\ and extends to co. A similar straight line extending from
0 to co and passing through a prepole p;‘ is a prepole ray, and this ray is
mapped one-to-one onto the entire straight line passing through both the

2/5 Note that all five of these points are different,

origin and the point (—\)
so there are five different images of the prepole rays.

Let w be a fifth root of unity. Then we have F)(wz) = w?F\(z), and so
it follows that the dynamical plane is symmetric under the rotation z — wz.
In particular, all of the critical orbits have “similar” fates. If one critical
orbit tends to oo, then all must do so. If one critical orbit tends to an
attracting cycle of some period, then all other critical orbits also tend to
an attracting cycle, though these cycles may be different and also may have
different periods. Nonetheless, the points on these attracting cycles are all

symmetrically located with respect to the rotation by w. As a consequence,

each of By, Ty, and J(F)) are symmetric under rotations by w.



There is an Escape Trichotomy [7] for this family of maps. One scenario
in this trichotomy occurs when one and hence, by symmetry, all of the critical
values lie in B,. In this case it is known that J(F)) is a Cantor set. The
corresponding set of A-values in the parameter plane is called the Cantor
set locus. The second scenario is that the critical values all lie in 7 (which
we assume is disjoint from B,). In this case the Julia set is a Cantor set
of simple closed curves surrounding the origin. This can only happen when
n,d > 2 but not both equal to 2 [10]. We call the region £! in parameter
plane where this occurs the “McMullen domain”; it is known that &£! is
an open disk surrounding the origin [2]. A third scenario is that the orbit
of a critical point enters T at iteration 2 or higher. Then, by the above
symmetry, all such critical orbits do the same. In this case, it is known that
the Julia set is a Sierpinski curve [6], i.e., a set that is homeomorphic to the
well known Sierpinski carpet fractal. The regions in the parameter plane for
which this happens are the open disks that we call Sierpiriski holes [13]. If
the critical orbits do not escape to oo, then it is known [8] that the Julia set
is a connected set. Thus we call the set of parameters for which the critical
orbits either do not escape or else enter the trap door at iteration 2 or higher
the connectedness locus. This is the region between the Cantor set locus and
the McMullen domain. In [1] it has been shown that there is a “principal”
Mandelbrot set M! in the parameter plane that lies along the positive real
axis and extends from the Cantor set locus down to the McMullen domain.
See Figure 4 for a display of these regions in the parameter plane. For more
details about the dynamical properties of these maps and structure of the

parameter plane, see [3].



Figure 4: The parameter plane for the family 22+ )\/23. The external region C
is the Cantor set locus. All of the disks visible in these pictures are Sierpinski
holes, except for the McMullen domain M, which is the tiny disk pointed to
in the magnification. The principal Mandelbrot set lies along the positive
real axis between the Cantor set locus and the McMullen domain.

2 The Initial Mandelpinski Arc

In this section, we construct a Mandelpinski arc. This will be an arc in
the parameter plane that passes alternately along the spines of infinitely
many baby Mandelbrot sets and through the centers of the same number of
Sierpinski holes. By the spine of the Mandelbrot set we mean the analogue
of the portion of the real axis lying in the usual Mandelbrot set associated
with the quadratic family 2? + ¢. As a remark, the construction in this
section replicates the one in [4], but we include these ideas here since they
are essential for what comes later.

In this first case, there will be infinitely many Mandelbrot sets M* with
k > 2 along this arc. Here k is the period of the attracting cycle for parame-



ters drawn from the main cardioid of M¥, i.e., the base period of M*. There
will also be infinitely many Sierpiniski holes £¥ with k¥ > 1 where k is the
escape time in £F, i.e., the number of iterations it takes for the orbit of the
critical points to enter 7). In this special case, the arc will be the portion of
the negative real axis in the parameter plane extending from the McMullen
domain £! down to the endpoint on the boundary of the connectedness locus.
Then the Mandelbrot sets and Sierpinski holes will be arranged along this
arc as follows:
LM< E S MP<EP < MP < EN.

In each case there will be an interval of nonzero length between any adjacent
Mandelbrot set and Sierpinski hole lying along this arc. The Mandelpinski
spokes we construct later will emanate from each of the M¥.

To construct the objects lying along this arc, we will restrict attention at
first to the A-values lying in the annular region O in parameter plane given
by 1071% < |\| < 2. Also, let A be the annulus in the dynamical plane given
by k107* < |2| < k22/® where k ~ 1.96 is defined as above.

Proposition.

1. For any A € O, all points on the outer circular boundary of A lie
in By, while all points on the inner circular boundary of A lie in T).

Moreover, F\ maps each of these boundaries strictly outside the outer
boundary of A.

2. If X\ lies on the inner circular boundary of O, then each critical value
lies on the inner circular boundary of A and so X lies in the McMullen

domain.

3. If X\ lies on the outer circular boundary of O, then each critical value
lies on the outer circular boundary of A and so X lies in the Cantor set

locus in the parameter plane.



Proof: First, if [2| = 7x2%/° for any 7 > 1, we have for each \ € O:

A
B 2 PR -
2
2 204/5
> 71°1.95°2 ~5,396/5

> 672 —1/(77°)

> TK2P = |2|.

So all points outside of the circle |z| = kK2%° lie in By when A € O.

Similarly, if |z| = k107, then we have

‘/\| 2 8 10710 9 8 )
=2 ~ R 107 2 o — #7107 2 100/K% — €
K

[Fx(2)| >
where € ~ 4-1078. So this inner boundary is mapped into By and outside of
A, and so are all smaller circles around the origin. Hence this circle lies in
Ty (when A lies in the connectedness locus).

Now if A lies on the inner circular boundary of O, then |A| = 10719 so
that \UJ)‘\ = k10~* for each j. Hence, for these \-values, v;‘ lies on the inner
circular boundary of A, which lies in T, and A therefore lies in the McMullen
domain. If X lies on the outer circular boundary of O, then |A| = 2 so that
3| = k22/° (the outer boundary of A) and thus this boundary circle lies in
the Cantor set locus in the parameter plane.

O

We now restrict attention to a “smaller” subset of O. Let O’ be the
subset of O containing parameters A for which 0 < Arg A < 27. Despite
the overlap of this region along the real axis, we will think of @’ as being
a closed disk (not an annulus) in the parameter plane with Arg A = 0 and
Arg A = 27 considered as different portions of the boundary. We do this
because, as Arg A increases from 0 to 27, the critical point ¢y that we will

be following rotates one-fifth of a turn in the dynamical plane. So this point
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will migrate to the position of a different critical point as Arg \ rotates one
full turn.

For any parameter in @', let L* be the closed “portion of the wedge” in
the annulus A in the dynamical plane that is bounded by the two prepole
rays through py and p_;. When A € R, L* is thus bounded by the rays
extending from 0 and passing through exp(27i(2/5)) and exp(27i(3/5)). So
the critical point cg lies in the interior of L*. Next, let R* be the portion of
the wedge in A that is bounded by the critical point rays passing through
co and c_s. When A € R™, this wedge is bounded by the critical point rays
extending from 0 and passing through exp(427i/10). Note that R is the

symmetric image of L* under z — —z. See Figure 5.

Figure 5: The wedges L* and R* for A = —0.09.

Proposition. For each A € O':

1. Fy maps the interior of R* in one-to-one fashion onto a region that

contains the interior of R* U L* together with a portion of Ty that
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contains 0;

2. Fy maps the interior of L two-to-one over a region that contains the

interior of R*;

3. As X\ winds once around the boundary of O', the critical value F)\(c}) =
vy winds once around the boundary of R, (i.e., the winding index of
the vector connecting this critical value to the prepole py lying in the

interior of R is one).

Proof: For the first case, recall that the straightline boundaries of R* are
mapped two-to-one onto the critical value rays passing through v3 and v?,.
When 0 < Arg A < 27, one checks easily that these rays are disjoint from both
R* and L*. The reason for this is that the arguments of the rays containing
the critical values increase/decrease twice as fast as the arguments of the
critical point and prepole rays as A varies. However, when Arg A = 0, the
critical value ray vy now reaches the boundary of R* on the real line, and
when Arg A = 27, the same thing is true for the critical value ray v*,. By the
previous Proposition, the outer boundary curve of R* is mapped to an arc
that lies in B, and also lies outside the outer circular boundaries of R* and
L*. This image arc connects the two critical value rays in By, and lies to the
right of these rays in the basin. The inner boundary is mapped to a similar
arc connecting these rays but now lying to the left of L*. Consequently, the
image of R* contains the interiors of both R* and L* and a portion of T},
since the critical values never land at the origin. As a remark, R is usually
mapped one-to-one over T); it is only when A lies in the McMullen domain
that this map is not one-to-one over 7T, because a critical value now lies in
Ty.

For the second case, we have that the straightline boundaries of L* contain

the prepoles p) and p*,, which are both mapped to straight lines passing
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through the origin. In the case of p}, we have that p) lies on the straight line
passing through the origin and exp(27i(2/5)) when A € R™. So the image of
this straight line passes through exp(27i(4/5)) in this case. Then as Arg A
increases or decreases by at most 7, the argument of this image line rotates
by at most one-fifth of a turn in the corresponding direction. Hence this
line lies strictly outside R* (except when Arg A = 27, in which case this line
is now the real axis, which meets the boundary of R*). Similar arguments
work for the image of the other prepole ray. For the circular boundaries of
L, by the previous Proposition, they are both mapped to curves in By that
lie outside of the outer boundary of A, but now these curves are arcs that
connect the images of the prepole rays passing to the right of these lines.
Hence F) maps L over the interior of R* in two-to-one fashion.

For the third case, when Arg\ = 0, the image of c) lies on the ray
passing through exp(—27i/5), and when Arg A = 2, this critical value lies
on the complex conjugate ray. So, for these parameters, the critical value
lies on a line that includes the straight line boundary of R*. For the circular
boundaries of O, the previous Proposition shows that the critical value now
rotates around in a region outside the corresponding circular boundary of
R*. Hence the critical value F)(c)) winds with index one around R* as A
winds around the boundary of O'.

|

Before constructing this Mandelpinski arc, we recall the concept of a
polynomial-like map. Let G, be a family of holomorphic maps that depends
analytically on the parameter u lying in some open disk D. Suppose each G, :
U, — V, where both U, and V), are open disks that also depend analytically
on u. G, is then said to be polynomial like of degree 2 if, for each u:

e G, maps U, two-to-one onto V,, and so there is a unique critical point

in Uy;
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e V), contains Uy;

e As p winds once around the boundary of D, the critical value winds

once around U, in the region V, — U,,.

As shown in [9], for such a family of polynomial-like maps, there is a home-
omorphic copy of the Mandelbrot set in the disk D. Moreover, for p-values
in this Mandelbrot set, G, | U, is conjugate to the corresponding quadratic
map given by this homeomorphism.

We can now prove

Theorem. Along the negative real axis in the parameter plane, there exist
infinitely many alternating Mandelbrot sets M* and Sierpiriski holes ¥ with
k > 2. Here k denotes the base period of MF and the escape time of EF.

Proof: We first consider the escape time case. By construction, for each
A € O, there is a unique prepole pj in the interior of R*. Since Fy maps R*
one-to-one over itself, there is a unique preimage of this prepole, 23, in R*,
so F}(z3) = 0. Continuing, for each A € @', there is a unique point z; in
R> for which we have F)(2}) = z;_, and so F} '(2) = 0. Now the points
zp vary analytically with \ and are strictly contained in the interior of R*.
So we may consider the function H*(\) defined on O’ by H*¥(\) = v} — 23
where v} = Fy\(c}). When ) rotates once around the boundary of O, v}
rotates once around the boundary of R* while 23 remains in the interior of
R*. Hence H*()\) has winding number one along the boundary of O and so
there must be a unique zero in @ for each H*. This is then the parameter
that lies at the center of the escape time region £*. It is well known [13] that
E* is then an open disk in the parameter plane. Note that, as A decreases
along R, both v} and 2} increase along R*. It then follows that the portion

of £F1 in R~ lies to the left of £% in the parameter plane.
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To prove the existence of the Mandelbrot sets M¥, recall that the orbit
of the point 27 under F) remains in R* before entering Ty and landing at 0
at iteration k — 1 (here 23 = p}). For each k > 2, let E¥ be the open set
surrounding 27 in R* that is mapped onto Ty by Ff’l. Let D¥ be the set
in R* consisting of points whose first k& — 2 iterations lie in R* but whose
(k — 1)% iterate lies in the interior of L*. Since F) is univalent on R*, each
D¥ is an open disk. Furthermore, the boundary of D¥ meets a portion of
the boundaries of both Ef~"' and E¥ (where E} = T)). Since F}~' maps D
one-to-one over the interior of L* and then F) maps L two-to-one over a
region that contains R*, we have that F¥ maps D¥ two-to-one over a region
that completely contains R*. Moreover, the critical value for Ff is just v},
which, by the preceding Proposition, winds once around the exterior of R*
as A winds once around the boundary of (. Hence F¥ is a polynomial-like
map of degree two on D and this proves the existence of a baby Mandelbrot
set MP* lying in O’ for each k > 2. When X is real and negative, we have
that the centers of the escape regions £ lie along R~ and, since the real line
is invariant under F) when A € R™, both ¢} and v} also lie on the real axis.
Then, by the A — ) symmetry in the parameter plane, the spines of these
Mandelbrot sets also lie in R™.

Next, since the E¥ and D¥ are arranged along the positive real axis in

the following fashion:
Th=FE;i<Di<E:<Di<FE}<...

and, as shown above, the £* decrease along R~ as k increases. Thus we
have that the £¥ and M* are arranged along the negative real axis in the

parameter plane in the opposite manner:
LE M <E < M <EL
See Figure 6.
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Finally, when A € R, there is a non-empty interval lying between each
adjacent MF* and &7 (where j = k or k—1). This interval contains parameters
for which Ff(cp) lies in L*, but then F{*'(c)) is back in R* and close to 0B.

As a consequence, it takes more than k additional iterations for this critical

orbit to reach T or return to L*.

Figure 6: The Mandelpinski arc along the negative real axis. The MF* are
so small that they are not visible in this picture. However, the magnification
shows M3.

In the remainder of this paper, we shall concentrate on a specific Man-
delbrot set M* and describe the infinite collection of Mandelpinski spokes
emanating from this set. With an eye toward how we shall proceed with this
construction, note that, at this stage, we have a single infinite Mandelpinski
arc extending to the left of M* which contains the sets M’ with j > k and
&7 with j > k. And there is a finite Mandelpinski arc lying on the other
side of M* which now contains finitely many sets M? where 2 < j < k
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and £/ where 1 < j < k. These will be the initial portions of two of the

Mandelpinski spokes emanating from M?¥.

3 The First Mandelpinski Spoke

In this next phase of the construction, we shall show that, on each side of
the Mandelbrot set M¥* in the first spoke, there are a pair of infinite spokes,
each extending over to one of the adjacent Sierpiriski holes £¥ and £¥~1. We
think of this as extending the two previously constructed arcs emanating
from MP*. In addition, we shall show that there are a pair of new finite
spokes extending above and below each M¥*. As above, a finite spoke means
that there are only finitely many Mandelbrot sets and Sierpinski holes that
alternate along this spoke. These will be the initial portions of the first four
spokes emanating from M¥.

To begin this phase of the construction, let us assume that the critical
value v} now lies in a particular open disk D¥ for some fixed k¥ > 2. Let
O, C O denote the set of parameters for which this happens. Now the
boundary of D} is mapped by F f’l one-to-one onto the boundary of L*, and
the boundary of L* varies analytically with A\. So we can construct a natural
parametrization of this boundary which also varies analytically with A\. Then
we can pull back this parameterization to the boundary of each D%. Again,
as we saw earlier, as A rotates around the boundary of the original disk O’
in the parameter plane, v} rotates once around the boundary of R*. Hence,
arguing just as in the previous section, there must be a unique parameter A
for which v} lands on any given point in the parametrization of the boundary
of D¥. Hence we have that Oy is a disk contained inside O' and, as X rotates
once around the boundary of Oy, the critical value has winding number one

around the boundary of the disk D¥.
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Now consider the set of preimages in L* of all of the Di and Ef\ under F).
Since we have assumed that v} lies in Df, it follows that there is a unique
preimage of D¥ in L* which is a disk that contains ¢} and is mapped two-
to-one onto D%. Call this special disk L}. For each other Di (with j # k),
there are now two preimage disks lying in L*. Note that, when A € R~ and
j > k, there are a pair of preimages of Di lying along R, one to the right
of L} and one to the left. These preimages tend away from Df in either
direction as j increases. When 2 < j < k, there are again two preimages of
Df\, but when A € R™, these preimages no longer lie on the negative axis;
rather they branch out more or less perpendicularly above and below L} on
this axis. As for the preimages of Ef\ in L*, we have the same situation:
there are infinitely many pairs of preimages of each Eﬁ\ lying along R~ on
either side of the preimage of D¥ when j > k and A € R, and finitely many
pairs extending above and below this preimage when 1 < 5 < k. Thus we
have a pair of infinite chains of alternating preimages of the disks D¥ and
E¥ extending away from L} and another pair of chains consisting of finitely
many such preimages extending in a “perpendicular” direction away from
Ik,

Since F' )’f_l maps D¥ one-to-one over L*, we thus have a similar collection
of preimages that lie inside the disk D¥. We denote by D’;j each of the two
disks in D¥ that are mapped onto Di by Ff when j # k. And we let D5*
denote the single preimage of D¥ under F¥ that is contained in D¥, i.e., the
preimage of L under F). So points in D'jj have orbits that remain in R for
the first £ — 2 iterations, then map to L* under the next iteration, and then
map into Di under the next iteration. Then F/{_l maps this set onto L*.
So Ff*7~" maps each DY one-to-one onto all of L* (assuming &k # j). Then
the next iteration takes this set two-to-one onto all of R*. Now the critical

k+7 - .
value for F/\ﬂ is again v}, and, as we showed above, as A rotates around
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the boundary of O, v} circles around the boundary of D¥. Hence F' /{+k is
polynomial-like of degree two on each of the two disks Df\j (where we again
emphasize that we are assuming j > 2 and j # k). So this produces a pair
of Mandelbrot sets M*/ with base period k + j in 0. As in the previous
construction, the Mandelbrot sets M*J with j > k all have spines lying along
R, one on each side of M*. The other Mandelbrot sets with j < k now lie
off the real axis, one above M* and the other below M¥.

Similar arguments as in the preceding section also produce a pair of
Sierpinski holes £ on each side of M* along the real axis where now j > k.
And there are a pair of Sierpinski holes £%/, one above and one below M¥,
where now 1 < j < k. As earlier, these Mandelbrot sets and Sierpinski holes
alternate along each of these spokes. For parameters in the Sierpinski hole
EFL the critical orbit Fi(cp) lies in R* for iterations 1 < ¢ < k — 1. Then
Ff(cp) returns to L*, and then Ff(c)) enters Ty.

Note that the Mandelbrot sets M* are not subsets of the larger Man-
delbrot set M¥. This follows since the orbit of the critical point returns to
L> only at iterations k and k + j with j # k when A\ € M* whereas these
returns occur at iterations k and 2k when A\ € M¥*. This also follows from the
fact that there is a Sierpinski hole separating each of these baby Mandelbrot
sets from MP¥ along the new spoke. In Figure 7 we display a portion of these
smaller spokes around M*. To summarize the results at this phase of the

construction, we have shown:

Theorem. In the original Mandelpinski arc, between each E¥' and EF,
there exist a pair of infinite spokes, each containing Mandelbrot sets M*I
where j > k and Sierpiriski holes E¥9 where 7 > k in the same alternating
arrangement as earlier. One spoke extends from MF to £¥~1, the other from
ME to EE. The are also a pair of finite spokes extending away from MP*

in different directions. These finite spokes contain the Mandelbrot sets M
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where 2 < j < k and the Sierpiriski holes E¥ where now 1 < j < k. The
Mandelbrot sets M* have base period k+j and the Sierpiriski holes ¥ have

escape time k + j.
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Figure 7: The finite spoke above and below M?* as well as a magnification
showing the infinite spokes along the real axis.

4 Final Phase

We now continue the construction of the Mandelpinski spokes by induction.
For simplicity, we will only consider the next phase of the construction; all
subsequent phases follow in exactly the same way. This time we will adjoin
four infinite spokes that lie closer to M¥ to those already in place, and then
we will add four new finite spokes in betwen each of these infinite spokes.
To be precise, in the previous phase, we assumed that the critical value
resided in a particular disk D5, and so there was a special disk Df* C D¥ that

was mapped two-to-one onto D¥ by FF. At this stage we make the further
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assumption that v} lies in D, Let Oy C Ok be the set of parameters for
which this occurs. Note that MPF lies in Okr. We have that F)’f maps the
boundary of D% two-to-one onto the boundary of Df. Thus we may pull
back the parametrization of D% constructed earlier to produce a natural
parametrization of D% which varies analytically with A\. Thus there is a
unique A for which v lands on a given point in the boundary of D%, and so,
as A winds once around the boundary of Oy, vy winds once around D%
By the prior construction, we have a pair of infinite chains each of which
consists of the disks ij with 7 > £k and El)fj with j > k lying in the annular
region D% — D* as well as a pair of finite chains consisting of the disks D}’
and E])fj with j < k lying in the same annulus. Since F¥ maps D¥* two-to-one
onto the entire disk D¥, we therefore have four new infinite chains inside D*
that are the preimages of the two infinite chains in the annular region. These
chains consist of disks that we denote by either Dl)fkj with j > k or El)fkj with
j > k. Each of these chains then connects to one of the two infinite or finite
chains in the outer annular region. This follows since these outer chains were
all mapped onto the left or right portion of the original chain by F¥. We also
have four finite chains in D¥* consisting of disks D"/ and Ef* with j < k
that are preimages of the finite chains in the annular region. These chains
do not connect to the previously constructed chains in the annular region.
Then the same arguments as above produce the corresponding spokes in
the parameter plane. Each of the two finite and infinite spokes constructed
earlier now have an added infinite spoke that lies in the region between M*
and that spoke. The Mandelbrot sets and Sierpinski holes in this new portion
of the spoke are given by M*® where j > k and £¥% where j > k and the
four new finite spokes consist of similar sets with now j < k. These are all
associated with rays of angle ¢/8 with ¢ even for the infinite spokes and ¢

odd for the finite spokes.
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At this stage we now have eight Mandelpinski spokes emanating from M¥,

four finite spokes and four infinite spokes. Continuing inductively, at the next

stage, we then add eight infinite spokes between each of these spokes and M*

as well as eight new finite spokes, one between each of these newly added

infinite spokes. In the limit, we get an infinite collection of Mandelpinski

spokes emanating from MF.
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