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1 Introduction

One of the simplest bifurcations in all of discrete or continuous dynamical
systems theory is the saddle-node bifurcation. Roughly speaking, in this bi-
furcation, two fixed points (or periodic points) come together as a parameter
is varied and then disappear.

Often, however, this purely local bifurcation is accompanied by extremely
complicated global changes in the overall dynamics of the system. Nowhere
is this more apparent than in complex dynamics, where the saddle-node
bifurcation often leads to dramatic or “complex” changes in the structure of
the Julia set.

In this paper, we will describe three examples of such bifurcations. The
first occurs in the study of quadratic dynamical systems, specifically at the
cusp of the main cardioid in the Mandelbrot set. This is the “simple” com-
plex saddle-node bifurcation. The second occurs for more general polyno-
mials, including the bifurcations that occur at the cusps of all other “baby”
Mandelbrot sets. And the third occurs in the case of the complex exponen-
tial function, where a saddle-node bifurcation leads to an amazing explosion
in the set of chaotic orbits. Incidentally, there is nothing special about the
polynomial or exponential nature of the examples we consider: the first two
examples can occur in families of rational maps, and the third occurs in a
wide variety of entire functions.

Before discussing the complex versions of these bifurcations, recall the
simple saddle-node bifurcation that occurs for maps of the interval. To be
specific, consider the quadratic function Q.(z) = 2%+ c. The fixed points for
this map are given by
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So there are no fixed points if ¢ > 1/4; one fixed point when ¢ = 1/4; and two
fixed points when ¢ < 1/4. This is the saddle-node bifurcation; at ¢ = 1/4 a
pair of fixed points suddenly appears as we lower the parameter c.

Now we have
Q.(p+) =1+ V1 —4e.

Therefore Q.(py) > 1 for all ¢ < 1/4 and —1 < Q.(p-) < 1 for ¢ in the
interval —3/4 < ¢ < 1/4. Hence p, is always a source while p_ is a sink for
-3/4<c<1/4.

From a global point of view, this local saddle-node bifurcation is accom-
panied by a substantial change in the fate of orbits of the system. When
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¢ > 1/4, all orbits tend to oo. When ¢ = 1/4 we have a single neutral fixed
point at x = 1/2. The interval (—1/2,1/2) is the basin of attraction of this
fixed point, and its left hand endpoint z = —1/2 is eventually fixed. All
other orbits tend to co. For —3/4 < ¢ < 1/4 a similar picture emerges.
The interval [—p,,p,| forms the set of bounded orbits, with interior points
forming the basin of p_. Outside this interval all orbits tend to oc.

Thus we see that as ¢ passes through 1/4 there suddenly appears a “large”
interval of bounded orbits, where for ¢ > 1/4 there were no bounded orbits.
This is the global bifurcation in this case. In the next section we will discuss
the global ramifications of this bifurcation in the complex plane. Later we
will turn to still more complicated complex saddle-node bifurcations.

This paper is dedicated to Prof. Floris Takens on the occasion of his
sixtieth birthday. It is impossible for me to measure the profound effect
Floris’ work has had on my work and that of my students. It has been a
pleasure over all of these years to learn from him and to share his excitement
about dynamical systems.

2 The “Simple” Complex Saddle-Node

Now we turn to the complex version of the quadratic bifurcation described
above, i.e., the bifurcation of the complex map Q.(z) = 2? 4+ ¢ when c passes
through ¢ = 1/4. To keep matters simple, we will again assume that c is
real. We will be most interested in the set of points whose orbits remain
bounded. This set is called the filled Julia set of ). and is denoted by K..
The boundary of this set is known as the Julia set. It is denoted by J.. We
are interested in the change in the geometry of these sets as ¢ passes through
the bifurcation point.
One of the fundamental facts from complex dynamics is the following:

Role of the critical orbit: Suppose P is a complex polynomial and assume
that P has an attracting cycle. Then this cycle must attract at least one
critical point of P.

In the case of Q.(z) = 2%+c, it follows that the orbit of 0 must tend to the
attracting fixed point when —3/4 < ¢ < 1/4. When ¢ > 1/4, however, the

orbit of 0 escapes to co. This has enormous consequences for the structure
of the filled Julia set.



Before discussing this, we make a brief digression to describe the Funda-
mental Dichotomy of quadratic dynamics. The point at infinity is a super-
attracting fixed point for @), i.e., it is a fixed point with derivative 0. By
classical work predating Julia and Fatou, we may find a conjugacy near oo
between (). and the squaring function Qy(z) = 2%. That is, we may find a
neighborhood U of co and an analytic map

o : U — {z| |z]| >}

for some 7 > 1 such that ¢, o Q. = (¢(2))*.
Now suppose that the orbit of 0 is bounded. In this case we can extend
the conjugacy to @, '(U) in the natural way. We get

¢e: Q. (U) = {2] |2] > V/r}

which again conjugates ). and )y. The impediment to this extension occurs
if ¢ belongs to U; in this case, ¢ has only one preimage, namely 0, whereas
any other z € U has two distinct preimages. This prevents us from extending
¢, to a well-defined function on Q;*(U).

So if ¢ belongs to K., it follows that we can continue this process indef-
initely. We thus extend ¢. to the entire basin of attraction of oo which we
denote by W,.. Thus

e We = {2] |2] > 1}

gives a global conjugacy between (). and )y on this basin.

The important observation here is that W, is simply connected (each time
we pull back a “disk” we obtain a “disk”). Therefore the complement of W,
is a closed, connected set. But the complement of W, is just K..

Now if ¢ lies in U, a very different topological picture emerges. To see
this, suppose that c lies on the boundary of U. We can always arrange this
by first modifying U and then pulling U back as above. What is Q,'(U)?
Well, each point in the boundary of U has two preimages with the exception
of ¢, which has only one. So the preimage of the boundary of U is the figure
eight curve shown in Figure 1, and the preimage of U is the exterior of this
set.

So the complement of Q,*(U) consists of two disks which we denote by
Dy and D;. Q. maps each of these disks in one-to-one fashion onto the
disk which forms the complement of U (and contains both Dy and D, in its
interior). Therefore K, is contained inside Dy U D;. We claim that this set
has infinitely many connected components.



Figure 1: Pulling back via Q_ .

To see this, let Fy and F; denote the two branches of le defined on
Dy U Dy, with Fj taking values in D;. Since Q.|D; is one-to-one, both Fj
and F} are analytic. Now let s = s3S182. .. be an infinite sequence of 0’s and
1’s. We may form the infinite composition

Fioos16,..(2) = nh_{go FyoF, o0...0F (2)

for any z in Dy U D;. Note that this limit point must lie in K. since
Q" (Fsys,s,..(2)) lies in Dy U Dy for each n. Furthermore, the itinerary of this
limit point relative to Dy and D; is given exactly by the sequence sys1ss . ..
that is,

F505152...('Z) € Dso

QC(FS()S182...(Z)) = Fslsz...(z) S D31
and in general
QZ(FSOSISQ---(’Z)) = F5n5n+1 (Z) € Ds,.

As a consequence, if two sequences sgS15s ... and ot ity . .. disagree some-
where, say in the n* spot, then the corresponding limit points lie in different
components of K.. (Q7F of one of these limit points lies in Dy; the other in
D;.) Thus the filled Julia set consists of uncountably many components.

Moreover, each component is a single point; that is Fj,s,..(2) is inde-
pendent of z. This follows from the fact that both Fy and F} are strict
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Figure 2: The Mandelbrot set.
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Figure 3: The Julia set when ¢ = 0.25 and ¢ = 0.26. The black points
represent points in the filled Julia set; grey-scale points escape to co.



contractions on Dy and D; in the Poincaré metric. So the distance between
Fsyo0...0F; (z) and Fy, 0...0 Fy (2) decreases by a definite factor at
each additional iteration. Consequently K, is totally disconnected. It is also
closed and perfect (this uses the fact that F s, s,.(2) and Fy, s,1(2) are
close together). So we see that K is a Cantor set when Q%(0) — co.

This then gives us one of the major results in quadratic dynamics:

The Fundamental Dichotomy
1. If Q%(0) — oo, the filled Julia set of Q. is a Cantor set.
2. If Q% (0)—f> 00, the filled Julia set of Q). is a connected set.

Thus the filled Julia sets of quadratic functions come in one of only two
forms: connected sets or totally disconnected sets. There are no quadratic
filled Julia sets that consist of 2, 5, or 345,678 components.

Remark. As is well-known, the Mandelbrot set M is a picture of the Fun-
damental Dichotomy. Specifically, the definition of the Mandelbrot set is

M = {c|Q¢(0)—> o0}
or, equivalently, by the Fundamental Dichotomy,
M ={c| K, is connected }.

In Figure 2, we display the Mandelbrot set. The large cardioid-like region
contains all c-vlaues for which (). admits an attracting fixed point. The value
c = 1/4 lies at the cusp of this cardioid.

To summarize, we see that there really is a significant global consequence
of the saddle-node bifurcation that occurs in the complex case when ¢ = 1/4.
Before the bifurcation (—3/4 < ¢ < 1/4), the critical orbit tends to a fixed
point, so K is connected. After the bifurcation (¢ > 1/4), the orbit of 0 tends
to oo and so K, shatters into infinitely many point components. Figure 3
shows this.

3 The “Complex” Complex Saddle-Node

Our goal in this section is to investigate the dynamical behavior of complex
analytic maps near a more complicated saddle-node bifurcation. Specifically,
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we will assume that, at the bifurcation parameter value, the neutral fixed
point admits a non-degenerate homoclinic orbit. We will prove that, in the
parameter space of such a family, there exist infinitely many copies of the
Mandelbrot set. For parameter values which lie in these Mandelbrot sets,
the corresponding maps admit invariant sets on which an iterate of the map
is dynamically equivalent to the corresponding quadratic map.

To be specific, we consider a family of complex analytic maps given by

P(z)=z4c+2"+---

which depends analytically on the complex parameter c. For convenience, we
will assume that P, is defined on the whole plane, but this restriction may
be removed. When ¢ = 0, this map has a fixed point at 0 with multiplier
1. We make two global assumptions about the dynamics of P,. Our first
assumption is that Py admits a non-degenerate homoclinic point (defined
below). Our second assumption is that P, admits a unique critical point in
the immediate basin of attraction of 0, and that this critical point is of order
two. Our main result is then:

Theorem. Under the above conditions, the parameter space for P, (the c-
plane) admits infinitely many subsets M;, j > J, which are homeomorphic to
the standard Mandelbrot set M via a map ¢;: M; — M and which converge
to 0. Moreover, for each c € M;, there is a subset A, of the Julia set of P, on
which some power of P, is topologically conjugate to the map z — 2% + ¢;(c)
on its Julia set.

In the case of a real polynomial, our assumptions are equivalent to the
assumption that the graph of P, and one nearby P, are as depicted in Fig-
ure 77.



Fig. 1. The graphs P, and P,

Note that Py admits a point z; whose orbit is both forward and backward
asymptotic to the indifferent fixed point at 0. This is the homoclinic orbit.
For P., the indifferent fixed point has disappeared, as has its basin of at-
traction. This allows orbits which previously tended to 0 to escape but then
return to a neighborhood of 0. The resulting cyclic motion of orbits has been
termed intermittency by Pomeau and Manneville [PM]. In this regard, our
results can be interpreted as a description of the dynamical motions possible
near intermittency.

Homoclinic points play a central role in smooth (non-analytic) dynam-
ics. As is well known, the existence of a transverse homoclinic point for a
map implies the existence of complicated orbit structure nearby (a Smale
horseshoe—see [S]). An important question in dynamics is how this com-
plicated behavior arises as a parameter is varied and a homoclinic point is
“born.” The results in this section give a partial answer to this question
in the special case where the homoclinic point arises at the same time as a
saddle-node bifurcation.

3.1 Dynamics of F,

The local dynamical behavior of P, near 0 is well understood. Since Pj(0) =
1, there is a neighborhood O of 0 in which the local inverse Py ' is well-
defined. There also exist open disks D and D, in O which contain 0 in
their boundary and satisfy

i. Py(D_)cC D_
ii. PyY(Dy) C Dy

Moreover, each point in D_ has forward orbit which is asymptotic to 0, while
each point in D, has forward orbit under Py ' which is asymptotic to 0.

D_ and D, may be chosen small enough so that D_ — Py(D_) and D, —
Py (D, ) are fundamental domains for the dynamics of P, near 0. Using the
map Py, we may glue together the edges of D_ — Py(D_) to form a cylinder
which we denote by Cj . Using P}, we may similarly construct Cy. Cj and
Cy are called Ecalle cylinders. See [DH1].

Let By denote the immediate basin of attraction of 0 for P,. It is known
that By is an open disk containing 0 in its boundary. It is also known that



the boundary of By, 0By, lies in the Julia set of Py and that 0Bj is invariant
under Py. By must contain at least one of the critical points of ;. We will
make the following simplifying assumption throughout:

Hypothesis A. By contains no asymptotic values of Py and exactly one critical
point zy of P, which satisfies P"(z) # 0. Moreover, all other critical or
asymptotic values of P are attracted to an attracting or a parabolic cycle.

The second part of Hypothesis A is included mainly for convenience and
can be weakened significantly. From hypothesis A, it follows that P|Bj is
two-to-one, except at the critical value P(zy), which has only one preimage.
Moreover, both 2z, and P(zp) lie in By, not on 0By.

As a consequence of hypothesis A, it also follows that Py|0B is expanding.
This follows in the polynomial case from [DH1, Part 2, X Proposition 3.] In
the case of an entire map of finite type, this follows from results in [Mc].
Hence we may choose an open set B which contains By in its interior and
which satisfies Py(B) D B. B is called an overflowing neighborhood of the
immediate basin By.

3.2 Homoclinic Points

In this section we make a second assumption, more global in nature about
the dynamics of P,. A point w € D, — By is called a homoclinic point if
there exists N > 0 such that PJ¥(w) € By. The orbit of w is therefore both
forward and backward asymptotic to 0, with the backward orbit constructed
using Py '

Let us assume that P*(w) € BoU D, for 1 < i < N. Then there is an
open connected set U containing w and having the property that P (U) = B,
where B is the overflowing neighborhood of B, constructed above. We say
that w is a non-degenerate homoclinic point if P)¥: U — B is an isomorphism.

We remark that it is entirely possible for some of the P} (U), 1 <i < N
to contain critical points of Py, in which case Pi¥|U would not be one-to-one.
In many cases, however, this assumption may be readily verified.

Our second main assumption about P, is: Hypothesis B. P, admits a

non-degenerate homoclinic point. See Figure ?7.



Fig. 2

By adjusting D, we may assume that U C D, P;'(D,). Hence it
follows that U_; = Py *(U) are disjoint open sets in D, — By which tend to
0 as k£ — oco. See Figure 77.

3.3 Ecalle cylinders for P.

We may also erect Ecalle cylinders for P,. By the results of [DH2], there is
a wedge-shaped region R in the c-plane such that, if ¢ € R, then P, has a
pair of repelling fixed points which we denote by p_(c) and p(c). Moreover,
we may choose Ecalle cylinders C7 and C for each ¢ € R with vertices at
p—(c) and py(c). The CE may be chosen so that their boundaries depend
continuously on ¢ and tend to the boundaries of Ci* as ¢ — 0 in R.

Let z. denote the critical point of P, in B. Without loss of generality, we
may assume that the critical value P.(z.) C C; .

As above, we may use the maps P, and P! to glue together the bound-
aries of C; and C}. We choose the critical value as basepoint in C and
any point in C as basepoint. Then there are isomorphisms

7,:C; — C/Z

T CH - C/z
which take basepoints to 0.
Unlike the case when ¢ = 0, there is a well defined transit map
b C; — CF
defined by
¢c(2) = P¥(2)

where k is the smallest positive integer for which P*(z) € C. Note that ¢,
may be discontinuous. However, the projection of this map to C/Z given by
®., where

bcom, ()7 © 6e(2)

is an isomorphism.
For ¢ € R, there is also defined a map

®:R — C/Z
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given by
D(c) = 0c(Pu(2)) = 2.(0)

The map ® determines the image of the critical value in C} after it makes
it transit between C; and C}. ®(0) is not defined. However, according
to [DH2], Theorem 16.11, ® is given asymptotically by

®(c) =wo+ —=+o(1
(¢) = wo NG (1)
for some constant wy. Note that ® wraps the wedge R infinitely often around
C/Z as ¢ — 0 in R. In particular, if U is an open disk with compact
closure in C/Z, then ®~'(U) consists of infinitely many disjoint components
V; converging to 0 in R and on which ® induces an isomorphism V; — U.

§4. Polynomial like maps In this section we recall some of the main results

of [DH2]. Let D denote the closed disk. Suppose, for each A € D, there exists
i. open disks U), Uj depending continuously on A and satisfying U, C Uj.

ii. an analytic family of maps F\:U, — U, depending analytically on A
with the property that Fy: U, — Uy is of degree two. Any map with
this property is said to be polynomial-like of degree 2.

iii. for each F), there is a unique critical point z, € U,. For A € 0D, we
assume that the map
A= F)\(Z)\)

describes a curve in Uy —U, which has winding number one with respect
to each z € Uy. A family of maps with this property is said to have
parametric degree one.

Any family of maps satisfying 1-3 is called a family of polynomial-like maps
of degree two with parametric degree one.

A major result in [DH2, Theorem 4] asserts that such a family admits a
subset M C D which is homeomorphic to the standard Mandelbrot set via a
map ¢ = ¢(A). Moreover, for each A € M, F,|U, is topologically conjugate
to 2 — 2% + ¢(A\) on the filled Julia sets of each. That is, the dynamics
of F) are equivalent to those of one of the quadratic maps z — 22 4+ ¢ on
Uy. Furthermore, this result asserts that all possible quadratic dynamical
behavior occurs in the family F).

11



3.4 Proof of the Theorem

Our goal in this section is to combine the results about Ecalle cylinders and
parametrized families of analytic maps to prove that the maps P, admit
infinitely many copies of the Mandelbrot set M, | > 7, in the region R in
the c-plane.
Recall that there is an open set U C D, — Py '(D,) with the property
that
PY:U— B

is an isomorphism where B is an overflowing neighborhood of the immediate
basin By of 0. This follows from Hypothesis B. In particular, Py(B) D By.
For ¢ small enough, it follows that

PN.U—C

is also an isomorphism. Moreover, if U, is an open set sufficiently close to U,
then PN|U, is also an isomorphism, provided c is close enough to 0.

For each j € Z™" sufficiently large, we will determine a subset V; of R
such that the family of maps P/TV*! for ¢ € V; is a family of polynomial
like maps of degree two with parametric degree one. Each of the V; will be
disjoint, and the V; — 0 as j — oo.

To construct Vj, recall that U C Cf — By is an open disk on which Py is
an isomorphism carrying U onto B. Let U = 7 (U). U is a disk in C/Z. By
our remarks at the end of §3, @_1(0 ) consists of infinitely many components.
These are the V;. We may assume that the index j is chosen so that c € V
implies that P/*1(z.) € Cf, i.e., that j gives the “time” of transit of the
critical point from C to C}.

Let U, = (7)) ~*(U). For each c sufficiently small, P is an isomorphism
which maps U, onto an overflowing neighborhood of B.

Let W, = P, 7(U,). Since c € V}, it follows that W, contains the critical
value of P,. Now ch: W. — U, is an isomorphism. Let WC denote the preim-
age of W, containing z,. PC\WC is a degree two map onto W, by hypothesis
A. Note that, if ¢ is sufficiently small, W, C B. Therefore we have the fact
that

PN, . B

is a polynomial like map of degree two, if c € V.
It remains to show that this family has parametric degree one. For this
we first observe that ®:V; — U is an isomorphism. So ® maps 0V to oU
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with winding number one relative to the interior of U. If we lift this curve
via (7)1, the result is still a degree one curve ¢ — (7)) ' o ®(c) which is
close to the boundary of U. Since P is C%close to PY, it follows that, for
c € 9V;, PIT1+N(z,) is a curve which wraps once around By. This completes
the proof.

Remark. Much more can be said about the small copies of M: Each are
“encaged” in “cauliflowers.” These are collections of Cantor-like sets that
nest down to M. For more details, we refer to [DBDS].

4 Entire Functions

We now turn to some spectacular global bifurcations that occur in the dy-
namics of entire functions. Recall that an entire function is an analytic map
F : C — C that is not a polynomial (and has no poles). Examples include
the exponential family Ae?, the sine family Asin z, the cosine family A cos z,
and the standard family z 4+ w + esin z.

Since the function is entire, it follows that co is not a superattracting
fixed point. In this case oo is an essential singularity. Near oo the mapping
possesses an extreme amount of “chaotic” behavior. By the great Picard
Theorem, an entire function maps any neighborhood of oo onto the entire
plane (missing at most one point), hitting each point infinitely often. This
is an extreme case of sensitive dependence on initial conditions.

For the rest of this paper, we will concentrate on the exponential family
E\(z) = Ae® where ) is real and nonzero. Much of what we discuss applies to
other entire families as well. We will investigate again the saddle-node and
period doubling bifurcation in this family. As in the quadratic polynomial
case, these bifurcations will be quite tame in the real case, but incredibly
“complex” in the complex case.

As in the quadratic family Q.(z) = 22 + ¢, it is the orbit of 0 that plays a
crucial role in determining the dynamics of E). For the exponential family,
0 is an asymptotic value rather than a critical point. A point z; is called an
asymptotic value if there is a curve 7(¢) which tends to co as t — t and
whose image tends to zy as t — 3. Clearly, any curve tending to co with
real part tending to —oo has image that tends to 0 under E).

As in quadratic dynamics, if Fy admits an attracting cycle, then the orbit
of 0 must tend to this cycle.
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Unlike the quadratic case, we do not speak of the filled Julia set for
the complex exponential. The reason is, as we show below, there are many
parameter values for which the sets of points with bounded or unbounded
orbits are both dense in the complex plane. It is more natural to speak about
the Julia set, which we denote by J(E)). For E), there are three equivalent
definitions of this set as

i) the closure of the set of repelling periodic points

ii) the set of points at which the family of functions EY fails to be a normal
family in the sense of Montel

iii) the closure of the set of points whose orbits escape to 0o

The equivalence of i and ii is a classical fact; the equivalence of ii follows
from results of Goldberg and Keen [GK].

There is an analogous Fundamental Dichotomy for complex exponentials.
Again this dichotomy involves the orbit of 0, but this time it is somewhat
more spectacular:

The Fundamental Dichotomy for Exponentials:

1. If EY(0) — oo, then the Julia set of Ey is the entire plane.

2. If E}(0)—/>00, then the Julia set contains Cantor bouquets and omits
a half plane of the form Rez < v for some v € R.

4.1 Bifurcation of Real Exponentials

The exponential family undergoes a saddle node bifurcation at A = 1/e since,
when A = 1/e, the graph of /. is tangent to the diagonal at 1. See Figure 4.
We have Ej/(1) =1 and Ej /(1) = 1. When A > 1/e, the graph of Ej lies
above the diagonal and all orbits (including 0) tend to co. When A < 1/e,
the graph of E) crosses the diagonal twice, at an attracting fixed point a)
and a repeling fixed point 7). For later use note that 0 < a) < 1 < r). Note
also that the orbit of 0 tends to ay. See Figure 4.

When 0 < A < 1/e, all points in the interval —oco < z < 7, have orbits
approaching the attracting fixed point. This changes when A > 1/e, when all
real orbits suddenly approach co. Thus we again have a global bifurcation
on the real line at this saddle node point.

The exponential family also undergoes a period doubling bifurcation when
A = —e. Indeed, when A = —e we have a fixed point at —1 whose derivative
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A=1/e

A<1/e

Figure 4: The graphs of E) for A =1/e and A < 1/e.

is —1. For —e < A < 0, E, has an attracting fixed point on the negative real
axis and all points on the real line tend to this fixed point. When A < —e, it
is easy to check that F) has an attracting 2-cycle and a repelling fixed point
on the negative real axis, and all real orbits (except that of the fixed point)
tend to the 2-cycle. Thus there is no real “global” bifurcation in this case.

4.2 The Complex Saddle Node Bifurcation for Expo-
nentials

According to the Fundamental Dichotomy, when 0 < A < 1/e, the orbit of 0
does not escape to co. We will show in this section that, in this case, J(E))
is a Cantor bouquet. When A > 1/e, the orbit of 0 tends to co, and so J(E))
is the entire plane.

In this section we will sketch the construction of a simple Cantor bouquet
for the exponential map in the case where X is real and satisfies 0 < A < 1/e.
Much of the work in this chapter was done in collaboration with Clara Bode-
lon, Michael Hayes, Gareth Roberts, Lisa Goldberg, and John Hubbard [Bo].

In Figure 5, we display the Julia set for E;/. The complement of the
Julia set is displayed in black. It appears that this Julia set contains large
open sets, but this in fact is not the case. The Julia set actually consists of
uncountably many curves or “hairs” extending to oo in the right half plane.
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Figure 5: The Julia set for A = 1/e.

Figure 6: Magnification of the Julia set for A = 1/e.
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Each of the “fingers” in this Figure seems to have many smaller fingers
protruding from them.

As we zoom in to this image, we see more and more of the self-similar
structure, as each finger generates more and more fingers. In fact, each of
these fingers consists of a cluster of hairs that are packed together so tightly
that the resulting set has Hausdorff dimension 2 [McM].

4.3 The Idea of the Construction

Here is a rough idea of the construction of a Cantor bouquet. We will “tighten
up” these ideas in ensuing sections.

For simplicity, we deal here only with E(z) = (1/e)e®. As we have seen,
E has a neutral fixed point at 1, on the real axis, and E'(1) = 1. The vertical
line Re z = 1 is mapped to the circle of radius 1 centered at the origin. In
fact, F is a contraction in the half plane H to the left of this line, since

1
|E'(2)| = gexp(Re z) <1

if z € H. Consequently, all points in H have orbits that tend to 1. Hence this
half plane lies in the complement of the Julia set. We will try to paint the
picture of the Julia set of E by painting instead its complement, the stable
set.

Since the half plane H is forward invariant under F, we can obtain the
entire stable set by considering all preimages of this half plane. Now the first
preimage of H certainly contains the horizontal lines Im z = (2k + 1)m, Re
z > 1, for each integer k, since E maps these lines to the negative real axis
which lies in H. Hence there are open neighborhoods of each of these lines
that lie in the stable set. The first preimage of H is shown in Figure 7. The
complement of E~*(H) consists of infinitely many “fingers.” The fingers are
2kmi translates of eachother, and each is mapped onto the complementary
half plane Re z > 1.

We denote the fingers in the complement of E~!(H) by C; with j € Z,
where C; contains the half line Im 2 = 2jm, Re 2 > 1, which is mapped
into the positive real axis. That is, the C; are indexed by the integers in
order of increasing imaginary part. Note that C; is contained within the
strip —5 + 2j7m < Im 2 < § + 2j7.

Now each C; is mapped in one-to-one fashion onto the entire half plane
Re z > 1. Consequently each C; contains a preimage of each plane Re z > 1.
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Figure 7: The preimage of H consists of H and the shaded region.

Consequently each C; contains a preimage of each other Cj. Each of these
preimages forms a subfinger which extends to the right in the half plane
H. See Figure 8. The complement of these subfingers necessarily lies in the
stable set.

Now we continue inductively. Each subfinger is mapped onto one of the
original fingers by E. Consequently, there are infinitely many sub-sub-fingers
which are mapped to the C’s by E?. So at each stage we remove the com-
plement of infinitely many subfingers from each remaining finger.

After performing this operation infinitely many times, we do not end up
with points. Rather, the intersection of all of these fingers is a simple curve
extending to oo.

This collection of curves forms the Julia set. FE permutes these curves and
each curve consists of a well-defined endpoint together with a “hair” which
extends to co. It is tempting to think of this structure as a “Cantor set of
curves,” i.e., a product of the set of endpoints and the half-line. However,
this is not the case as the set of endpoints is not closed.

Note that we can assign symbolic sequences to each point on these curves.
We simply watch which of the C}’s these orbit of the point lies in after each
iteration and assign the corresponding index j. That is, to each hair in the
Julia set we attach an infinite sequence sps1s,... where s; € Z and s; = k
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Figure 8: The second preimage of H in one of the fingers Cj.

if the j* iterate of the hair lies in C;. The sequence s¢s;sy. .. is called the
itinerary of the curve.

For example, the portion of the real line {z |z > 1} lies in the Julia set
since all points (except 1) tend to oo under iteration, not to the fixed point.

This points up a fact that makes entire dynamics very different from
polynomial dynamics. The hair {z |z > 1} lies in J(F) despite the fact
that these orbits go to co. The difference is the fact that oo is an essential
singularity for E, not a superattracting fixed point. Another temptation is
to say that there is a hair corresponding to every sequence spsiSs ... This,
unfortunately, is not true either, as certain sequences simply grow too quickly
to correspond to orbits of E. See Deville [?] for more details.

So this is J(F): a “hairy” object extending toward oo in the right-half
plane. We call this object a Cantor bouquet. We will see that this bouquet
has some rather interesting topological properties as we investigate further.

4.4 Cantor N-Bouquets

In this section we begin the construction of a Cantor bouquet. We first
construct a Cantor set on which F) is conjugate to the shift map on 2N +1
symbols.

The graph of E) (see Figure 4) shows that E) has two fixed points on
the real axis, an attracting fixed point at ¢, and a repelling fixed point at
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Figure 9: E) maps the half plane Re z < £, inside the disk.

px, with 0 < g < pa. Note that g, < —log A < p, since
Ej(g) < 1= Ej(~log ) < E\(py).

Fix a real number 7, satisfying —logA < £, < p, and observe that, if Re
z > [y, then
|EL(2)] = AeRe > NeP > > 1

for some constant 4 > 1. Thus E), is “expanding” in the half plane Re z > /.

Note that E) maps the half plane Re z < £, inside itself, in fact to the
circle of radius F)(¢,) centered at 0, since E)({)) < £5. Now F) has a fixed
point in this half plane, namely g,. See Figure 9 It follows from the Corollary
to the Schwarz lemma that all orbits in this half plane tend to ¢y, and so the
Julia set of E) is contained in the right-half plane Re z > /).

We will now construct a collection of invariant Cantor sets for E in the
right-half plane Re z > ¢, on which the dynamics of E) is conjugate to the
one-sided shift map on 2N + 1 symbols. Fix an integer N > 1. Consider the
rectangle By bounded as follows:

1. On the left by Re z = £,
2. Above and below by Imz = +(2N + 1)7

3. On the right by Re z = r) where r, satisfies Ae™ > r) + (2N + 1)«
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Figure 10: Construction of the R;

The inequality in part 3 guarantees that E, maps the right-hand edge of
the rectangle to a circle of radius Ae™ centered at 0 which contains the entire
rectangle By in its interior. Note also that E) maps By onto the annular
region {z | \e® < |z| < Ae™} and that By is contained in the interior of this
annulus.

For each integer ¢+ with —/N <7 < N, consider the subrectangle R; C By
defined by £, < Re z < ry and (2 — 1)r < Im 2z < (2i + 1)7. Note that
E, maps each R; onto the annular region above, and that |E(z)| > u > 1.
Moreover, if we restrict F, to the interior of R; we obtain an expanding
analytic isomorphism which maps the interior of R; onto a region that covers
all of By. See Figure 10. As a consequence, we may define an analytic
branch of the inverse of Fy, L, ;, which takes By into R; for each i. Clearly,
L, ; is a contraction for each 7. In particular, there is a constant v < 1 such
that |L,;| < v for all 7 and all z in By. See Figure 10.

Now define

Ay ={z € By|E}(z) € By for j =0,1,2,.. .},

that is, Ay is the set of points whose orbits remain for all time in By. Let
Y n denote the space of infinite sequences s = (sgs152...) where each s; is
an integer, —N < s; < N. Endow Xy with the product topology. For each
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Figure 11: Just a blank figure, sorry.

s € Y, we identify a unique point in Ay via
¢(8) = ,,,}i_{glo LAaSO © LA:SI ©---0 LA;Sn (z)

where z is any point in By. The fact that ¢(s) is a unique point follows from
the fact that each L, , is a contraction in By. In fact ¢(s) is independent of
z, and ¢ defines a homeomorphism between ¥y and Ay. Moreover, ¢ gives
a conjugacy between the shift map on the sequence space ¥y and E,|Ay.
Since |Ef(z)] > p > 1 for all z € Ay, it follows that Ay is a hyperbolic
set, and so Ay C J(E)). Moreover, we have an increasing sequence of these
Cantor sets A; C Ay C .... Since each point in Ay lies in the complement of
the basin of attraction of gy, it follows that Ay C J(E)). We have proved:

Theorem 4.1 Suppose 0 < A < 1/e. Then the set of points A whose orbit
remains for all time in the rectangle By is a Cantor set in J(E\). The action
of E on this Cantor set is conjugate to the shift map on 2N + 1 symbols.

We next claim that each point z; = ¢(s) in one of the A; comes with a unique
“hair” attached. This hair is a curve associated with a natural parametriza-
tion

hys:[1,00) = C

that satisfies
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1. h)\’s(].) = Zs
2. hy s is a homeomorphism
3. If t # 1, then Re E}(h)4(t)) = oo as n — 00

4. For each t, hy 4(¢) lies in the horizontal strip

(25 — D) <Im z < (259 + 1)

5. Ex(hrs(t)) = hao(s)(E1/e(t)) where o(s) denotes the shift applied to
the sequence s.

By condition 4, the orbit of ) 4(¢) tends to co. Hence this point does not
lie in the basin of attraction of ¢, and as a conseqeunce each point on a hair
lies in the Julia set.

To define hy, recall that E;/. has a unique fixed point at 1 and that
Eijei[l,00) — [1,00). If ¢ > 1, then EY () — oc as n — oo. Recall
that Ly, is the branch of the inverse of E) which now takes values in the
horizontal strip given by

(2s; — )m < Im z < (2s; + 1)7.

Then define
has(t) = 7}1_>Holo Lyso 0.0 Ly, ?/e(t))-

It can be shown that h, s has all of the properties listed above.
Thus, for each N > 1, we have a map

Hy: Xy X [0,000 — C.

This map is also a homeomorphism. We call the image of H, a Cantor
N-bouquet and denote it by By n.

These Cantor N-bouquets form the skeleton of the Julia set. Indeed,
every repelling periodic point has bounded itinerary, and hence lies in some
By n for some N. In particular, such a point lies at the endpoint of a hair
in some Cantor N-bouquet (and hence any M-bouquet for M > N). This
means that the N-bouquets are dense in the Julia set. So

J(E\) = Closure of UY_; By n.
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We call the closure of the union of the N-bouquets a Cantor bouquet.

Now there are points in the Cantor bouquet that do not lie in By 5 for
any N. Indeed, there are many points whose itineraries are unbounded. To
understand these points, we need to introduce the notion of a straight brush.
This is the topic of the following section.

4.5 Straight Brushes

To describe the structure of a Cantor bouquet, we introduce the notion of a
stratght brush.

To each irrational number (, we assign an infinite string of integers
noning ... as follows. We will break up the real line into open intervals
Inon,..n, Which have the following properties

1. Ing.mp D1,

no---Mp41-°

2. The endpoints of I,,, _,, are rational.

3‘ C = ﬂ]ogoz]_ Inonk

Now there are many ways to do this. We choose the following method
based on the Farey tree. Inductively, we first define Iy = (k,k + 1). Given
Ing..n, we define I, ,,; as follows. Let

(&7
Ino...nk - <ﬁ, 5) .

Let po/qo = (a+7)/(B + 9), the Farey child of «/8 and v/§. Let p,/q, be
the Farey child of p,_1/¢,—1 and /0 for n > 0, and let p,_1/¢,_1 be the
Farey child for o/ and p,,/q, for n > 0. We then set I,, ,,; to be the open

interval (pj/(]j,pj+1/Qj+1)-

Example. [, = (0,1). The Farey child of 0/1 and 1/11is 1/2, so py/qo = 1/2.
Then pi/qi = s ® 1 =2/3,p2/o =2 1 =3, and p, /g, = n+1/n+2 for
n > 0.

For the remaining n we have

pfl/qfl =
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Figure 12: Construction of Iy,.

p72/(]72 =

p—n/q—n =

Therefore, if n > 0,

n+1 n+2
IOn:( ) )
n+2 n+3

and if n <0,

1 1
IOn:< ) )
-n+2 -n+1

See Figure 12. Note that we exhaust all of the rationals via this procedure,
so each irrational is contained in a unique Iy, ...

We now define a straight brush, a notion due to Aarts and Oversteegen
[AO].

Definition 4.2 A straight brush B is a subset of [0,00) X N, where N is a
dense subset of irrationals. B has the following 8 properties.

1. B is “hairy” in the following sense. If (y,a) € B, then there exists
@ Yo < y such that (t,a) € B iff t > yo. That is the “hair” (t, )
is contained in B where t > y,. Yo 1S called the endpoint of the hair
corresponding to .

2. Given an endpoint (Yo, o) € B there are sequences B, T a and 7, | «
in N such that (ys,,5n) = (Ya,@) and (Yy,,Vn) — (Ya, ). That is,
any endpoint of a hair in B is the limit of endpoints of other hairs from
both above and below.
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3. B is a closed subset of R?.

Exercise. For any rational number v and any sequence of irrationals o, € N
with o, — v, show that the hairs [y,, , @] must tend to [0o,v] in [0, 00) X R.

Exercise. Show that condition 2 above may be changed to: if (y,«) is
any point in B (y need not be the endpoint of the a-hair), then there are

sequences (3, T a, v, | a so that (yg,, 5,) = (y, @) and (y,,, ) = (¥, @) in
B.

Remark. Let (y,a) € B and suppose y is not the endpoint y,. Then
one may prove that (y, ) is inaccessible in R? in the sense that there is no
continuous curve 7y : [0,1] — R? such that y(¢t) € B for 0 < ¢ < 1 and
v(1) = (y, @). One may also prove that (y,,a) is accessible in RZ.

THese exercises show that a straight brush is a remarkable object from
the topological point of view. Let’s view a straight brush as a subset of the
Riemann sphere and set B* = B U 00, i.e., the straight brush with the point
at infinity added. Let £ denote the set of endpoints of B, and let £* = £Uoo.
Then we have the following result, due to Mayer [Mal:

Theorem 4.3 The set £* is a connected set, but £ is totally disconnected.

That is, the set £* is a connected set, but if we remove just one point
form this set, the resulting set is totally disconnected. Topology really is a
weird subject!

The reason for this is that, if we draw the straight line in the plane (v, t)
where v is a fixed rational, and then we adjoin the point at infinity, we find
a disconnection of £. This, however, is not a disconnection of £*. Moreover,
the fact that any non-endpoint in B is inaccessible shows that we cannot
disconnect £* by any other curve.

Remark. Aarts and Oversteegen have shown that any two straight brushes
are ambiently homeomorphic, i.e., there is a homeomorphism of R? taking
one brush onto the other. This leads to a formal definition of a Cantor
bouquet.
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Definition 4.4 A Cantor bouquet is a subset of C that is homeomorphic to
a straight brush (with oo mapped to o).

Our main goal in this section is to sketch a proof of the following result:
Theorem 4.5 Suppose 0 < A < 1/e. Then J(E)) is a Cantor bouget.

Proof. To construct the homeomorphism between the brush and J(E)) we
first introduce symbolic dynamics. Recall that E) has a repelling fixed point
px > 0in R and that the half plane Re z < p, lies in the stable set. Similarly
the horizontal strips

g+2k7r<1mz<g+(2k+1)7r

are contained in the stable set since E, maps these strips to Re z < 0 which
is contained in Re z < p,.
We denote by Sy the closed halfstrip given by

Rez > py and —g—i—ZngIngg—i—ka.

Note that these strips contain the Julia set since the complement of the strips
lies in the stable set.
Given z € J(E)), we define the itinerary of z, S(z), as usual by

S(z) = s98189 - - -

where s; € Z and s; = k iff F](z) € Sy. Note that S(2) is an infinite string
of integers that indicates the order in which the orbit of z visits the Sx. We
will associate to z the irrational number given by the itinerary of z (and the
decomposition of the irrationals described above). This will determine the
hair in the straight brush to which z is mapped. See Figure 13. Thus we
need only define the y-value along this hair. This takes a little work.

We will construct a sequence of rectangles Ry(j) for each j,k > 0. The
point F3(z) will be contained in Ry (j) for each £ > 0. And we will have
Ry 1(j) C Ri(j) for each j and k. Each Ry(j) will have sides parallel to the
axes and be contained in a strip S,. Finally each Ry(j) will have height =.
Since the R;(j) are nested with respect to &, the intersection ;2o R (j) will
be a nonempty rectangle of height 7 that contains F3(z). We then define
h(z) to be the real part of the left hand edge of this limiting rectangle.
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Figure 13: The itinerary of z is 0,1, —1,.. ..

To begin the construction, we set Ry(j) to be the square centered hori-
zontally at FY 7 (%) with sidelength 7 and contained in the appropriate strip
Sa- Observe that E\(Ry(j)) D Ro(j + 1). Indeed, the image of Ry(j) is an
annulus whose inner radius is e ™/?|E{*!(z)| and outer radius e™?|E{*!(2)|.
Now e¢™? > 4 and e ™/? < 1/4 so the image annulus is much larger than
Ro(5 +1). See Figure 14.

It follows that we may find a narrower rectangle R;(j) strictly contained
in Ry(j) having the property that the height of R;(j) is 7 and the image
E\(R1(j)) just covers Ry(j + 1). That is, R;(j) is the smallest rectangle in
Ry(j) whose image annulus is just wide enough so that Ry(j + 1) fits inside.
See Figure 15. Note that E4(2) € Ry(j).

Continue inductively by setting Ry(j) to be the subrectangle of Ry_1(j)
whose image just covers Ry_1(j + 1). The Ry (j) are clearly nested for each
fixed j.

Example. Suppose z = py. We have that Ry(j) is the square bounded by
Re z = py = 7/2 and Im z = +7/2 for each j. One may check that, for each
J, N2y Ri(j) is the strip bounded by Re z = p, and Re z = ( where the
circle of radius \e¢ passes through ¢ 4 iw/2. See Figure 16.
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Figure 14: Construction of Ry(0) and Ry(1).
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Figure 15: Construction of R;(0).
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Figure 16: The intersection of R;(0).

Suppose z has itinerary S(z) = sps182.... Let I(S(z)) denote the irra-
tional number determined by the sequence S(z) as above. Then set ¢(z) =
(h(2),1(S(z))). We claim that ¢ is a homeomorphism onto a straight brush.
For a proof, we refer to [AO]

4.6 Connectedness Properties of Cantor Bouquets

We call the set of endpoints of a Cantor bouquet the crown. Since a Cantor
bouquet is homeomorphic to a straight brush with the points at co coinciding,
it follows that any Cantor bouquet has the amazing connectedness property
that the crown together with oo is connected, but the crown alone is totally
disconnected.

It can be shown that the construction above works for any exponential
for which there exists an attracting or neutral periodic point. However, in
the general case, some of the hairs in the Cantor bouquet may be attached
to the same point in the crown. See [BD].

McMullen [McM] has shown that the Hausdorff dimension of the Can-
tor bouquet constructed above is 2 but its Lebesgue measure is zero. This
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accounts for why figures 5 and 6 seem to have open regions in the Julia set.

Cantor bouquets arise in many critically finite entire maps. In order to
see this, suppose all singular points of F' lie in some disk B, of radius r
centered at the origin. Consider the preimage F~'(C — B,) and let U be
any component of this set. Now F' maps U analytically onto C' — B, without
singular values, so F' must be a universal covering. As such, F' acts like an
exponential map. If, in fact, U is disjoint from C — B, and F' has sufficient
growth in U, it can be shown (see [DT]) that there is an invariant Cantor
bouquet for Fin U. For a specific example dealing with the complex standard
map z — 2z + w + esin z we refer to [Fa].

Remark. One may construct a similar Cantor bouquet for the map Sy(z) =
Asinz when 0 < A < 1. In this case, the rectangles will now be arranged
vertically and there will be two bouquets: one in the upper half plane and
one in the lower.

4.7 Uniformization of the Attracting Basin

The basin of attraction {2, of F, is an open, dense, and simply connected sub-
set of the Riemann sphere. Hence the Riemann Mapping Theorem guarantees
the existence of a uniformization ¢,: D — €2,. Given such a uniformization,
it is natural to ask if the uniformizing map extends to the boundary of D.

In order to extend ¢, to the boundary, we need that the image of a
straight ray re? where 6 is constant under ¢, converge to a single point as
r — 1. It is known that if the boundary of the uniformizing region is locally
connected, then in fact ¢, does extend continuously to D. On the other
hand, if the boundary of the region is not locally connected, then not all
rays need converge (though a full measure set of them must converge). In
our case, the boundary of €, is nowhere locally connected (except at co).
However, it is a fact that all rays do converge. In fact, they land at precisely
the endpoints of the Cantor bouquet. This means that we can induce a map
on the set of endpoints, but that map is necesarily nowhere continuous [Pi.

In the case of a straight brush, it is clear that all rays do land at the
crown of the bouquet. A direct proof for E) is given in [DG].

Remark. It can be shown that if we normalize the Riemann map ¢, so that
0 is mapped to 0, then the induced map ¢, 10 Ej o ¢, on the unit disk is

given by
(R
1o = 1 (122)
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Here p is a parameter that lies in the upper half plane and depends upon A.

4.8 After the Bifurcation

As we have seen, when A > 1/e, the Julia set of E) is the entire plane. In this
appendix, we consider the case A = 1 and write simple F(z) = e*. In 1981,
Misiurewicz showed that J(FE) = C, answering a sixty-year-old question of
Fatou. We present his proof of this fact below.

The following proposition highlights one of the differences between FE(z)
and polynomials: points which tend to co under iteration of £ need not be
in the stable set.

Proposition 4.6 The real line is contained in J(E).

Proof. Let S denote the strip |Im (2)| < /3. If z = z + iy € S, then since
le* cosy| > e*/2 > z, it follows that E(z) lies to the right of z. The last
inequality follows since £ > <. In particular, if E*(z) € S for all i, we have
Re E%(z2) — oo.

If z € S with Re (z) > 1 and Im (z) # 0, then we also have

_ 2
e®siny| > 6”(;|y|) > |yl

Consequently, if z € S but z ¢ R, and if Rez > 1, then [Im (F%(z))| must
grow as 7 increases. Hence there exists j > 0 for which E’(z) ¢ S. Thus all
points in S which do not lie in R must eventually leave S.

Now let U be any neighborhood of z € R. Recall that E7(z) — oco. By
the above remarks, there is N > 0 such that, for each j > N, E’(U) intersects
both R and the line y = 7/3 at points with real part > 1. Consequently,
E7*Y(U) meets both R and y = 7, since y = 7/3 is mapped to the ray
0 = /3. Hence E?2(U) meets the negative real axis, and so a portion of U
is mapped by E7*3 inside the unit disk. Thus, for sufficiently large j, there
are points z; and z, in U for which E’ (z1) lies in the unit disk and for which
|E7(2)| is arbitrarily large. It follows that {E™} is not normal in U, and so
z € J(E).

O

Thus to show that J(F) = C, it suffices to show that inverse images of
the real line are dense in C. For this, we need several lemmas.

Lemma 4.7 |Im (E"(2))| < |(E™)(2)].
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Proof. If z = z + 1y, we have

[Im (E(2))] = e*[siny]

IN
o
_8
=

|E'(2)[[Im (2)|

so that
Im (E(z))]

[Tm (2)]
if z ¢ R. More generally, if E"(z) ¢ R, we may apply this inequality
repeatedly to find

< |E'(2)|

In ()| _ ' Jm BE'())
I (B(2)] it [ (B(2))]
< @E’(E@‘(z))«

Since |Im (E(z))| < |E(2)| = |E'(2)| we may write

Im (E"())] < H E(E(2))|
= |(EY ().

O

The proof of Proposition 4.6 shows that most points must leave the strip

S under iteration. The next lemma shows, however, that most points must
eventually return.

Lemma 4.8 Let U be an open connected set. Then only finitely many of the
E™(U) can be disjoint from S.

Proof. Let us assume that infinitely many of the images of U are disjoint
from S. If there is an n for which E™ is not a homeomorphism taking U onto
its image, then there exist 21,29 € U, 21 # 29, for which E™(2;) = E™(z3).
Consequently, there is a j for which E7(z) = FE’(23) + 2kwi for some k €
Z — {0}. But then E’(U) must meet a horizontal line of the form y = 2mm
for m € Z and so E/1(U) meets R. Hence E/+t%(U) meets R for all a > 0
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and only finitely many of the images of U can be disjoint from S. We thus
conclude that each E™ must be a homeomorphism on U.

Now suppose there is a sequence n; such that for each j, E" (U)NS = ¢.
By the previous lemma, |(E™)'(z)| > (7/3)™ for each j and all z € U. It
follows that, if U contains a disk of radius 6 > 0, then E™ (U) contains a
disk of radius §(m/3)™. See Exercise 2. Hence for j large enough, E™ (U)
must meet a line of the form y = 27 and again we are done.

O

Lemma 4.9 Let V be an open connected set for which infinitely many of its
images are contained in the half plane H = {z|Re (z) > 4}. Then there
exists n > 0 for which E"(V)NR # (.

Proof. Let W denote the set {z||Im (z)| < 27 and [Im (E(2))| < 27}. If a
connected set A satisfies ANW = (), then either ANS or E(A)N S is empty.
Consequently, by the previous lemma, only finitely many images of V in H
can be disjoint from W. Hence almost all images of V' are contained in W.

Now consider the boundary |y| = % of S in H. If z lies on this boundary,
then

Im (E(2))| > e* sin(%) > 2.

Therefore, the boundary of S in H does not lie in W. Thus every connected
set in W N H 1is either contained in S or disjoint from S. Now the image
of SN H is contained in H. Since infinitely many of the images of V' are
contained in W N H, and since for each z € C — R, there exists n > 0 such
that E™(z) ¢ S (see the proof of Proposition 4.6), it therefore follows that
infinitely many of them must be disjoint from S. This contradicts Lemma 4.8.

O

We can now prove

Theorem 4.10 J(E) = C.

Proof. By Proposition 4.6, it suffices to show that any open set in C contains
some preimage of R. To that end, let U be open and connected and suppose
E™(U)NR = for each n. By Montel’s Theorem, {E"} is a normal family
on U.

Let D denote the disk of radius e* about 0. Note that F(H) is the
complement of D. Hence, by Lemma 4.9, it follows that infinitely many of
the images of U meet D.
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Now let F' denote the limit function of some subsequence of the E™. By
the above, F(U) N D # ¢. Choose a point 2y € F(U) N D. If z; € R, then
there exists k£ > 0 such that E¥(U)NR # ¢ and we are done. Thus we assume
zo € R. As we observed in Proposition 4.6, there exists £ > 0 for which
E*(20) ¢ S. Therefore there exists w € U and another subsequence of the
E™ which converges to a map F; which satisfies Fi(w) ¢ S. But then there
is an open neighborhood V' of w and infinitely many images E™(V') which do
not meet S. This contradicts Lemma 4.8 and establishes the theorem.

O

35



References

[BD]

[BI]

[Bo]

[BR]

Atela,P. Bifurcations of Dynamic Rays in Complex Polynomials of
Degree Two. Ergod. Th. & Dynam. Sys. 12 (1991), 401-423.

Aarts, J. and Oversteegen, .. The Geometry of Julia Sets. Trans.
Amer. Math. Soc. 338 (1993),897-918.

Branner, B. The Mandelbrot Set. In Chaos and Fractals: The Math-
ematics Behind the Computer Graphics. Amer. Math. Soc. (1989)
75-106.

Bhattacharjee, R. and Devaney, R. L. Tying Hairs for Structurally
Stable Exponentials. Preprint.

Blanchard, P. Complex Analytic Dynamics on the Riemann Sphere,
B.A.M.S. 2 (1984),85-141.

Bodelon, C. et. al. Hairs for the Complex Exponential Family.
Preprint.

Baker, I. N. and Rippon, P. Iteration of Exponential Functions, Ann.
Acad. Sci. Fenn., Series 1A Math. 9 (1984),49-77.

[DBDS| (Douady,A. Buff, X. Devaney, R. L. and Sentenac, P. Baby Mandel-

[D2]

[DG]

[DH]

[DH1]

brot Sets are Born in Cauliflowers. In The Mandelbrot Set: Theme
and Variations, London Mathematical Society Lecture Notes, Cam-
bridge University Press, ed. Tan Lei. 274 (2000), 19-36.

Devaney, R. L. The Structural Instability of Exp(z). Proc. A.M.S.,
94 (1985),545-548.

Devaney, R. L. and Goldberg, L. Uniformization of Attracting Basins
for Exponential Maps. Duke Mathematics Journal. 55 (1987), 253-
266.

Douady, A. and Hubbard, J. Etude Dynamique des Polynome Com-
plexes, Publications Mathematiques d’Orsay.

Douady, A. and Hubbard, J. Itération des Polyndémes quadratiques
complexes, C.R. Acad. Sci. Paris, t.29, Serie 1-1982, 123-126.

36



[DH2|

1]

[DK]

[DoG]

[DT]

[EL]

Douady, A. and Hubbard, J. On the Dynamics of Polynomial-like
Mappings, Ann. Scient., Ec. Norm. Sup. 4° séries, t.18, 1985, 287.

Devaney, R. L. and Jarque, X. Misiurewicz Points for Complex Ex-
ponentials Int. J. Bifurcation and Chaos 7 (1997), 1599-1616.

Devaney, R. L. and Krych, M. Dynamics of Exp(z), Ergodic Theory
and Dynamical Systems 4 (1984), 35-52.

Douady, A. and Goldberg, L. The Nonconjugacy of Certain Exponen-
tial Functions. In Holomorphic Functions and Moduli. MSRI Publ.,
Springer Verlag (1988), 1-8.

Devaney, R. L. and Tangerman, F. Dynamics of Entire Functions
Near the Essential Singularity, FErgodic Thy. Dynamical Syst. 6
(1986), 489-503.

Eremenko, A. and Lyubich, M. Yu. Iterates of Entire Functions. Dokl.
Akad. Nauk SSSR 279 (1984), 25-27. English translation in Soviet
Math. Dokl. 30 (1984), 592-594.

Farey, J. On a curious property of vulgar fractions. Phil. Mag. J. Lon-
don 47 (1816), 385-386.

Fagella, N. Limiting Dynamics for the Complex Standard Family.
Intern. J. Bifur. chaos Appl. Sci. Engrg. 5 (1995), 673-679.

Goldberg, L. R. and Keen, L. A Finiteness Theorem For A Dynamical
Class of Entire Functions, FErgodic Theory and Dynamical Systems 6
(1986), 183-192.

LaVaurs,P. Une Description Combinatoire de I'involution definie par
M sur les rationelles a denominateur impaire. C. R. Acad. Sci. Paris
Sér. I Math. 303 (1986), 143-146.

Lyubich, M. Measurable Dynamics of the Exponential, Soviet Math.
Dokl. 35 (1987), 223-226.

Mayer, J. An Explosion Point for the Set of Endpoints of the Julia
Set of Aexp(z). Erg. Thy. and Dyn. Syst. 10 (1990), 177-184.

37



[McM] McMullen, C. Area and Hausdorff Dimension of Julia Sets of Entire

[Pi]

[PM]

Functions. Trans. A.M.S. 300 (1987), 329-342.

Piranian, G. The Boundary of a Simply Connected Domain.
Bull. Amer. Math. Soc. 64 (1958), 45-55.

Pomeau, Y. and Manneville, P. Intermittent Transition to Turbulence
in Dissipative Dynamical Systems. Commun. Math. Phys. 74, 189-
197 (1980).

Smale, S. Diffeomorphisms with Many Periodic Points. Differential
and Combinatorial Topology. Princeton University Press, 1964, 63-80.

Sullivan, D., Quasiconformal Maps and Dynamical Systems I, Solu-
tions of the Fatou-Julia Problem on Wandering Domains. Ann. Math.
122 (1985), 401-418.

38



