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1 Introduction

Suppose that we have two animals that make the same number of strides per
minute, but one of them makes larger strides than the other. If the strides of
the smaller animal (the prey) have length a, and those of the larger animal (the
predator) have length b, it is easy to see that a persistent predator will always
be able to catch up with its prey. Let us assume that the prey starts one step
ahead of the predator. After n steps the distance between the two is

nb− (n+ 1)a = n(b− a)− a

and consequently, if n > a/(b− a), the predator will have overtaken its prey.
Let us imagine a planet on which creatures move by jumps of increasing

length. A creature on such a planet is at a distance a from where it started
after one jump, and a distance an after n jumps. Let us also assume that a > 1
so that creatures move away from their starting point. We can again ask the
question whether a small creature which starts one step ahead from a predator
can escape from it. Let us assume that the initial step of the predator is of size
b > a > 1, so that if bn > an+1, the smaller creature is in the maw (or the
extraterrestrial equivalent) of its predator. A simple calculation shows that this
happens if the predator is sufficiently persistent to make

n > (log a)(log
b

a
)−1

steps. Of course, we can imagine an even stranger planet on which a creature
makes an initial jump of size a, followed by a jump that moves it at distance aa

from its starting place, and another that brings it to a distance aa
a

, and so on.
Thus the distance that such creatures travel is determined by towers of a.
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Definition 1.1 Given any number a, define the zero tower of a by T (a, 0) = a.
Recursively, for n ≥ 1, define the nth tower of a by

T (a, n) = aT (a,n−1).

Ackermann has introduced a natural way of ordering operations on real
numbers [1], so that addition is an operation of type 1, multiplication is of type
2, exponentiation is of type 3, the operation T (a, n) is of type 4, and so on. We
therefore live on a type 2 planet, since our movement in space is determined by
operations of type 2. The two imaginary planets we have described above are
respectively of type 3 and 4.

Therefore, creatures on planets of type 2 and 3 cannot escape their predators,
even if they have a head start. Is the same true for creatures on a planet of
type 4? Surprisingly, if their step grows to a sufficient size, they will be able
to escape faster predators, no matter how persistent. More precisely, we will
prove:

Theorem 1.2 If a ≤ e1/e, then there exists n0(a) such that T (b, n) > T (a, n+1)
for all n > n0(a). If a > e1/e, then there exists b0(a) > a such that T (b, n) <
T (a, n+ 1) for all n and b ∈ (a, b0(a)].

Thus creatures of step size greater than e1/e can escape predators whose
initial step is smaller than b0(a), while smaller creatures always get caught.

2 Proof of the Theorem

Note that if we define Fa(x) = ax, and we denote the n-fold composition of
Fa with itself by Fna (x), then Fna (a) = T (a, n + 1). The graph of Fa(x) for
a < e1/e intersects the line y = x in two points l(a) and r(a) both of which are
to the right of a. Under the iteration of Fa(x), l(a) is attracting, and hence the
sequence Fna (a) = T (a, n + 1) will approach it from the left. In other words, a
creature whose initial step is of size a < e1/e tires quickly, takes progressively
smaller steps, and never makes it past l(a). It is easy to see that if b > a then
either Fb(x) does not intersect y = x or l(b) is to the right of l(a). In the first
case the larger creature never tires, while in the second it will approach the
point l(b). In either case it must overtake the smaller creature eventually (see
Figure 1). The case a = e1/e can be treated similarly.

On the other hand, when a > e1/e, the graph of Fa(x) does not cross the
diagonal, and hence there are no fixed points. In this case we will show that
the prey may escape to infinity and elude its predator.

Note that if the initial steps are slightly larger than e1/e the creature will
initially slow down, until it makes it past the point x = e after which it will
catch a second wind, and make progressively larger leaps. Yet, it is not clear if
the prey will be able to escape its predator.

To handle the case a > e1/e, we will convert the problem of comparing towers
of powers of different bases, to a problem of comparing iterates of an exponential
map. We will need the following Lemma.
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Figure 1: The towers of a and b converge to l(a) and l(b) respectively.

Lemma 2.1 Fix λ > µ > 0 and let η > 0. If x > 0 and y−x > log
(

(η + 1)λ/µ
)

,
then:

µey − λex > ηλ > 0.

Proof. We have
ey−x > (η + 1)

λ

µ
,

so that
µey−x − λ > ηλ,

and therefore
µey − λex > exηλ > ηλ.

Let Eλ(x) = λex and Eµ(y) = µey with λ > µ > 1/e and x and y as in the
Lemma. Choose η such that

log
(

η + 1
ηµ

)

< 1. (1)

Again, Ejλ denotes the j−th fold of the exponential map.

Corollary 2.2 Under the assumptions of Lemma 2.1 for all j ≥ 1,

Ejµ(y) > Ejλ(x).
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Proof. Using the fact that x ≥ 1 + log x for all x > 0, from the Lemma and
equation (1) we have

µey − λex > ηλ > log ηλ+ log
η + 1
ηµ

= log
(η + 1)λ

µ
,

so that Eλ(x) and Eµ(y) satisfy the hypothesis of Lemma 2.1. The proof now
follows by induction.

We can now return to the proof of the theorem. Fix a > e1/e. Let ey =
T (a, n0 + 1) and µ = log a. Also, let ex = T (b0, n0) and λ = log b0, where
a < b0 < aa and n0 are to be determined later on. For the given a, fix η so 1
holds. Note that λ = log b0 > log a = µ > 1/e. We have

Eµ(y) = µey = T (a, n0 + 1) log a

and
Eλ(x) = λex = T (b0, n0) log b0.

We will show that there exist n0 and b0 such that x and y satisfy the condi-
tions of Lemma 2.1. By Corollary 2.2 it follows that Ejµ(y) > Ejλ(x) for all j. In
terms of towers, we will have T (a, n0 + j) log a > T (b0, n0 + j − 1) log b0 for all
j. Since log b0 > log a and using monotonicity of the towers, we will conclude

T (a, n) > T (b, n− 1) (2)

for all b ∈ (a, b0) and for all n. It suffices to find n0 and b0 such that x > 0 and
y − x > (η + 1)λ.

The condition x > 0 follows automatically for any b0 > a and any n0, as
a > 1/e. Since T (a, n) − T (a, n − 1) −→ ∞ as n −→ ∞, we can find n0 such
that

(

T (a, n0)− T (a, n0 − 1)
)

log a > (η + 3) log aa.

Therefore,
(

T (a, n0)− T (a, n0 − 1)
)

log a > (η + 3) log b0,

for any value of a < b0 < aa.
Let b1 > a be defined by

T (b1, n0 − 1)− T (a, n0 − 1) = 1.

Similarly, we can choose b2 close enough to a so that

T (a, n0 − 1)(log b2 − log a) < log b2.

Clearly, a < b1, b2 < aa. Let b0 = min{b1, b2}. From the definition of x and y

y − x = T (a, n0) log a− T (b0, n0 − 1) log b0
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or

y − x =
(

T (a, n0)− T (a, n0 − 1)
)

log a− T (a, n0 − 1)(log b0 − log a)

−
(

T (b0, n0 − 1)− T (a, n0 − 1)
)

log b0.

That is, we have
y − x > (η + 3) log b0 − 2 log b0

or
y − x > (η + 1) log b0 = (η + 1)λ.

Hence, given any a we can produce b0 and n0 so that equation (2) holds.

3 Remarks

The smallest initial step a predator needs to take to catch a prey with initial
step of size a has a sharp lower bound given by

γ(a) = sup{b | T (a, n+ 1) > T (b, n) for all n}.

We call γ the catch-up function. The previous theorem implies γ(a) = a if
a ≤ e1/e, and γ(a) > a if a > e1/e. We can also define γ by letting bn(a) be the
initial step size necessary to catch up in n steps, so that

T (bn(a), n) = T (a, n+ 1).

Since n is the number of steps that a creature with initial step size bn(a) needs
to take to catch the creature with initial step size a, it follows that γ(a) =
limn→∞ bn(a).

The catch-up function has some interesting properties. Using estimates as
in the previous section, one can show that γ is an increasing function. Other
properties of the function γ(a) are more difficult to establish. We conjecture
that the function is smooth. It cannot be analytic at the point a = e1/e, and we
conjecture that at this point γ(a) and the diagonal have a tangency of infinite
order.

The catch-up problem has its origins in complex dynamics. The first and
third authors have defined a piecewise semilinear family of continuous maps, hλ,
acting in the plane, which has dynamics and topology similar to that exhibited
by the complex exponential family λez (see [2] and [3]). This family acts expo-
nentially in the x−coordinate (the action is conjugate to λex), and essentially
linearly in the y−coordinate. In [6], the third author has shown that for any
pair of parameters λ and µ, the maps hλ and hµ are not topologically conjugate.
The proof is based on the impossibility of catch-up as described above, but in
the setting of hλ.
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