TOPOLOGICAL BIFURCATIONS

ROBERT L. DEVANEY

ABSTRACT. In complex dynamics, the important object of study is the Julia
set of a given holomorphic function. This set contains all of the points where
the map is chaotic. As parameters change, the Julia set sometimes under-
goes rather remarkable changes in topology. We call these changes topological
bifurcations. In this paper we describe a number of different topological bifur-
cations, all of which occur in the family

1

Fop(2) = ot e

We present bifurcations in which the Julia sets of this family is transformed
abruptly
(1) From a Cantor bouquet to a simple closed curve in the Riemann sphere;
(2) From a Cantor bouquet to a Cantor set;
(3) From a Cantor bouquet to the whole Riemann sphere, including the
appearance of infinitely many indecomposable continua.

1. INTRODUCTION

Our goal in this paper is to describe the topology of the Julia sets of the family
of meromorphic functions given by F,, 3 : C = C where

1

Fop(2) = ot B
with a,8 € R and 8 # 0. As we shall show, this set undergoes some remarkable
bifurcations as the parameters o and 3 are varied. In this section we give some pre-
liminary information about the dynamics and topology of this type of meromorphic
function.

One important feature of this family of complex analytic maps is that it has con-
stant Schwarzian derivative. The Schwarzian derivative of a function F' is defined

by
§all jal 2
SF(z) = 1) 3 (F(2))"
Fi'(z) 2\ F'(2)
A computation shows that, in our case, SF, g(2) = —1/2. Schwarzian derivatives

play a role in determining the “curvature” of complex functions. They also are
important in the study of real one-dimensional maps, where the assumption that
the functions have negative Schwarzian derivative has implications for the number
of attracting cycles present in such a map.

Functions with constant Schwarzian derivative have the following special proper-
ties. First, there are no critical points for these types of functions. Secondly, these
functions have a pair of asymptotic values vy and vy. In such a family, this means

1991 Mathematics Subject Classification. Primary 37F45; Secondary 37F10, 37F20.
Key words and phrases. Dynamical Systems, Bifurcations.

1



2 ROBERT L. DEVANEY

that there are a pair of disjoint half planes H; extending to co which are wrapped
infinitely often by the function around a disk punctured at v;. More precisely, there
is a neighborhood Uj of each v; for which the preimage is an open, simply connected
set extending to oo, containing a half plane, and on which F': F~1(U;) - U; — {v;}
is a universal covering map. More generally, a function whose Schwarzian derivative
is a polynomial of degree n has no critical points and n + 2 asymptotic values. In
this case, a neighborhood of oo is broken up into n + 2 sectors of angle 27 /(n + 2)
on each of which the map acts like a universal cover of a punctured disk. For more
details, see [12], [13].

For F, s, the asymptotic values are 0 and 1/a. F, 5 takes the far left half plane
and wraps it infinitely often around a disk punctured at the origin. Similarly Fy, g
maps the right half plane infinitely often around a disk punctured at 1/a. When
a = 0, the asymptotic value is at oo and our family degenerates to the entire
function Eg(z) = (1/8)e*.

When a # 0, F, g has infinitely many poles. These are given by points of the
form log(—p3/a) (recall that we always assume that 8 # 0).

For a complex analytic function F', the most important object is the Julia set of
F. The Julia set J(F') is defined by any of the following equivalent conditions:

(1) J(F) is the set of points z at which the family of iterates of F fails to be a
normal family in the sense of Montel in any neighborhood of z.

(2) J(F) is the closure of the set of repelling periodic points of F.

(3) J(F) is the closure of the set of prepoles of F. By definition, a prepole is
a point whose forward orbit lands on a pole and hence is mapped to co by
some iterate of F'.

(4) J(F) is the chaotic regime for F' (using just about any definition of chaos
in the literature.)

The topology of the Julia set and the dynamics of F' on J(F') is largely deter-
mined by the fate of the orbits of the asymptotic values. The following results are
well-known. See [3] and [13].

Theorem 1.1. (1) If F has an attracting cycle, then this cycle must attract at
least one of the asymptotic values. In this case, J(F) is a nowhere dense
subset of the plane.

(2) If both asymptotic values are prepoles, then J(F) = C.
(3) If F is an entire function and the finite asymptotic value tends to oo under
iteration, then J(F) = C.

2. AN EXPLODING CANTOR BOUQUET

In this section we assume that a = 0 so that our family becomes the family of
entire functions given by Fp g(2) = Eg(z) = (1/8)e®. The family Ez undergoes a
remarkable bifurcation as 3 passes through the parameter value e. The following
is known; see [14].

Theorem 2.1. If 8 > e, then J(Eg) is a Cantor bouquet. If 0 < 3 < e, then
J(Eg) =C.
Roughly speaking, a Cantor bouquet consists of uncountably many disjoint curves

with endpoints. Each of these curves tends to oo in a certain direction. To be more
precise, using a definition introduced by Aarts and Oversteegen (see [1]), a Cantor
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bouquet is a subset of C which is homeomorphic to a straight brush. To define a

straight brush, let B be a subset of [0, 00) x (R— Q) having the following properties:

(1) Hairiness. For each (t,s) € B, there is a t; € [0,00) such that {t|(¢,s) €

B} = [ts,00). The point e; = (ts,s) is called the endpoint of the hair h,
defined by hy = [ts,00) x {s}.

(2) Density. The set {a]|(y,a) € B for some y € [0,00)} is dense in R — Q.
Moreover, each endpoint of a hair is the limit from above and from below
of other endpoints of hairs.

(3) Closed. B is closed in R2.

It is relatively easy to see that these three properties imply the following property
of B:
4. Endpoint density. If (¢,s) € B, then there are sequences {z;} — s and
{yi} = s with z;,y; e R—Q and z; < s, y; > s for all  and
(tziamz’) - (t,S) and (tyi’y’i) - (tas)'
That is, each point in B is an accumulation point of endpoints from above
and below.
The proof of the following may be found in [1] or [14].
Theorem 2.2. If the function Ae* has an attracting fized point, then the Julia set
is a Cantor bouquet.
In particular, in our case, J(Ejg) is a Cantor bouquet if § > e. Indeed, when
B > e, the graph of Eg shows that Eg has an attracting fixed point on the real line.
See Figure 1. When 8 = e, Eg has a neutral fixed point at z = 1. When 0 < § < ¢,

the orbit of the asymptotic value at 0 now tends to co. Hence J(Eg) = C for these
values of 3; we say that the Julia set of Eg explodes as 3 decreases through e.

2 g B=¢
B=4
/
-2 1 2
-2

FIGURE 1. The graphs of Eg for 8 = 2,e, and 4.

Before discussing this explosion, we give a brief indication of why J(Ejz) is a
Cantor bouquet when § = e. Consider the half plane H = {z|Rez < 1}. E, maps
H onto the disk of radius 1 centered at the origin (minus the origin). E, has a
neutral fixed point at 1 and E. contracts H inside itself (except at the boundary
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point z = 1), and so all points in H have orbits that tend to the neutral fixed point.
Hence J(E,) lies in the right half plane Rez > 1.

To compute the Julia set, we determine its complement, which is known to be
the basin of attraction B of the fixed point at 1. The lines y = (2k + 1)mi are all
mapped into the left half plane by E.; hence these lines also lie in the basin of
x = 1. We may remove open neighborhoods of these lines which also lie in B. Note
that these neighborhoods extend to co to the right. We are left with infinitely many
“fingers” C}, as displayed in Figure 2. Each of these fingers is mapped in one-to-one

1

R 5
v

K C

FI1GURE 2. The preimage of H consists of H and the shaded region.

T
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fashion onto Rez > 1. Hence we may also remove all points in each C} that map
into the removed neighborhoods of the lines y = (2k + 1)7i. Continuing in this
fashion, we remove at each stage infinitely many narrower “strips” extending to oo
from each of the Cj. In the limit, we end up with infinitely many curves lying in
J(E.), each of which has an endpoint. These curves are also called “hairs.”

For example, the straight line [1,00) lies in J(E,). 1 is the neutral fixed point,
while if > 1, we have E?'(z) — oo. This is typical; it is known that, on each curve
in J(E,), all non-endpoints have orbits that tend to co. Hence the bounded orbits
lie in the set of endpoints. But the repelling periodic points are dense in J(E,)
and these have bounded orbits; hence the endpoints must also be dense in J(E.),
as required in the definition of a straight brush.

This leads us to some of the amazing topological and geometric properties of
Cantor bouquets. It is known that:

(1) In the Riemann sphere, consider the set S consisting of all endpoints of
J(E.) together with the point at co. Mayer [18] has shown that S is a
connected set. However, if we remove just one point from S, namely the
point at oo, then Mayer also shows that S — {oo} is not just disconnected
but totally disconnected.

(2) J(E.) has Hausdorff dimension 2 but Lebesgue measure 0 [19].
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(3) The large subset of J(E,) consisting of the non-endpoints in J(E,) has
Hausdorff dimension 1, but the relatively small subset of endpoints S has
much larger Hausdorff dimension, namely 2. See [16], [17].

(4) The basin of attraction B of the neutral fixed point is simply connected
and hence may be uniformized by the Riemann Mapping Theorem. The
boundary of B, namely J(E,), is nowhere locally connected (except at 0o).
Nonetheless, all radial limits of the uniformizing map do exist and equal
either oo or an endpoint of the bouquet.

We remark that the Julia set J(Eg) is a Cantor bouquet for all 8 > e, not just
when 8 = e. The proof is essentially the same.

To return to the bifurcation at 8 = e, we observe that no new periodic points
are born at this bifurcation point. Locally, two fixed points coalesce on the real
axis as  decreases through e, but then they reappear in the plane with Im z # 0.
In the plane, all other periodic points move continuously with 8 as a consequence
of the Implicit Function Theorem. When 8 > e, they all lie in Rez > 1. As soon
as (8 < e, however, they are dense in C. While each repelling periodic point moves
continuously, the set of all such points moves discontinuously and abruptly fills the
whole plane.

3. How THE JuLlA SET EXPLODES

When 0 < 8 < e, J(Ep) is the entire complex plane. It is known that many of
the hairs in J(Ejg) persist as § decreases through e. Other hairs, however, explode
and become much more complicated from a topological point of view.

For example, consider the set of points I' whose entire orbit lies in the intersection
of the Julia set with the strip S given by the set 0 < Im z < 7. When 3 > e, this
set is the hair on the real axis [1, 00); all other points have orbits that either leave S
or else tend to the fixed point in R. But when 8 < e, suddenly all points on the real
axis escape to 0. So R C J(Eg). Much more happens, however. The line y = 7
is mapped to the real axis, so these points also lie in I". This line has a preimage
in S consisting of a curve whose real part extends to +oco in both directions. This
curve bounds the region L; in S consisting of points whose first image lies above
Im z = w. The preimage of this curve is a second curve bounding the set of points
Lo whose image lies in L;. And there is a third curve bounding L3, the region
which is mapped above S by Ef; Continuing, we find infinitely many regions L,,
consisting of points whose orbit leaves S at the n*" iteration. The boundaries of
these regions are curves that are eventually mapped to R and hence consist of points
whose orbits tend to co. Hence we see that there are infinitely many curves lying
in I'. See Figure 3.

There are many more points in I', however. Indeed, I' is homeomorphic to an
indecomposable continuum with countably many points removed. To see this, we
compactify the collection of curves by first scaling them horizontally so that the set
lies in, say, —1 < Rez < 1. Then we add the endpoints of each of the above curves
in Rez = £1. Finally, we identify adjacent points on these curves in Rez = +1.
More precisely, we first identify the points at —oo in R and in y = 7. Then we
identify the point at oo on y = 7 with the upper endpoint of the boundary of
Ly. Then we identify the lower boundary of L; with the upper boundary of L.
Continuing, we make countably many such identifications. See Figure 4. We end up
with a continuous curve in the plane that accumulates everywhere on itself without
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FIGURE 3. Construction of the L,,.

separating the plane. The reason that this curve does not separate the plane is as
follows. If there were an open set U contained in S that was not in one of the L;’s,
then the entire orbit of U would lie in S. But by Montel’s Theorem, the union of
the images of U is C — {0}. This gives a contradiction.

By a theorem of Curry [6], the closure of this set is an indecomposable contin-
uum. Hence I' is a homeomorphic copy of this set with the backward orbit of 0
removed. Thus, when 3 > e, I is a simple hair. But when 8 < e, I" explodes to be
an indecomposable continuum. It is known that there are many other hairs that
undergo such transformations. See [11].

/ - >

FIGURE 4. Embedding I in the plane.

4. ACCUMULATING ON THE CANTOR BOUQUET
Now fix 8 > e and let @ vary. When o = 0 we know that J(Fp,g) is a Cantor
bouquet. When a # 0, this changes dramatically. We have:
Theorem 4.1. Fiz 3 > e. There is an interval Ig containing oo = 0 such that
(1) If a € I3 and a < 0, then J(F, ) is a Cantor set in C.
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(2) If a € Ig and a > 0, J(Fo,p) is a simple closed curve passing through the
point at 0o in C.

Here is a sketch of the proof when a < 0. Consider a neighborhood U of the
attracting fixed point p in R. 'We may assume that U contains the interval [0, p]
since this interval lies in the basin of p. We construct U so that F, g(U) C U.
The graph of Fy, g (see Figure 5) shows that F 3(R™) C U so that the basin of p
contains infinitely many open sets extending from p + 2kni to oo in the left half

FIGURE 5. The graphs of F, g for « = —1 and 8 = 6.

plane. Now the far left half plane is mapped to a small disk about 0, so this half
plane lies in the basin of p as well. Also, the horizontal lines z + (2k + 1)7i are
mapped to R™ so these lines together with open strips about them are also in the
basin. Finally, the far right half plane is mapped to a disk about the asymptotic
value 1/ which lies in R™. So this half plane also lies in the basin. Let B be the
union of these pieces of the basin. So F, g(B) C B. Thus the complement of B
consists of infinitely many closed, simply connected regions Vj, one for each j € Z.
Each V; meets the line y = 2j7¢ in the right half plane.

Since Fy g(B) C B, we have that F, 3 maps each V; in one-to-one fashion onto
C-B, so F, 3(V;) D Vj for each k. Also, each V; contains a pole, so F(V;) D {oo}.
Thus we may use symbolic dynamics to associate to each z € J(Fy g) an itinerary
of one of the following two forms:

S(z) = sps182... or S(z) = 8098182-..5,_100.

Here each s; € Z and s; = k if and only if Fg 5(2) € V. We associate the finite
sequence 898182 ... 8,100 to 2z if F} 5(2) = co. That is, Fc’j’gl(z) is a pole.

Let ¥ denote the set of all possible such itineraries. We topologize ¥ by taking the
usual neighborhood basis about an infinite itinerary. If s = sgs; ... $,_100, a neigh-
borhood basis of s consists of all (finite or infinite) sequences sgsy - - .8, 17tnq1 - - -
where |7| > K for some K € Z*. In this topology, ¥ is homeomorphic to a Cantor
set. One shows easily (using the Poincaré metric on V;) that Fi, g | J(F,,g) is con-
jugate to the shift map on X, and, in particular, J(Fy,g) is a Cantor set in C. For
more details, see [4], [12].



8 ROBERT L. DEVANEY

FIGURE 6. The graphs of Fi, g for « = 0.1 and 8 = 4.

How does this Cantor set approach the Cantor bouquet as a — 07 Well, in
the obvious way. One may attach an itinerary to each hair in the Cantor bouquet.
Then the points with the corresponding itinerary in J(Fy, ) tend to the endpoint
of the hair with this itinerary as o — 0. The prepoles in J(Fy,g) tend to oo as
a — 0, as do certain other points whose itineraries do not exist in the symbolic
dynamics for the entire map.

FIGURE 7. The graphs of F, g fora =0.1 and g = 1.

When a > 0 a different picture emerges. The graph of F, g shows that a new
attracting fixed point ¢ = g(a) bifurcates away from oo on the positive real axis,
yielding two attracting fixed points on R. See Figure 6. The asymptotic value at
1/a now tends to this fixed point. As before, the far left half plane now lies in
the basin of p whereas the far right half plane now lies in the basin of ¢q. Using
symbolic dynamics, one can show that these two basins are separated by a simple



TOPOLOGICAL BIFURCATIONS 9

closed curve passing through both oo and the repelling fixed point in R. This
simple curve becomes “wilder and wilder” and accumulates on the Cantor bouquet
as a — oco. See [4] for more details.

5. ACCUMULATION ON THE COMPLEX PLANE

FIGURE 8. The graphs of various F, g witha < 0and 0 < 8 <e
showing an attracting n-cycle for n = 4,5, 6.

Now fix 3 with 0 < 8 < e. We know that J(Fp g) = C in this case. We address
here how the Julia set approaches C as a — 0.

When a > 0 we have a single attracting fixed point in R and the orbits of both
asymptotic values tend to this point. The entire real axis lies in the basin of this
fixed point. So do the lines y = 2kx for each integer k. And so do the far right and
left half planes. Call this portion of the basin B as before. Hence we find infinitely
many closed disks V; which are mapped onto C— F, 5(B) as in the previous section,
and so we see that J(Fy ) is again a Cantor set. This time the Cantor set spreads
out to cover all of C as a — 0.

The case when « < 0 is now quite a bit more complicated. The point (0, 8) with
0 < B < e is the accumulation point of infinitely many parameter values («, 3) for
which

(1) F,p has an attracting cycle of arbitrary large period which attracts both
asymptotic values.
(2) Both asymptotic values lie on a prepoles, so J(Fy 3) = C.
Several graphs showing attracting cycles are displayed in Figure 8. The full picture
of the parameter plane in this case is not well understood, though it appears to
be similar in many respects to the bifurcation plane for the family Ae® near the
positive real axis. See [9].
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