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Complex dynamics is a field in which a large number of captivating struc-
tures from planar topology occur quite naturally. Of primary interest in com-
plex dynamics is the Julia set of a complex analytic function. As we discuss
below, these are the sets that often are quite interesting from a topological
point of view. For example, we shall describe examples of functions whose
Julia sets (or invariant subsets of the Julia sets) are Cantor bouquets, inde-
composable continua, and Sierpinski curves. Because both the topology of
and the dynamics on these Julia sets is so rich, it is little wonder that there
are many open problems in this field. Our goal in this paper is to describe
several of these problems. To keep the exposition accessible, we shall restrict
attention to two very special families of functions, namely the complex ex-
ponential function and a particular family of rational maps. However, the
problems and topological structures encountered in these families occur for
many other types of complex analytic maps.

1 Cantor Bouquets and Indecomposable Con-
tinua

In this section we consider the dynamics of the complex exponential family
E\(z) = \e* where, for simplicity, A is for the most part chosen to be real
and positive. The Julia set for such an entire transcendental map has several
equivalent definitions. For example, the Julia set may be defined as the
closure of the set of points whose orbits escape to oo under iteration of
E\. (Note that this is different from the definition of polynomial Julia sets,
where it is the boundary and not the closure of the set of escaping points
that forms the Julia set.) Equivalently, the Julia set is also the closure of
the set of repelling periodic points. These two defintions show that the Julia
set of F, is home to chaotic behavior: arbitrarily close to any point in the
Julia set are points whose orbits tend off to oo as well as other points whose
orbits are not only bounded, but in fact periodic. So the map depends quite
sensitively on initial conditions near any point in the Julia set. In fact, much
more can be said since the Julia set may also be defined as the set of points
at which the family of iterates of £ fails to be a normal family. By Montel’s
Theorem, it then follows that, for any neighborhood U of a point in the Julia
set, the union of the sets E}(U) covers all of C — {0}. So arbitraily close to
any point in the Julia set are points whose orbits visit any region whatsoever



in C. We denote the Julia set of a function F' by J(F).

The complement of the Julia set is called the Fatou set. Here the situation
is quite different: the dynamics on the Fatou set is essentially completely
understood. For example, all points in the basin of attraction af an attracting
cycle clearly lie in the Fatou set: the orbits of all nearby points to a point in
such a basin behave similarly. No nearby orbits tend to oo and none lie on
repelling periodic cycles. There are a few other possible types of behavior in
the Fatou set, but none of these behaviors involve anything chaotic.
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Figure 1: The graphs of E) for several A-values.

The graphs of F) on the real line (see Figure 1) show that there are two
different types of dynamical behavior depending upon whether A < 1/e or
A > 1/e. When A < 1/e, there are two fixed points on the real line, an
attracting fixed point at ¢ = ¢, and a repelling fixed point at p = p,. All
orbits to the right of p tend to 0o, so these points are in the Julia set, as is p.
All points to the left of p are in the basin of attraction of ¢, so these points are
not in the Julia set. In fact, let x be any point in R with ¢ < z < p. Then one
checks easily that the entire half plane H, = Rez < z is wrapped infinitely
often around a disk minus the origin, and this disk lies strictly inside the
half plane H,. By the Schwarz Lemma, all points in any of these half planes
therefore have orbits that simply tend to ¢ and hence lie in the Fatou set.
So the Julia set must lie in the half-plane Re z > p. This is essentially true
when \ = 1/e, though now all orbits in the half-plane Re z < p now tend to
the neutral fixed point at p = gq.



To get a feeling for the structure of the Julia set when A < 1/e, we paint
the picture of its complement. Consider the preimage of H,. This preimage
must contain the lines y = (2n + 1)7 for each n € Z, since these lines
are mapped to the negative real axis. Hence there are open neighborhoods
of each of these lines extending from H, to oo in the right half plane and
mapped onto H,. This means that the Julia set is contained in infinitely
many symmetrically located, simply connected, closed sets that extend to
oo in the right half plane. Each of these sets is mapped one-to-one onto the
entire half plane Re z > z. As a consequence, there are points in each of these
regions that map into each of the neighborhoods of the lines y = (2n + 1)7
and hence these points are also in the Fatou set. So this breaks each of
these complementary domains into infinitely many more sets, each of which
extend off to 0o to the right. And so the Julia set must lie in these regions.
Continuing in this fashion, one can show that the Julia set is actually an
uncountable collection of curves (called “hairs”) that extend to oo in the
right half plane, and each of these hairs has a distinguished endpoint [DK].
The set of all such hairs forms the Julia set and is an example of a Cantor
bouquet. So each of these hairs consists of two subsets: the endpoint and the
remainder of the hair that we call the stem. For example, one such hair is
the half-line [p, 00) C R. The point p is the endpoint, which is fixed, and as
we saw earlier, all points to the right of p simply tend to co. In general, it
is known that, if a point lies on the stem, then, as in the case of (p, o), the
orbit of this point necessarily tends to oo (though it usually jumps around
between different hairs). Hence all of the bounded orbits must lie in the set
of endpoints. But the repelling periodic points are bounded and hence they
must lie in the set of endpoints. But this means that the set of endpoints is
dense in this entire set, and so they accumulate on each point on any given
stem.

Because of this, a Cantor bouquet has some very interesting topological
properties. For example, Mayer [Ma] has shown that, in the Riemann sphere,
the set of endpoints together with the point at oo forms a connected set,
whereas the set consisting of just the endpoints (i.e., remove just one point
from the previous set) is not just disconnected but totally disconnected.
Moreover, Karpinska [Ka] has shown that the Hausdorff dimension of the set
of stems is 1, whereas the Hausdorff dimension of the “much” smaller set of
endpoints is actually 2.

When )\ passes through 1/e, E, undergoes a simple saddle node bifurca-
tion in which the two fixed points ¢, and p) coalesce when A = 1/e and then
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reappear for A > 1/e above and below the real axis. Meanwhile, all points
on the real axis now tend to oo, so the entire real axis suddenly lies in the
Julia set. But much more is happening in the complex plane.

The origin is what is known as an asymptotic value. It is the omitted
value for F. As such, it plays the same role as the critical values do in
polynomial dynamics. In particular, via a result of Sullivan [Su], as extended
to the entire case by Goldberg and Keen [GK], if the orbit of 0 tends to oo,
then the Julia set of F) must be the entire plane. Hence, when A < 1/e,
all of the repelling periodic points are constrained to lie in the half plane
Re z > p, whereas these points become dense in C for any A > 1/e. Now
no new repelling cycles are born as A\ passes through 1/e; all of these cycles
simply move continuously, but the set of them migrates from occupying a
small portion of the right half plane to suddenly filling all of C.

However, even more is happening in this bifurcation. For example, con-
sider what happens to the hair [p,o0) as soon as A increases past 1/e. Sud-
denly this hair is much longer: it becomes the entire real axis. But, in
fact, it is longer still. Consider the set of points in the strip S defined by
0 < Imz < 7 that eventually map onto R. Clearly, the line y = 7 maps
into R after one iteration. So we can think of this hair through the origin as
being extended by adjoining the point at —oo to the real axis and the line
y = w. Now E), maps S one-to-one onto the upper half plane. So there is
a unique curve in S that is mapped to ¥ = 7 and hence into R after two
iterations. This curve actually tends to oo in the right half plane in both
directions. So we can similarly adjoin a point at co to the upper end of this
preimage and the right end of ¥ = 7. Then the preimage of this curve in S
is another curve that also extends to oo in the right half plane in both direc-
tions. In fact, all of the subsequent preimages of y = 7 have this property.
If we successively adjoin one endpoint of each curve with the corresponding
endpoint of its preimage, we get a curve in S that can be shown to accumu-
late everywhere upon itself. If we compactify this picture by contracting S
to the strip —1 < Rez < 1 and again making these identifications, then this
curve does not separate the plane. Using a result of Curry [Cu], the closure
of this set can be shown to be an indecomposable continuum [D1]. That is,
as soon as the bifurcation occurs, the hair [p, 00) suddenly explodes into an
indecomposable continuum.

Here is where a number of open problems arise. Let C) denote the inde-
composable continuum in J(E)) in S.



Problem 1. Suppose A\, u > 1/e. Are Cy and C,, homeomorphic?

It is known that each of the maps F\ and E, have the “same” symbolic
dynamics on their Julia sets [DK]|, but the maps themselves are not topolog-
ically conjugate [DG]. This latter fact was proved by showing that certain
collections of periodic points accumulate onto dynamically different points
when A\ # . A more topological proof of this fact would ensue if Problem 1
were shown to be true.

The exact topology of these indecomposable continua is not known. There
have been some piecewise linear models proposed [DM], but so far a complete
topological description of these sets has not been given.

Problem 2. Find a topological model for the sets C).

In contrast to the rich topology of these sets, the dynamical behavior on
these sets is fairly well understood. There are only three types of orbits:

1. The fixed point (which moves upward off the real axis after ¢ and p
merge);

2. The points on any of the preimages of R whose orbits simply tend to
Q5

3. The orbits of all other points which accumulate on the orbit of 0 to-
gether with the point at oo.

In line with this, there are many other questions having to do with the
relation between the dynamics and the topology of C). For example:

Problem 3. What is the structure of the composant that contains the unique
fized point in C)?

There are other indecomposable continua in the Julia set of F\. For
example, one can associate an itinerary to any point in J(FE)) by watching
how the orbit passes through the strips S, = {z|(2n — 1)7 <Imz < (2n +
1)7} at each iteration. Then we associate the infinite sequence of integers
5= (505152 ..) to zif E{(2) € S;; for each j. Then, for A > 1/e, consider the
set, of points whose itinerary is a given sequence s. For most sequences, this
set of points remains a hair. However, if s terminates in all 0’s, then this set is
just a preimage of the indecomposable continuum (or its complex conjugate)
constructed above and hence is homemorphic to this set. If the itinerary
consists of blocks of 0’s separated by non-zero entries and having the property



that the lengths of the blocks of 0’s goes to oo sufficiently quickly, then the
corresponding set of points is also an indecomposable continuum which is
presumably topologically diferent from the one constructed above. See [DJ].
A natural question is what other types of sets of points can correspond to a
given itinerary.

Problem 4. Identify which itineraries correspond to indecomposable con-
tinua when A > 1/e and which yield hairs. Are there any other possibilities
for the types of sets corresponding to a given itinerary? And how does all of
this depend on \?

Along this line, when A is allowed to be complex and the orbit of 0
eventually lands on a repelling periodic orbit (as is the case when A = ki
with k& # 0), then it is known that set of points corresponding to certain
itineraries may be an indecomposable continuum together with a finite col-
lection of curves that accumulates on the indecomposable continuum. But
this is the only other type of set that is known to correspond to a given
itinerary. See [DJM]. It seems strange that there is nothing “in-between”:
either such a set is a simple curve or it is (or contains) an indecomposable
continuum.

Problem 5. Identify the types of sets of points that can correspond to a
given itinerary under a complex exponential map.

We have restricted to the complex exponential in this section for several
reasons. First of all, this has been the most widely studied example of an
entire transcendental dynamical system. Secondly, the corresponding results
for other functions seem much more difficult. For example, consider the
simple cosine family iucosz where p > 0. It is known that, if u ~ 0.67,
the cosine function undergoes a similar bifurcation as the exponential does
when A = 1/e. The Julia set is a pair of Cantor bouquets (one in the
upper and one in the lower half plane) when p < 0.67, whereas the Julia set
explodes to become C as soon as p increases beyond 0.67. How this occurs
is still a mystery. The hairs forming the Cantor bouquet do change after the
bifurcation, but do they become indecomposable continua? The difficulty
arises because the cosine function has critical points and not asymptotic
values. This seems to cause a very different structure in the hairs when the
critical points suddenly escape to oc.

Problem 6. Ezplain the bifurcation at p = 0.67 in the family ipcosz. In
particular, do hairs suddenly become indecomposable continua?



Of course, there are many other instances of similar (and more compli-
cated) bifurcations in transcendental dynamics. Perhaps other exotic topo-
logical structures arise in these bifurcations as well. Along these lines, there
are examples of simple bifurcations in which the Julia set of an entire map
migrates from a Cantor bouquet to a simple closed curve (passing through
00) and also from a Cantor bouquet to a Cantor set. See [D3].

2 Sierpinski Curve Julia Sets

In this section we turn to a very different type of topological structure that
occurs often in complex dynamics, Sierpinski curves. A Sierpinski curve is
any planar set that is homeomorphic to the well-known Sierpinski carpet
fractal. This set is important in topology for several reasons. First, thanks
to a result of Whyburn [Why], there is a topological characterization of any
set that is homeomorphic to the carpet. Any planar set that is compact,
connected, locally connected, nowhere dense, and has the property that each
complementary domain is bounded by a simple closed curve, any pair of
which are disjoint, is homeomorphic to the Sierpinski carpet (and thus called
a Sierpinski curve). More importantly, Sierpinski curves are universal plane
continua since any planar, one-dimensional, compact, connected set may by
embedded homeomorphically in a Sierpinski curve.

To see these sets in complex dynamics, we now turn to the family of
rational maps given by F)(z) = 2" + /2" where n > 2 and A € C — {0},
although these types of sets occur in many other families of rational maps.
For these maps, the definition of the Julia set is slightly different. The point
at oo is no longer an essential singularity as in the case of the exponential
map. Rather, since n > 2, the map F) is essentially given by 2" near oo,
so oo is an attracting fixed point for these maps and we have a basin of
oo that we denote by B,. J(F)) is still the closure of the set of repelling
periodic points, but now it is the boundary of, not the closure of, the set of
points whose orbits escape to oo. Note that the origin is a pole and there
is a neighborhood of 0 that is mapped n-to-1 onto a neighborhood of oo in
B,. If this neighborhood of 0 does not intersect B,, then there is an open
set containing 0 that is mapped n-to-1 onto the entire set B). We then call
this set the trap door and denote it by 7). T) is the trap door since any orbit
that eventually reaches By must in fact pass through 7 exactly once.

These maps are special because, despite the high degree of the maps,



there really is only one “free” critical orbit. Indeed the 2n critical points are
given by A\/?" but they are each mapped to one of the critical values +2v/X
by F). After that, the two critical values are mapped onto the same point
(if n is even) or the orbits of these two points are arranged symmetrically
under z — —z (if n is odd). In either case, all the critical orbits behave in
the same manner, so there is essentially only one critical orbit.

If one and hence all of the critical orbits end up in the basin of oo, then the
topology of the Julia set is completely determined. There are thre different
ways that these orbits can reach By. The following result is proved in [DLU].
Suppose the critical orbit tends to oo.

1. If the critical values lie in B,, the Julia set is a Cantor set;

2. If the critical values lie in T}, the Julia set is a Cantor set of simple
closed curves;

3. If the crtical values do not lie in B, or 7T but some subsequent iterate
of these points does so, then the Julia set is a Sierpinski curve.

As a remark, case 2 of this result was proved by McMullen [McM]. This
case cannot occur when n = 2. In Figure 2, we display several examples of
Sierpinski curve Julia sets drawn from the family when n = 2.

The fact that there is essentially only one critical orbit for maps in these
families says that the A-plane is the natural parameter plane for these fam-
ilies. In Figure 3 we have displayed the parameter planes for the families
when n = 3 and n = 4. The external white region consists of parameters
for which the Julia set is a Cantor set; the central white region is the “Mc-
Mullen domain” where the Julia set is a Cantor set of simple closed curves;
and all of the other white regions contain parameters for which the Julia set
is a Sierpinski curve. These regions are called Sierpinski holes. The region
in parameter plane that excludes the Cantor set locus and the McMullen
domain is called the connectedness locus; Julia sets whose parameters lie in
this region are known to be connected sets.

For a parameter drawn from a Sierpinski hole, the complementary do-
mains consist of By and all of its preimages. It is known that if two parame-
ters, A and p, lie in the same Sierpinski hole, then F) and F), are dynamically
the same, i.e., F} is topologically conjugate to F), on their Julia sets. In par-
ticular, the critical orbits all land in B, under the same number of iterations
under both of these maps. But if A and p are drawn from holes for which the



Figure 2: The Julia sets for (a) 22 —0.06/22, and (b) 2%+ (—0.004+0.3647) /2
are Sierpinski curves.

number of iterations that it takes for the critical orbit to reach B, is different,
then these maps are not conjugate. However, there are many different holes
for which the critical values take the same number of iterations to reach B,.
For example, when n = 3, it is known [D2] that there are exactly 2 - 67 holes
for which it takes the critical values j + 2 iterations to reach B),. This leads
to a more dynamical type of problem:

Problem 7. Determine whether the dynamical behavior that occurs for pa-
rameters drawn from two different Sierpinski holes with the same escape time
s the same or different.

There are many types of parameters for which the corresponding Julia sets
are Sierpinski curves. For example, a magnification of the parameter plane
for n = 2 shown in Figure 4 shows that there are (in fact, infinitely many)
“buried” small copies of Mandelbrot sets contained in the parameter plane.
These are the Mandelbrot sets that do not touch the outer boundary of the
connectedness locus. It is known that if A lies in the main cardioid of such a
Mandelbrot set, then again the Julia set is a Sierpinski curve. The dynamics
on these types of sets are again different from the dynamics of maps drawn
from Sierpinski holes, since there is an attracting cycle for such a map. So the
complementary domains for these maps consist of all the preimages of this



Figure 3: The parameter planes for the cases n =3 and n = 4.

attracting basin as well as the preimages of B). And there are other types
of Sierpinski curve Julia sets: for example, it is known that there is a Cantor
set, of simple closed curves in the parameter plane that do not pass through
any Sierpinski holes, yet all of the Julia sets corresponding to parameters
on these curves are Sierpinski curves. As before, all but finitely many of
these maps are dynamically distinct. So we have a huge number of Julia sets
that are all the same from a topological point of view, but dynamically very
different. This leads to a natural question:

Problem 8. Classify the dynamics of all the different types of Sierpinski
curve Julia sets that arise in these families.
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