Mandelpinski Structures in the Parameter
Planes of Rational Maps *

Robert L. Devaney!
Department of Mathematics
Boston University
111 Cummington Mall
Boston, MA 02215 USA

October 12, 2015

*2000 MSC number: Primary 37F10; Secondary 37F45
tRobert L. Devaney was partially supported by Simons Foundation Grant #208780

1



Abstract

In this paper we give three examples of “Mandelpinski structures”
that arise in the parameter planes for maps of the form 2" + /\/zd.
These structures include Mandelpinski necklaces, Mandelpinski spokes,
and a Mandelpinski maze. We use the term “Mandelpinski” here since
each of these objects consists of a variety of curves in the parameter
plane that alternately pass through a large number of Mandelbrot sets
and Sierpinski holes.

In this paper we give a survey of three different types of “Mandelpinski

structures” that arise in the parameter planes for maps of the form

no A
F)\(Z):Z +;

where n,d > 2. Roughly speaking, a Mandelpinski structure is a collection
of curves along which alternate a large number of Mandelbrot sets and Sier-
pinski holes. A Sierpinski hole is a disk in the parameter plane in which each
parameter corresponds to a map whose Julia set is a Sierpinski curve, i.e.,
the Julia set is homeomorphic to the well known Sierpinski carpet fractal.

The types of curves that the Mandelbrot sets and Sierpinski holes al-
ternate along can be very different. The first case we shall consider are
Mandelpinski necklaces. When n = d > 2, these consist of infinitely many
disjoint simple closed curves surrounding the origin in the A-plane that con-
tain more and more Mandelbrot sets and Sierpinski holes as the necklaces
get smaller. See Section 2.

The second case involves Mandelpinski spokes (Section 4). In this case
we assume n > 2 is even and d > 3 is odd. We first describe an infinite
collection of Mandelbrot sets M¥. Then we show that there are infinitely
many disjoint arcs extending away from each M?* in different directions, and
each arc now passes alternately through infinitely many Mandelbrot sets and
Sierpinski holes. Attaching these sets to the arcs yields the Mandelpinski

spokes.



In the third case we again assume that n > 2 is even and d > 3 is odd
and show that there is a Mandelpinski maze in the parameter plane for this
family. This result is described in Section 5. This maze consists of a sequence
of planar graphs of increasing complexity. At each stage, each vertex on
the graph corresponds to a different Mandelbrot set and the middle of each
edge corresponds to a Sierpinski hole. To construct the next phase of the
maze, at each vertex we “duplicate” the current graph centered at the given
Mandelbrot set and then attach this additional graph to this Mandelbrot
set to further extend the maze. See Figure 1 for a picture of each of these
structures.

We will not provide complete proofs of all of these results in this paper.
Rather, we will simply show how certain structures arise in the dynamical
plane and then illustrate how ideas from complex analysis allow us to re-
produce similar versions in the parameter plane. This follows what Adrien
Douady often said: “In complex dynamics, we sow the seeds in the dynamical

plane and reap the harvest in the parameter plane.”

1 Preliminaries
In this paper we consider the family of rational maps given by

no A
F)\(Z)ZZ +;

where n,d > 2. When |z| is large, we have that |F)\(z)| > |z|, so the point
at oo is an attracting fixed point in the Riemann sphere. We denote the
immediate basin of attraction of oo by B). There is also a pole at the origin
for each of these maps, and so there is a neighborhood of the origin that is
mapped into By. If the preimage of B) surrounding the origin is disjoint

from B,, we call this region the trap door and denote it by 7).



Figure 1: In this figure we display (a) some Mandelpinski necklaces for the
family 2% + \/2%; (b) the Mandelpinski spokes for the family 22 + \/z%; and
(c) a portion of the Mandelpinski maze for the family 2® + )\/23. To see the
Mandelbrot sets in each case usually requires many zooms into these images.



The Julia set of F\, J(F)), has several equivalent definitions. J(F)) is
the set of all points at which the family of iterates of F) fails to be a normal
family in the sense of Montel. Equivalently, J(F)) is the closure of the set of
repelling periodic points of F), and it is also the boundary of the set of all
points whose orbits tend to oo under iteration of F), not just those in the
boundary of B). See [18].

One checks easily that there are n + d critical points that are given by

-
n

with the corresponding critical values given by

A - n)A:% |
dn+apntd
Note that, when n = d, there are only two critical values given by £2v/.
There are also n + d prepoles given by
Pt = (=A)Ha.

Let w be an (n + d)™ root of unity. Then we have F)(wz) = w"Fy(z),
and so it follows that the dynamical plane is symmetric under the rotation
z +— wz. In particular, all of the critical orbits have “similar” fates. If one
critical orbit tends to oo, then all must do so. If one critical orbit tends to
an attracting cycle of some period, then all other critical orbits also tend
to an attracting cycle, though these other cycles may have different periods.
Nonetheless, the points on these attracting cycles are all symmetrically lo-
cated with respect to the rotation by w. As a consequence, each of B), T),
and J(F)) are symmetric under rotation by w. Similarly, one checks easily
that the parameter plane is symmetric under the rotation A — v\ where v
is an (n — 1)* root of unity. The parameter plane is also symmetric under

complex conjugation \ — \.



There is an Escape Trichotomy [12] for this family of maps. The first
scenario in this trichotomy occurs when one and hence, by symmetry, all of
the critical values lie in By. In this case it is known that J(F)) is a Cantor
set [12]. The corresponding set of A-values in the parameter plane is denoted
by C and called the Cantor set locus. The second scenario is that the critical
values all lie in 7 (which we assume is disjoint from B,). In this case the
Julia set is a Cantor set of simple closed curves surrounding the origin. This
can only happen when n,d > 2 but not both equal to 2 [17]. We call the
region £! in parameter plane where this occurs the “McMullen domain”; it is
known that £! is an open disk surrounding the origin [3]. The third scenario
is that the orbit of a critical point enters 7T} at iteration 2 or higher. Then,
by the above symmetry, all such critical orbits do the same. In this case,
it is known that the Julia set is a Sierpinski curve [10], i.e., a set that is
homeomorphic to the well known Sierpinski carpet fractal. The regions in
the parameter plane for which this happens are the open disks that we call
Sierpinski holes [8], [20]. If the critical orbits do not escape to oo, then it
is known [15] that the Julia set is a connected set. Thus we call the set of
parameters for which the critical orbits either do not escape or else enter the
trap door at iteration 2 or higher the connectedness locus. This is the region
between C and £!. See Figure 2.

Proving that a Julia set is a Sierpinski curve is often quite easy. By a
theorem of Whyburn [21], any planar set that is compact, connected, locally
connected, nowhere dense, and has the property that any pair of complemen-
tary domains are bounded by simple closed curves that are pairwise disjoint
is homeomorphic to the Sierpinski carpet. In complex dynamics, verifying
the first four of these properties is, in many cases, trivial. See [4], [10] for
more details.

In [2] and [9] it has been shown that there are n— 1 principal Mandelbrot



Figure 2: The parameter planes for the family 2" + \/2¢ when n = 2,d = 3
and n = 4,d = 3. There is one principal Mandelbrot set in the first case and
three symmetrically located such sets in the second. All of the red holes in
these pictures (except the one surrounding the origin) are Sierpinski holes.
&' is too small to be seen in the first figure.

sets in the parameter plane for these maps. These are symmetrically located
by the rotation z — vz around the origin and extend from the Cantor set
locus down to the McMullen domain.

For more details about the dynamical properties of these maps and the

structure of the parameter plane, see [4].

2 Mandelpinski Necklaces
In this section we restrict attention to the family

A

Fi(z) =2"+ o

where n > 3. In this case the critical points of Fy are given by \'/?", the

two critical values by +2v/), and the prepoles by (—=\)'/?". There is an



additional symmetry in the dynamical planes for these maps. Let H) be an
involution given by A/ /2. Then F\(Hx(z)) = Fi(z), so the dynamical plane
is symmetric under each of these involutions.

Recall that, if |A| is small, the Julia set of F) is a Cantor set of simple
closed curves surrounding the origin and the set of parameters for which this
holds is the McMullen domain &*.

We define the center of a Sierpinski hole to be the unique parameter for
which the orbits of the critical points all land on oo, and the escape time is
the number of iterations that it takes for the critical orbits to enter the trap
door. The center of a Mandelbrot set is the unique superstable parameter
that lies in the main cardioid.

The following result was proved in [13].

Theorem. For each k > 0 there exists a simple closed curve C) which
surrounds the McMullen domain and the C} converge to the boundary of
this domain as k — oc. Each Cy passes alternately through exactly (n —
2)n* + 1 centers of Sierpinski holes with escape time k + 2 and centers of

baby Mandelbrot sets, i.e., very small copies of the usual Mandelbrot set.

The center of a Sierpinski hole is the unique parameter for which the
orbits of the critical points all land on oo, and the escape time is the number
of iterations that it takes for the critical orbits to enter the trap door. The
center of a Mandelbrot set is the unique superstable parameter that lies in
the main cardioid.

We call each C;, a Mandelpinski necklace. As a remark, this result also
holds when n = 2 [1], but then the formula (n — 2)n* + 1 shows that each
Cy passes through just one Sierpinski hole and one Mandelbrot set. Also, in
a forthcoming paper by D. Cuzzocreo, it has been shown that each of the
Sierpinski holes in the above result are known to be surrounded by infinitely

many similar Mandelpinski sub-necklaces. And then this process continues
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Figure 3: The rings around the McMullen domain in the family 2% + \/23.
In each case, the McMullen domain is the central disk. The Sierpinski holes
are visible in these rings, but most of the Mandelbrot sets are too small to
be seen.

recursively with each sub-necklace having its own sub-necklaces. See Fig-
ure 3.

These Mandelpinski necklaces arise from the following structure in the
dynamical plane. Let 7 = 73 be the circle given by |z| = |A|'/?" in the
dynamical plane. So 7, contains all of the critical points and prepoles which
are arranged along <y in alternating fashion. We call vy the critical circle.
Note that each involution H) preserves the critical circle and interchanges
the interior and exterior of this circle. One checks easily that F) maps the
critical circle 2n-to-one onto the critical value segment which is the straight
line segment connecting the two critical values and hence passing through 0.

The first necklace Cj then arises when the critical values lie on v,. This
occurs when [v}| = 2|v/A| = |A[Y/?" = |¢*|. The necklace Cy is the circle
in the parameter plane given by |\ = (1/4)™"~!. We call this the dividing

circle. As ) rotates one full turn around the dividing circle, each crtical



value rotates one-half a turn along 7y, while each of the prepoles and critical
points rotates only (1/2n)"™ of a turn. This shows that there are exactly
n — 1 centers of Sierpinski and baby Mandelbrot sets on Cj.

For the remaining necklaces, we assume that A lies strictly inside the
dividing circle in the parameter plane, so [v*| < |c¢}|. Therefore the critical
circle is mapped strictly inside itself. As a consequence, the exterior of the
critical circle is mapped as an n-to-one covering of the exterior of the critical
value segment. Indeed, any circle outside 7, is mapped n-to-one onto an
ellipse whose foci are £v*. Thus there is a preimage ~y; of the critical circle
that lies outside of 7y. Then ~y; contains 2n? pre-critical points and the same
number of pre-prepoles. Then the exterior of 7; is mapped as an n-to-one
covering of the exterior of 7y and so there is another simple closed curve
7, that is mapped n-to-one onto y;. Thus 7, contains 2n? points that are
mapped to the critical points by F} and the same number of points that
are mapped to prepoles by F. And this continues to produce a sequence of
simple closed curves v, converging outward from v, as £ — oo, and each 4

k+1 pre-critical points and prepoles.

contains similar sets of 2n

By the H) symmetry, the interior of ~, is also mapped n-to-one onto the
complement of the critical value segment. So we now have infinitely many
other simple closed curves v_;,j = 1,...00 lying inside 9. The curve _; is
mapped n-to-one onto y;_; and so these curves contain a similar number of
points that are mapped to the critical points and prepoles by F /{ .

We then “transfer” this picture to the parameter plane as follows. As
A rotates once around the origin, a certain number of the preimages of the
critical points and prepoles in C} (namely, (n — 2)n* 4+ 1 such points) can be
shown to remain in the upper half plane. Consider the subset of the param-

eter plane consisting of an open annulus bounded by a circle strictly inside

the McMullen domain and the dividing circle. Then remove the positive real



axis from this set to give a simply connected set O in the parameter plane.
Then we have two maps defined on O. One map is given by A — v*. The
second is given by selecting one of the prepoles (or pre-critical points) on
7, which remain in the upper half plane as \ rotates, excluding the critical
points that lie on the real axis when \ is positive. Call this point z¥ where
2% is chosen to vary analytically with A. So this map is A — 2z%.

The map V(\) = v is invertible on O, so we can consider the map
A VL(2F) from O to O. Then the Schwarz Lemma implies that this map
has a unique fixed point in O. This fixed point is then the parameter \* for
which v} = 2%., so for the parameter \*, either one of the critical points
¢y« returns to a critical point at iteration k + 1, or else the orbit of a critical
point lands on 0 at iteration k + 2. When n is even, this implies that, in the
first case, the orbit of some critical point lands on itself and hence is periodic
of period k + 1, whereas, if n is odd, this critical point may return to itself
or to its negative and thus, by the z — —z symmetry, this period is either
k+1 or 2(k + 1). This produces the parameters lying at the centers of the
Sierpinski holes and the centers of the main cardioids of the baby Mandelbrot
sets. Finding such a center of a Mandelbrot set in the case we excluded above
when ) is positive is straightforward, since both v* and ¢ lie on the real axis
in this case. Full details of this proof may be found in [13].

Producing the entire Sierpinski holes in these cases involves quasi-conformal
surgery, while producing the entire baby Mandelbrot sets involves polynomial-
like maps [16]. We shall illustrate how this works when we create the Man-

delpinski spokes in a later section.
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3 Dynamics on Sierpinski Curve Julia Sets

The Mandelbrot sets centered on the Mandelpinski necklaces Cy where k£ > 0
are all “buried” in the sense that they do not extend out to the external
boundary of the connectedness locus. It is known that any parameter drawn
from the main cardioid of such a buried Mandelbrot set is also a Sierpinski
curve [11]. Thus we have a total of 2(n — 2)n* + 2 open disks along Cj
for which the corresponding maps have Julia sets that are Sierpinski curves.
Hence all of these Julia sets are homeomorphic to one another. So the natural
question is: what about the dynamical behavior on these Julia sets? When
is the dynamical behavior the same, i.e., when are the maps topologically
conjugate to one another? And when is this behavior different?

Regarding these questions, first note that parameters drawn from the
main cardioids of the Mandelbrot sets always have different dynamical be-
havior from those lying in Sierpinski holes, since, in the Mandelbrot set case,
we have that the boundaries of the attracting basins are invariant under
some iterate of F)\, whereas only 0B, is invariant under iterates of F) in the
Sierpinski hole case.

It is known that any two parameters drawn from the same Sierpinski hole
or main cardioid of a Mandelbrot set have conjugate behavior on their Julia
sets [14], [20]. Regarding different Sierpinski holes (or main cardioids), it
is also shown in [14] that only those that are symmetrically located in the
parameter plane by a rotation by an (n — 1)*® root of unity or by complex
conjugation contain parameters for which the dynamics are the same. The
maps cannot be topologically conjugate on the Julia sets if they are drawn
from different, non-symmetrically located disks.

So now the question is: What makes the dynamics different in the non-

symmetrically located disks? This has been determined by Moreno Rocha
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in the Sierpinski hole case [19] where she produces a dynamical invariant for
these maps. But this situation is still unresolved in the cardioid case.

As a remark, this conjugacy result holds for all Sierpinski holes (including
those described in the following sections), not just those lying along the
Mandelpinski necklaces. Indeed, it is known that there are exactly (n —
1)(2n)*~2 Sierpinski holes with escape time k for maps of the form 2™+ \/z"
(8], [20]. As mentioned above, the escape time is the number of iterations
for the critical orbits to enter the trap door. Then there are exactly (2n) 3
different conjugacy classes of these maps when n is even and (2n)*F=3/24-2k4
when n is odd [14]. This count of the number of Sierpinski holes arises from
the fact that there is a unique center of each Sierpinski hole, i.e., a parameter
for which F¥(c*) = 0. Hence this count reduces to finding the number of roots

of a polynomial equation, all of whose roots are known to be simple.

4 Mandelpinski Spokes

For the remainder of this paper, in order to keep the notation simple, we will

restrict attention to the family of maps
A
F)\(Z) = 22 + 2—3

However, all of the following constructions go through with only minor

changes for the more general family
A

where n > 2 is even and d > 3 is odd.

4.1 The Initial Mandelpinski Arc

In this section, in preparation for the next two Mandelpinski structures, we

shall construct a Mandelpinski arc. This will be an arc in the parameter plane
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that passes alternately along the spines of infinitely many baby Mandelbrot
sets and through the centers of the same number of Sierpinski holes. By the
spine of a Mandelbrot set we mean the analogue of the portion of the real
axis lying in the usual Mandelbrot set associated with the quadratic family
22 +ec.

In this initial Mandelpinski arc, there will be infinitely many Mandelbrot
sets M¥ with k > 2 along this arc. Here k is the period of the attracting cycle
for parameters drawn from the main cardioid of M¥, i.e., the base period of
MP*. There will also be infinitely many Sierpinski holes £¥ with & > 1 where
k is the escape time in £F, i.e., the number of iterations it takes for the orbit
of the critical points to enter 7. In this special case, the Mandelpinski arc
will be the portion of the negative real axis in the parameter plane extending
from the McMullen domain £! down to the endpoint on the boundary of the
connectedness locus in the left half plane. Then the Mandelbrot sets and

Sierpinski holes will be arranged along this arc as follows:
LM< E < MP<E2 < ME < EL.

In each case there will be an interval of nonzero length between any adjacent
Mandelbrot set and Sierpinski hole lying along this arc. The Mandelpinski
spokes we construct later will emanate from each of the M*, and the proof
of the existence of these spokes will be similar in spirit to the proof that we
sketch here.

In Figure 4 we display the parameter plane for z? + \/z®. Along the
negative real axis, there are infinitely many red disks that are visible: these
are the Sierpinski holes in the Mandelpinski arc. Between any two Sierpinski
holes, there is then a (very small) Mandelbrot set as well as many more
Sierpinski holes, as shown in the magnification in this figure.

There are now five critical points for the map F) that are given by

13



Figure 4: The parameter plane for z2 + \/z3. The magnification shows a
small Mandelbrot set between two of the large Sierpinski holes.

(3X/2)'/°. We denote the critical point that lies in R~ when A € R~ by
co = ¢ (and then ¢ varies analytically with \). We denote the other critical
points by ¢; = c;‘ for —2 < j < 2 where the ¢; are now arranged in the clock-
wise order as j increases. As A moves half way around the origin from R,
co rotates exactly one-tenth of a turn in the corresponding direction. Thus,
when Arg A decreases from 7 to 0, ¢y lies in RY and when Arg \ increases
from 7 to 27, c_s now lies in R*. The critical values of F) are then given
by v* = kA?/® where & is the constant given by 5/(2%/°33/°). One computes
easily that k =~ 1.96. We denote by UJ)-‘ the critical value that is the image of
&

There are also five prepoles for Fy given by (—))'/5. We denote the
prepole that lies in R when A € R~ by p, = pj. The other prepoles are
denoted by p; = p;‘ where again —2 < j < 2 and the p; are arranged in the

clockwise order as j increases. Note that, when A\ € R™, the critical point ¢
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lies between the two rays starting at the origin and passing through py and
p_1. Unlike the previous case where n = d, the critical points and prepoles
no longer lie on the same circle.

The straight ray extending from the origin to co and passing through the
critical point c? is a critical point ray. This ray is mapped two-to-one onto
the portion of the straight ray from the origin to co that starts at the critical
value v;‘ and extends to oo. A similar straight line extending from 0 to oo
and passing through a prepole p? is a prepole ray, and this ray is mapped
one-to-one onto the entire straight line passing through both the origin and
the point (—\)%/°.

To construct the objects lying along this Mandelpinski arc, we will restrict
attention at first to the A-values lying in the annular region O in parameter
plane given by 1071% < |\| < 2. Also, let A be the annulus in the dynamical
plane given by k10™* < |2| < k2%/° where k ~ 1.96 is defined as above. Then
easy estimates show that, for any A € O, all points on the outer circular
boundary of A lie in By, while all points on the inner circular boundary of
A lie in T). Moreover, F, maps each of these boundaries strictly outside the
boundary of A. Also, if A lies on the inner circular boundary of O, then each
critical value lies on the inner circular boundary of A and so A lies in the
McMullen domain. And, if A lies on the outer circular boundary of O, then
each critical value lies on the outer circular boundary of A and so A lies in
the Cantor set locus in the parameter plane. For a detailed proof of this, see
[6].

We now restrict attention to a “smaller” subset of O. Let O' be the
subset of O containing parameters A\ for which 0 < Arg A < 27. Despite the
overlap of this region along the real axis, we will think of O' as being a closed
disk (not an annulus) in the parameter plane with Arg A = 0 and Arg A\ = 27

considered as different portions of the boundary. We do this because, as
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Arg A increases from 0 to 27, the critical point ¢y that we will be following
rotates one-fifth of a turn in the dynamical plane. So this point will migrate
to the position of a different critical point as Arg A increases from 0 to 27.
For any parameter in @', let L* be the closed “portion of the wedge” in
the annulus A in the dynamical plane that is bounded by the two prepole
rays through py and p_;. When A € R, L* is thus bounded by the rays
extending from 0 and passing through exp(27i(2/5)) and exp(27i(3/5)). So
the critical point ¢y lies in the interior of L*. Next, let R* be the portion of
the wedge in A that is bounded by the critical point rays passing through
co and c_s. When A € R, this wedge is bounded by the critical point rays
extending from 0 and passing through exp(4-27i/10). Note that R* is the

symmetric image of L* under z — —z for each A € O'. See Figure 5.

Figure 5: The wedges L* and R* for A\ = —0.09.

Then it is easy to see that, for each \ € O':

1. F\, maps the interior of R* in one-to-one fashion onto a region that
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contains the interior of R* U L* together with a portion of 7, that

contains 0;

2. F\ maps the interior of L* two-to-one over a region that contains the

interior of R*;

3. As ) winds once around the boundary of @', the critical value Fy(c}) =
vy winds once around the boundary of R*, (i.e., the winding index of
the vector connecting this critical value to the prepole py lying in the

interior of R* is one).

Again, the details of this proof may be found in [6].

Before constructing this Mandelpinski arc, we recall the concept of a
polynomial-like map. Let G, be a family of holomorphic maps that depends
analytically on the parameter ;1 lying in some open disk D. Suppose each G, :
U, — V), where both U, and V), are open disks that also depend analytically
on u. G, is then said to be polynomial like of degree 2 if, for each u:

e (G, maps U, two-to-one onto V, and so there is a unique critical point

in Uy;
e V), contains Uy;

e As p winds once around the boundary of D, the critical value winds

once around U, in the region V,, — U,,.

As shown in [16], for such a family of polynomial-like maps, there is a home-
omorphic copy of the Mandelbrot set in the disk D. Moreover, for p-values
in this Mandelbrot set, G, | U, is conjugate to the corresponding quadratic
map given by this homeomorphism.

To show the existence of the Mandelpinski arc in the parameter plane,

we will first observe a “similar” collection of sets in the dynamical plane,
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and then use polynomial-like maps and the argument principle to produce
the analogous Mandelbrot sets M* and Sierpinski holes £ in the parameter
plane.

We shall first consider the escape time case. By construction, for each
A € O, there is a unique prepole pj in the interior of R*. Since F) maps R*
one-to-one over itself, there is a unique preimage of this prepole, 23, in R,
so F}(z3) = 0. Continuing, for each A € @', there is a unique point z; in
R for which we have Fy(2}) = 2;_, and so Fy~'(2}) = 0. Now the points
zp vary analytically with A and are strictly contained in the interior of R*.
So we may consider the function H*(\) defined on O’ by H*¥(\) = v} — 23
where v} = Fy\(cj). When ) rotates once around the boundary of O, v}
rotates once around the boundary of R* while 23 remains in the interior of
R*. Hence H*()\) has winding number one along the boundary of O’ and so
there must be a unique zero in @ for each H*. This is then the parameter
that lies at the center of the escape time region £F. It is well known [20] that
E* is then an open disk in the parameter plane. Note that, as A decreases
along R™, both v and z} increase along RT. It then follows that the portion
of £¥t1 in R~ lies to the left of £* in the parameter plane.

To prove the existence of the Mandelbrot sets M¥, recall that the orbit
of the point 2} under F) remains in R* before entering 7y and landing at
0 at iteration k — 1 (here 23 = p3). For each k > 2, let E¥ be the open
set surrounding z} in R* that is mapped to Ty by F f‘l. Let D¥ be the set
in R* consisting of points whose first k& — 2 iterations lie in R* but whose
(k — 1)% iterate lies in the interior of L*. Since F) is univalent on R*, each
D¥ is an open disk. Furthermore, the boundary of Df meets a portion of the
boundaries of both E5~! and E¥ (where E} = T)). Since F¥~' maps D one-
to-one over the interior of L* and then F) maps L* two-to-one over a region

that contains R*, we have that F¥ maps D¥ two-to-one over a region that
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completely contains R*. Moreover, the critical value for F¥ is just v}, which,
as mentioned above, winds once around the exterior of R* as A\ winds once
around the boundary of O'. Hence F¥ is a polynomial-like map of degree two
on DX and this proves the existence of a baby Mandelbrot set M¥* lying in O’
for each £ > 2. When )\ is real and negative, we have that the centers of the
escape regions £F lie along R~ and, since the real line is invariant under F),
when A\ € R™, both ¢} and v} also lie on the real axis. Then, by the A — X
symmetry in the parameter plane, the spines of these Mandelbrot sets also
lie in R™.

Next, since the E¥ and D¥ are arranged along the postive real axis in the

following fashion:
T\=E,<Di<E{<D}<E}<...

and, as shown above, the £F decrease along R~ as k increases, we therefore
have that the £¥ and M* are arranged along the negative real axis in the

parameter plane in the opposite manner:
LE S MP<EE < M < EL
See Figure 6.

4.2 Construction of the Mandelpinski Spokes

In this section, we shall concentrate on a specific Mandelbrot set M* and
describe the infinite collection of Mandelpinski spokes emanating from this
set. A Mandelpinski spoke is an arc in the parameter plane along which lie in-
finitely (or finitely) many Mandelbrot sets and Sierpinski holes in alternating
fashion. With an eye toward how we shall proceed with this construction,
note that, at this stage, we have already produced a single infinite Man-

delpinski spoke extending to the left of M* which contains the sets M7 with
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Figure 6: The Mandelpinski arc along the negative real axis. The MF* are
so small that they are not visible in this picture. However, the magnification
shows M3.

j > k and &7 with j > k. And there is a finite Mandelpinski spoke lying
on the other side of M* which now contains finitely many sets M7 where
2 < j < k and & where 1 < j < k. These will be the initial portions of two
of the (eventually infinite) Mandelpinski spokes emanating from M¥*.

In this next phase of the construction, we shall show that, on each side of
the Mandelbrot set M?* in the first spoke, there are a pair of infinite spokes,
each extending over to one of the adjacent Sierpinski holes £F and £*¥~1. We
think of this as extending the two previously constructed spokes emanating
from MF. In addition, we shall show that there are a pair of new finite spokes
extending above and below each MF¥. These will be the initial portions of
the first four spokes emanating from M¥*.

To begin this phase of the construction, let us assume that the critical

value v} now lies in a particular open disk D¥ for some fixed & > 2. Let
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Or C O denote the set of parameters for which this happens. Now the
boundary of D} is mapped by F )’\“_1 one-to-one onto the boundary of L*, and
the boundary of L* varies analytically with X\. So we can construct a natural
parametrization of this boundary which also varies analytically with A\. Then
we can pull back this parameterization to the boundary of each D%. Again,
as we saw earlier, as A rotates around the boundary of the original disk O’
in the parameter plane, v} rotates once around the boundary of R*. Hence,
arguing just as in the previous section, there must be a unique parameter A
for which v lands on any given point in the parametrization of the boundary
of D¥. Hence we have that Oy is a disk contained inside O' and, as X rotates
once around the boundary of Oy, the critical value has winding number one
around the boundary of the disk D¥.

Now consider the set of preimages in L* of all of the Di and Ef\ under F).
Since we have assumed that v} lies in D¥, it follows that there is a unique
preimage of D¥ in L* which is a disk that contains ¢} and is mapped two-to-
one onto D¥. Call this special disk Lj. For each other Di (with j # k), there
are now two preimage disks lying in L*. Note that, when A € R~ and j > k,
there are a pair of preimages of Di lying along R, one to the right of L} and
one to the left. These preimages tend away from Df in either direction as j
increases. When 2 < j < k, there are again two preimages of Di, but when
A € R, these preimages no longer lie on the negative axis; rather they branch
out more or less perpendicularly above and below L} on this axis. As for the
preimages of Ef\ in L*, we have the same situation: there are infinitely many
pairs of preimages of each Eﬁ\ lying along R~ on either side of the preimage
of D% when j > k and A € R, and finitely many pairs extending above and
below this preimage when 1 < j < k. Thus we have a pair of infinite chains
of alternating preimages of the disks D¥ and E¥ extending away from L)

in the wedge L* and another pair of chains consisting of finitely many such
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preimages extending in a “perpendicular” direction away from L%.

Since F' /{“_1 maps D¥ one-to-one over L*, we thus have a similar collection
of preimages that lie inside the disk Df¥. We denote by ij each of the two
disks in D¥ that are mapped onto Df\ by Ff when j # k. And we let D5*
denote the single preimage of Df under F} that is contained in D¥. Points in
Df\j have orbits that remain in R* for the first k — 2 iterations, then map into
L under the next iteration, and then map into Dg\ under the next iteration.
Then Ff_l maps this set of points onto L*. So Ffﬂ ~! maps each ij one-
to-one onto all of L* (assuming k # j). Then the next iteration takes this
set two-to-one onto all of R*. Now the critical value for Fy*/ is again v,
and, as we showed above, as \ rotates around the boundary of Oy, v} circles
around the boundary of D¥. Hence F /{+k is polynomial-like of degree two on
each of the two disks ij (where we again emphasize that we are assuming
j>2and j # k). So this produces a pair of Mandelbrot sets M*/ with base
period k£ + j in Of. As in the previous construction, the Mandelbrot sets
MP*I with j > k all have spines lying along R, one on each side of M*. The
other Mandelbrot sets with j < k now lie off the real axis, one above M¥*
and the other below M*.

Similar arguments as in the preceding section also produce a pair of Sier-
pinski holes £% on each side of M* along the real axis where now j > k.
And there are a pair of Sierpinski holes £%/, one above and one below M¥,
where now 1 < j < k. As earlier, these Mandelbrot sets and Sierpinski
holes alternate along each of these spokes. See Figure 7. For parameters
in the Sierpinski hole £F!, the critical orbit F}(c}) lies in R* for iterations
1 <4 <k—1. Then Ff(c)) returns to L*, and then Fy™(c}) enters T}.

We now sketch the construction of the other Mandelpinski spokes by
induction. For simplicity, we will only consider the next phase of the con-

struction; all subsequent phases follow in exactly the same way. This time
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Figure 7: The finite spoke above and below M?* as well as a magnification
showing the pair of infinite spokes along the real axis.

we will adjoin four infinite spokes that lie closer to M* to those already in
place, and then we will add four new finite spokes in betwen each of these
infinite spokes.

To be precise, in the previous phase, we assumed that the critical value
resided in a particular disk D5, and so there was a special disk Df* C D¥ that
was mapped two-to-one onto D§ by F¥. At this stage we make the further
assumption that v} lies in D, Let Oy C Ok be the set of parameters for
which this occurs. Note that MP* lies in O,. We have that F¥ maps the
boundary of D% two-to-one onto the boundary of D§. Thus we may pull
back the parametrization of dD¥ constructed earlier to produce a natural
parametrization of D% which varies analytically with A\. Thus there is a
unique A for which v} lands on a given point in the boundary of D¥*, and so,
as A winds once around the boundary of Oy, vy winds once around D%

By the prior construction, we have a pair of infinite chains each of which
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consists of the disks ij with 7 > £k and E/]\Cj with j > k lying in the annular
region D — D* as well as a pair of finite chains consisting of the disks D}
and EY with j < k lying in the same annulus. Since F¥ maps D%* two-to-
one onto the entire disk D¥, we therefore have four new infinite chains inside
D¥® that are the preimages of the two infinite chains in the annular region.
These chains consist of disks that we denote by either D’;kj with 7 > k or
El)fkj with j > k. Each of these chains then connects to one of the two infinite
or finite chains already constructed in the outer annular region. This follows
since these outer chains were all mapped onto the left or right portion of the
original chain by Ff. We also have four finite chains in D5* consisting of
disks Df\kj and E’)fkj with j < k that are preimages of the finite chains in the
annular region. These chains do not connect to the previously constructed
chains in the annular region.

Then the same arguments as above produce the corresponding spokes in
the parameter plane. Each of the two finite and infinite spokes constructed
earlier now have an added infinite spoke that lies in the region between MF
and that spoke. The Mandelbrot sets and Sierpinski holes in this new portion
of the spoke are given by M** where j > k and £% where j > k and the
four new finite spokes consist of similar sets with now j < k. These are all
associated with rays of angle ¢/8 with ¢ even for the infinite spokes and ¢
odd for the finite spokes.

At this stage we now have eight Mandelpinski spokes emanating from M¥,
four finite spokes and four infinite spokes. Continuing inductively, at the next
stage, we then add eight infinite spokes between each of these spokes and M¥
as well as eight new finite spokes, one between each of these newly added
infinite spokes. In the limit, we get an infinite collection of Mandelpinski

spokes emanating from MF.
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5 The Mandelpinski Maze

In this section we further elaborate on the construction of the Mandelbrot sets
and Sierpinski holes in the parameter plane of F) by constructing what we
call a Mandelpinski maze. In the previous sections, we actually constructed
the first two portions of this maze. We first showed the existence of a string
of interspersed Mandelbrot sets M* with k¥ > 2 and Sierpinski holes &£*
with £ > 1 along the real axis in the parameter plane. Next, we showed
that, between each £¥~! and &£, there exist a pair of infinite spokes, each
containing Mandelbrot sets M* where j > k and Sierpinski holes £¥ where
j > k in the same alternating arrangement as earlier. One spoke extends
from M* to £, the other from MF* to £¥. The are also a pair of finite
spokes extending away from MF¥ in opposite directions. These finite spokes
contain the Mandelbrot sets M*/ where 2 < j < k and the Sierpinski holes
EX where now 1 < j < k. We think of this second collection of spokes
emanating from MF as a “plus sign” centered at M¥*.

In the previous construction we assumed that the critical value lies in the
disk D**. Now we change this assumption so that the critical value now lies
in either of the two disks D* where now j # k.

Recall that it is when X € Oy, that the critical value v} lies in D¥ and that
L% is the preimage of D¥ in L* that contains ¢}. In the previous construc-
tion, for each j > 1 and j # k, we produced a pair of disks ij C D¥, and
then we showed that F f 7 was a polynomial-like map of degree two on Dl;‘j .
This generated a pair of Mandelbrot sets that we called M*/. So fix k and
7 and concentrate on one of the two disks ij and hence, in the parameter
plane, on the corresponding Mandelbrot set M*/. As in the previous step,
we now assume that vy lies in this disk Df“\j . This is possible since we have

shown that v} winds once around the boundary of D% as A winds around
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00, and Dl)fj C D%. Let Oy; be the set of parameters for which this oc-
curs. Then F; )]\"Lk*l maps ch\j one-to-one over L*. Thus we can pull back
the earlier parametrization of the boundary of L* to construct an analytic
parameterization of the boundary of Dl)fj . Just as before, there then exists a
unique A in the boundary of Oy; for which v} lands on a given point on this
parametrized boundary curve. Hence v} winds once around the boundary of
the disk Df\j as A winds once around the boundary of Oy;.

Since v} lies in Df“\j , there is then a preimage of the structure of all of the
disks D¥* and E¥ contained in D¥ that now lies in the preimage of D in
L*, namely, L. Each D% and E} now has two preimages in L¥, with the
exception of the chosen D';j , which has only one preimage that contains the
critical point ¢}. Thus we again “duplicate” the preimage structure that we
see in D¥ in the region L%, and center this duplication around the preimage
of Df\j . Then Ffﬂ_l maps the disk ij one-to-one onto L* since j # k.
Hence there is a copy of this duplicated preimage structure that we see in
L that is now contained in the chosen disk D')fj . Thus, for each ¢ > 1,
we now have four disks named D*/* that are contained in D’)fj . Each of the
D} is mapped one-to-one onto L* by F¥™*! and hence two-to-one over
themselves by F )If LA Then, arguing as before, this map is polynomial-like
of degree two on each D*/¢ and this produces four new baby Mandelbrot sets
MP¥3t which are arranged in a similar pattern as the preimages of the disks
in the dynamical plane. Similar arguments also yield four Sierpinski holes
Ekit,

Note also that the maze structure in the small neighborhood of M*/ is
now more complicated than before. For example, if we had chosen the disk
Df\j to be one of the disks in one of the two finite chains of disks emanating
from D%, then the maze structure around M* would consist of a pair of

finite spokes, one on each side of M* and also a pair of “plus signs,” each
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again on opposite sides of M*/. On the other hand, had ij been chosen to
be one of the disks in the infinite string of disks, then there would now be a
pair of infinite spokes emanating from M*/ and again a pair of “plus signs.”

Then we may continue this process, each time selecting a previously con-
structed Mandelbrot set with itinerary sg...s,. Assuming the sequence
So-..S, is not a repeated finite sequence, i.e., not a repeating sequence of
the form sy...s;...50...5s;, this inductive process then produces the more

intricate maze structure around the given Mandelbrot set.

6 Open Questions

One open problem in this area is to determine the exact structure of the
Mandelpinski maze. One should think of this at the m'™ stage as a graph
with the vertices representing the Mandelbrot sets (and between each pair of
connected vertices there is a unique Sierpinski hole). How this graph looks
changes at each vertex at each stage. The question is how to sketch the graph
at each stage and, then, how to describe the limiting “graph.” Another open
problem is to determine the exact structure of the entire spoke along, say,
the negative real axis. We produced infinitely many Mandelbrot sets and
Sierpinski holes along this axis, but what remains in the limit? Clearly,
these are parameters for which the critical orbit has an infinite itinerary that
is neither periodic nor escaping. Are all such parameters just singletons? We

conjecture that the answer is yes.
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