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0 Introduction

Our goal in this paper is to describe certain Julia sets of functions in the

family of rational maps of the Riemann sphere given by
A
Fi(z) =2"+ o

where n,d € Z and n > 2,d > 1. When A = 0, these maps reduce to z — 2"
and the dynamical behavior in this case is well understood: the Julia set
of F) is just the unit circle and all other orbits tend either to oo or to the
superattracting fixed point at 0.

When A # 0, several things happen. First of all, the map F) now has
degree n + d rather than n. Secondly, the origin is a pole rather than a fixed
point. And, finally, there are n + d new critical points, in addition to the
original critical points at 0 and oo. The orbits of the critical points at oo
and the origin are fixed and eventually fixed respectively, so their behavior
is completely determined. As we show below, the orbits of all of the other
critical points behave symmetrically with respect to rotation through angle
27 /n, so we essentially have only one additional “free” critical orbit for each
of these maps. As is well known in complex dynamics, the fate of this critical
orbit plays a large role in determining the structure of the Julia sets of
these maps. In this paper we shall describe a trichotomy in the topological
structure of the Julia sets that arises when the free critical points have orbits
that tend to oco.

For comparison, we first recall the dichotomy that occurs for the well-
studied family of quadratic polynomials, Q.(z) = 2? + ¢. As in our family,
there is only one critical orbit for ()., namely the orbit of the critical point

at 0. The following facts are well known (see [12]):

1. If the critical orbit for ). tends to oo, then the Julia set of Q. is a



Cantor set and (). is conjugate on the Julia set to the one-sided shift

of two symbols.

2. If the critical orbit does not tend to oo, then the Julia set of Q. is a

connected set.

In the quadratic polynomial case, the point at co is a superattracting fixed
point and so this point is surrounded by an immediate basin of attraction.
If the critical orbit tends to oo, then it is known that the critical point must
lie in this basin and consequently, the entire forward orbit lies in this basin.

For the family F), the point at oo is still a superattracting fixed point
and so we still have an immediate basin of attraction which we denote by B.
However, unlike the quadratic polynomial case, the full basin of attraction
may consist of infinitely many disjoint preimages of the immediate basin of
oo. In particular, the component of the basin that contains 0 may be disjoint
from B. If this is the case, then we denote this component by 7. Since
Fy is n-to-1 on B and d-to-1 on 7T, it follows that the only two preimages
of B are B and T. Then T must have disjoint preimages under FY for
n=1,2,3..., and so the basin of attraction of co must have infinitely many
distinct components.

Our goal in this paper is then to prove:

Theorem (The Escape Trichotomy). Suppose the orbits of the free critical
points of F\ tend to oo. Then

1. If one of the critical values lies in B, then J(F)) is a Cantor set and
F\|J(F)y) is a one-sided shift on n + d symbols. Otherwise, J(F)) is

connected and the preimage T s disjoint from B.

2. If one of the critical values lies in T, then J(F)) is a Cantor set of

simple closed curves (quasicircles).



3. If one of the critical values lies in a preimage of T, then J(F)) is a

Sierpinski curve.

We remark that case 2 was first observed by McMullen for small A when
1/n+1/d < 1 (see [10]). The only cases in our family not covered by the
McMullen result occur when n = d = 2 or n is arbitrary and d = 1. We show
below that, in fact, case 2 in the theorem does not occur for these special
values of n and d.

We also remark that the Julia sets in case 3, namely Sierpinski curves, are
quite interesting sets from the topological as well as the dynamical systems
point of view. A Sierpinski curve is a planar set that is homeomorphic to
the well known Sierpinski carpet fractal. By a result of Whyburn [18], it
is known that any planar set that is compact, connected, locally connected,
nowhere dense, and has the property that any two complementary domains
are bounded by disjoint simple closed curves is homeomorphic to a Sierpinski
curve. Moreover, these sets are known to contain a homeomorphic copy
of every one-dimensional plane continuum. However, as shown in [1], [5],
despite the fact that the Sierpinski curve Julia sets in the Theorem are always
homeomorphic, there are infinitely many of them on which the maps F) have
non-conjugate dynamics. We also remark that the existence of Sierpinski
curves as Julia sets has been observed before, notably in the work of Milnor
and Tan Lei [13] and Ushiki [17].

In Figure 1, we illustrate these three cases with pictures of Julia sets
drawn from the family 2* + \/z%.

Since there is only one free critical orbit for these families, the A-plane
is the natural parameter plane for these maps. In Figure 2, we display the
parameter plane for the family when n = d = 4 together with a magnification.
The white regions in this figure correspond to parameters described in the

escape trichotomy. The outside white region corresponds to the Cantor set



Figure 1: Some Julia sets for 2z + \/z%: if A = 0.2, J(F)) is a Cantor set;
if A = 0.04, J(F)) is a Cantor set of circles; and if A = —0.1, J(F)) is a
Sierpinski curve. Asterisks indicate the location of critical points.



locus. The central white region contains parameters for which the Julia set
is a Cantor set of closed curves; we call this region the McMullen domain.
All other white regions correspond to Sierpinski holes, i.e., to parameters for
which the Julia set is a Sierpinski curve.

These parameter planes contain a wealth of interesting structures. For
example, it is known that, when n = d > 3, there is a single McMullen
domain surrounding 0. This domain is surrounded by infinitely many disjoint
closed curves S7 converging to the boundary of the McMullen domain and
having the property that each S’ contains the centers of (n — 2)n/~! + 1
Sierpinski holes as well as the same number of superstable parameter values

that lie in the centers of baby Mandelbrot sets (unless j = 2) . See [6].

Figure 2: The parameter plane for the family z* + \/2® and a magnification
around the McMullen domain.

We thank the referee for providing us with a number of extremely helpful

and illuminating comments on the original version of this paper.



1 Preliminaries

We consider the maps
A
Fy(z) =2"+—
)\( ) 2d

where n,d € Z* and n > 2. The Julia set of Fy, J(F)), is defined to be the
set of points at which the family of iterates of F), fails to be a normal family
in the sense of Montel. Equivalently, the Julia set is the closure of the set
of repelling periodic points for F) or, alternatively, as the set of points on
which F) behaves chaotically. The complement of the Julia set is called the
Fatou set.

There are n + d critical points for F, and all are of the form w”cy where

nt+d — 1. Similarly, the critical values are

¢y is one of the critical points and w
arranged symmetrically with respect to z — wz, though there need not be
n + d of them. There are n + d prepoles at the points (—\)/®+d),

The proof of the following Proposition is straightforward.

Proposition (Dynamical Symmetry). Suppose w satisfies w™™® = 1. Then
F\(wz) = w"F)\(z).

As a consequence of this result, the orbits of points of the form wiz all
behave “symmetrically” under iteration of F). For example, if F}(z) — oo,
then F%(w*z) also tends to oo for each k. If Fi(z) tends to an attracting
cycle, then so does F}(w*z). We remark, however, that the cycles involved
may be different depending on k£ and, indeed, they may even have different
periods. Nonetheless, all points lying on these attracting cycles are of the
form w’z, for some 2y € C. For example, when n = 2,d = 1, there are
parameters for which some of the critical points tend to an attracting fixed
point zy on the real line, whereas wz, and w?z; lie on an attracting 2-cycle

which attracts other critical points. See [4].



The point at oo is a superattracting fixed point for F), and we have that
F) is conjugate to z — 2" in a neighborhood of oo, so we have an immediate
basin of attraction B at oo. Since F) has a pole of order d at 0, there is an
open neighborhood of 0 that is mapped d to 1 onto a neighborhood of co in
B. If B does not contain this neighborhood, then there is a disjoint open
set T about 0 that is mapped d to 1 onto B. We call T' the trap door since
any point whose orbit eventually enters B must pass through 7' enroute to
B. Since the degree of F) is n + d, all points in the preimage of B lie either

in BorinT.

Proposition ((n + d)-fold Symmetry). Both B and T have (n + d)-fold

symmetry, i.e., if z € B, then wz € B as well, where w™* = 1.

Proof: Let U C B be the set of points z in B that have the property that the
point wz also lies in B. U is an open, nonempty set since B contains an open
neighborhood around oo. If U # B, we may choose a point zy € B N oU,
where OU denotes the boundary of U. So 2y € B but wzy ¢ B. Hence
wzg € 0B. Therefore Fj(z)) — oo whereas Fj(wz)) 4 oco. But by the

Dynamical Symmetry Proposition, we have
Fi(wz) = w™F}(z) — oo.

This gives a contradiction.
Since T surrounds the origin, the proof in this case is similar.
|
In particular, since the critical points are arranged symmetrically about
the origin, it follows that, if one of the critical points lies in B (resp. T'), then
all of the critical points lie in B (resp. T).
For other components of the Fatou set, the symmetry situation may be

somewhat different: if 2, belongs to such a component, then either w’z,



belongs to this component for each j (as in the case of B and T'), or w’z lies

in a disjoint component whenever w’ # 1.

Symmetry Lemma. Suppose U is a connected component of the Fatou set
of F\. Suppose also that both zy and wizy belong to U, where w’ # 1. Then
in fact, w'zy belongs to U for all i and, as a consequence, U has (n + d)-fold

symmetry and surrounds the origin.

Proof: Suppose that 2y and w/z, lie in U but w'z, does not lie in U. Let o,
be a continuous curve in U that connects zy to w’zy. Define a second curve
oy by w/oy. By symmetry, oy also lies in a component of the Fatou set, but
since w’zy lies on ay, it follows that ay also lies in U and so U also contains
w¥z,. Continuing in this fashion, we see that U contains w®z, for all £ and
that the analogous curve ay also lies in U.

Now suppose w® = 1. Then the union of the curves a1, ..., a; forms a
closed curve that lies in U and surrounds the origin. Call this curve a. By
assumption, w'z does not lie on a. If we set wlay = 3, for each I, we get
another closed curve, call it 3, that surrounds the origin and is contained in
w'U. Since w'zy € w'U but w'zy ¢ U we know that w'U # U. In fact, since
U is a Fatou component and Fy(wz) = w"F)(z) we get that w'U is also a
Fatou component and hence w'U NU = ). Since 8 C w'U and o C U we see
that N 8 = (. However, o and 8 are both curves that surround the origin
and B = w'e, implying that o and § must cross. This implies that o and 8

lie in the same Fatou component, yielding a contradiction.

2 The Cantor Set Case

In this section we prove that, if one of the critical values lies in B, then the

Julia set of F) is a Cantor set. This result follows from several propositions.

Proposition. Suppose some critical value vy of Fy lies in B. Then all of



the critical points of F\ also lie in B.

Proof: Recall that, by (n + d)-fold symmetry, if one of the critical points of
F) lies in B, then all of the critical points must lie in B. So we assume for
the sake of contradiction that none of the critical points lies in B. Since oo
is attracting, we know there exists an analytic homeomorphism, ¢, which
is defined in a neighborhood Ny of oo and conjugates F) on N; to 2" on
a disk of radius r < 1. Since no critical points lie in B we can pull this
neighborhood back by Fy ! so that the larger neighborhood N includes one,
and hence all (again by symmetry), of the critical values of F. Now there
exists a level set, v, of the Green’s function associated to ¢, which bounds
a simply connected open set containing N; call this set G. Let G denote

the preimage of G under F), that contains zero. We observe that:
1. G is simply connected.
2. G~! contains n + d nonzero critical points of multiplicity 1.
3. G7! contains the critical point, 0, which has multiplicity d — 1.

4. Since G~! contains a neighborhood of the origin, F) has degree d on
G

Therefore, by the Riemann-Hurwitz formula, we have
boun (G™') = d(boun(G) —2)+n+2d—1+2=n+d+1

where boun (G™') denotes the number of boundary components of the region
G '. Hence, G ! has n + d + 1 distinct boundary components. Now all of
the boundary components of G~! are mapped into 7. Since 7 is a simple
closed curve and there are no critical points on 9G ! (the critical values are

strictly inside ), we see that the boundary components of G~! are actually



mapped onto . But this implies that v has at least n 4+ d + 1 preimages,
giving us a contradiction. Therefore all of the critical points lie in B.

O
Proposition. For each critical point c) of F), there is a curve y(cy) lying
in B and extending from 0 to oo. Moreover, these curves may be chosen so

that they do not intersect and are symmetric under z — wz.

Proof: It is known that the conjugacy ¢, may be written

or(z) = lim (F(2))"™".

m— o0

Using this, we see that ¢,(wz) = wds(z). Hence the external rays in B are
symmetric with respect to z — wz.

Given a particular critical point ¢y, suppose vy = F)(cy). The preimages
of the straight rays in C — D are known as the external rays for F. Let n be
the portion of the external ray through v, that connects v, to co in B. Let
~v1 be a preimage of n that lies in the external ray through c,. Since c) is
a critical point, there is a second curve 7, containing c), and mapped by F)
onto 1. Now 7, connects cy to either 0 or co. We claim that the latter cannot
occur. If this were the case, both ; and v, would be external rays that meet
at a common point c,. Then these two curves would bound a connected open
set O in B. Since each of these curves is mapped to 1, the image of O would
contain a neighborhood of co. Continuing, we can use symmetry to make
the same construction for each of the critical points, and the corresponding
regions cannot intersect since the external rays are symmetric with respect
to z — wz. But then we have produced n + d disjoint open sets tending to
oo in B that are each mapped to a neighborhood of co. But F) isonly n to 1
near oo, so this cannot happen. Therefore we conclude that v, must connect
cy to 0.

Now let v = 71Uve. We may produce a similar curve for each of the critical

10



points and, as above, each of these curves is disjoint from the curves passing
through the other critical points. Hence these n+d curves separate the plane
into n+d disjoint open subsets, and each of these sets is mapped univalently
over the entire plane minus a portion of two external rays connecting oo to
the two critical values. (These critical values are the images of the critical
points that lie on the boundary of the region.) Standard arguments then
show that the Julia set is a Cantor set and F) | J(F)) is conjugate to a shift
on n + d symbols. This proves part 1 of the Escape Trichotomy Theorem.

3 The Cantor Set of Circles Case

In this section we generalize a result of McMullen [10] to show that, if a
critical value of F) lies in T', then the Julia set of F) is a Cantor set of simple
closed curves surrounding the origin. Recall that, when we say 7', we are

implicitly assuming that 7" and B are disjoint sets.

Proposition. If some critical value vy lies in T, then the preimage of T s

a connected set that contains all of the critical points.

Proof: We first observe that we must have at least two critical points in
some component of F;'(T) and so, by symmetry, in each component of
F7Y(T). If this were not the case, we would have n + d components in
F1(T), each of which is mapped with degree two onto 7. But this means
that each component would contain two prepoles. Then there would be at
least 2(n + d) prepoles, which is not true. Applying the Symmetry Lemma,
we see that in fact all of the critical points must lie in the same component
of F5'(T) and that this component is connected and surrounds the origin.

|

Proposition. If vy lies in T, then the preimage of T is an annulus that

11



divides the region between B and T into two open subannuli that are each

mapped onto C — (BUT).

Proof: Note first that 7" is simply connected. This follows since the only
critical point in T is the pole at the origin. Now suppose that U = F} '(T)
has ¢ boundary components. Since F) maps U with degree n + d onto a
simply connected set, and there are exactly n + d critical points in U, the

Riemann-Hurwitz formula gives
2—4=Mn+d)(2-1)+(n+d)=0.

Hence U has connectivity 2 and so is an annulus. By the Symmetry Lemma,
this annulus must surround the origin.

Note that OU does not meet 0T and 0B since OU is mapped to 07T,
whereas the boundaries of both T" and B are mapped to 0B and U separates
B from T. Consequently, U divides the region between B and T into a pair

of disjoint open annuli.
O

Proposition. The boundaries of B, T, and all of the preimages of T are

stmple closed curves surrounding the origin.

Proof: Let A denote the open set between B and T. We have U C A. So
if we remove U from A, then the remaining open set has two components,
one of which, A;,, abuts T" and is mapped d to 1 onto A, the other of which,
A, abuts B and is mapped n to 1 onto A.

Now let v be a simple closed curve surrounding the origin in A;, and let
¢ be the preimage of v in A,,;. The region between ¢ and v is an annulus.
Fy maps £ in n to 1 fashion onto 7, and F) is also an n to 1 covering map on
the open set in the exterior of £&. Hence we can use quasiconformal surgery

to construct a new map that

12



1. agrees with F) on and outside &;

2. is conjugate to the map z — 2" defined on a disk of radius r < 1 in the

simply connected region inside &.

See [7] or [12] for details on this surgery construction.

Since F) is an n to 1 covering outside £ and maps & strictly inside itself,
the new map is conjugate to z — 2" everywhere. Hence the Julia set for
this map is a quasicircle. But this Julia set is just the boundary of B, since
the boundary of B is invariant under F) and lies in the exterior of £. This
shows that the boundary of B is a simple closed curve. Hence so too is the
boundary of 7" and all of its preimages.

O

To complete the proof of part 2 of the Escape Trichotomy Theorem, we
note that F) is a d to 1 covering map taking the closed annulus A;, onto
the closed annulus A between B and T, while F) is an n to 1 covering map
taking A,,; onto the same annulus. Hence the Julia set is given by a nested
set of closed annuli and the result follows exactly as in the case described by
McMullen in [10].

Note that, by the covering properties of F) on A;, and A,,;, we must
have

1

1
mod A > mod A;, + mod A, = (E + —) mod A
n

where mod A denotes the modulus of A. Hence, as in the McMullen result,

we must have 1/d + 1/n < 1 in order for v, to lie in the trap door.

Corollary. If 1/d+ 1/n > 1, then vy cannot lie in the trap door, so part 2
of the Escape Trichotomy Theorem cannot occur if d =n =2 ord =1 and

n 18 arbitrary.

To see that there are actual A-values for which v, € T, we need several

facts. The proof of the following lemma is straightforward.

13



Lemma. Suppose |z| > max{|\|,2}. Then |F{(z)| > (1.5)"|z|, so that
z € B.

Lemma. Suppose 1/d+ 1/n < 1. Then |Fy(vy\)| — oo as A — 0 whereas
vy — 0 as A — 0.

Proof: A simple computation shows that
Fy(v) = e A" 740 4 e\t

where c; are constants (depending only on d and n). The result then follows
since n > nd/(n+d) > 1.
O
To see that vy actually lies in the trap door when A is small, note that,
for sufficiently small A, the annulus A given by 1/2 < |z| < 2 is mapped
strictly outside itself as an n to 1 covering of its image. This follows since we
may choose \ small enough so that the term \/z¢ in the expression for F)
is arbitrarily small. Hence there is an invariant circle inside A. Since each
critical value v, lies inside A while Fy(v,) lies outside A, it follows that v,

lies inside 7T .

4 The Sierpinski Curve Case

In this section we discuss the case where the critical points have orbits that
eventually escape through the trap door, but the critical values do not lie in
the trap door. In this case, we prove that the Julia set of F) is a Sierpinski

curve.

Proposition. Ifvy, € BUT, then the set C— B has a single open, connected

component.

Proof: Suppose first that C — B has more than one connected component.
Let W, be the component of C — B that contains the origin. Note that all

14



of T must lie in W;. We claim that at least one of the prepoles also lies
in Wy. Suppose this is not the case. By the Symmetry Lemma, all of the
prepoles either lie in the same component of the Fatou set or else they all
lie in distinct components. In the latter case, this means that each Fatou
component containing a prepole is mapped one-to-one onto Wj. Therefore
there must be n + d of these components. Thus every point in the boundary
of Wy has n+d preimages, one in each of the boundaries of these components.
But there are also d preimages of any such point in the boundary of the trap
door which is contained inside W,. Since the boundary of T cannot equal
the boundary of Wy, this yields too many preimages for any point in the
boundary of W,. Therefore all of the prepoles lie in the same component of
the Fatou set, and this component must surround the origin and separate B
from W;. This, however, is impossible, since the boundary of Wj is contained
in the boundary of B. Hence one and therefore all n + d of the prepoles lie
in Wy and so F) is n+d to 1 on W,. Therefore all of the preimages of points
in W, must also lie in Wj,.
Now suppose that there is a second component W; in C — B. There are
no points in Wy that map into Wy. Consider a point of the boundary of W,
that does not also lie on the boundary of Wy and choose a neighborhood of
this point that does not meet Wj,. By Montel’s Theorem, the forward images
of this neighborhood map over points in W,. But this cannot happen, since
all preimages of points in Wy lie in Wj,. This proves that W; does not exist.
O
Proposition. The Julia set of F\ is compact, connected, locally connected,

and nowhere dense.

Proof: Since we are assuming that all of the critical orbits eventually enter
the basin of oo, we have that the Julia set is given by C — UF;?(B). That

is, J(F\) is C with countably many disjoint, open, simply connected sets

15



removed. Hence J(F)) is compact and connected. Since J(F)) # C, J(F))
cannot contain any open sets, so J(F)) is also nowhere dense. Finally, since
the critical orbits all tend to oo and hence do not lie in or accumulate on
J(F)), standard arguments show that J(F)) is locally connected (see [12],
Theorem 19.2). In particular, since B is a simply connected component of

the Fatou set, it follows that 0B is locally connected.

Proposition. The boundary of B as well as all of the preimages of B are

simple closed curves. These boundary curves are pairwise disjoint.

Proof: Recall that, near oo, F) is analytically conjugate to z +— 2". That
is, there exists an analytic homeomorphism ¢, : B — C — D where D is the

open unit disk in the plane. The map ¢, satisfies

¢x 0 Faz) = (¢a(2))"

The preimage under ¢, of the straight ray with argument 6 in C — D is called
the external ray of angle # and denoted by (). Since the boundary of B is
locally connected, it is known [2] that all of the external rays land at a point
in the boundary of B. Thus, to show that this boundary is a simple closed
curve, it suffices to prove that no two external rays land at the same point.

To see this, first recall that W, denotes the component of C — B that
contains the origin, and that Wy is both connected and simply connected.
Suppose that there exists p € 0B such that (¢;) and ~y(¢3) both land on
p- Since these rays together with the point p form a Jordan curve, we have
that Wy lies entirely within one of the two open components created by this
Jordan curve. Let y(t1,?2) denote the union of all of the external rays whose
angles lie between ¢; and t5 (where we assume that the angle between these
two rays is smaller than 7). Without loss of generality, assume that Wj is

such that Wy N y(t1,t2) = 0 (so Wy is “outside” the sector v(t1,%2) between
7(t1) and 7(t2)).

16



We claim that there exist positive integers ¢ and m such that the region

qg qg+1
7( 5 )C’}/(tl,tz)
m

m

and neither of the external rays ¢/m nor (¢ + 1)/m land on OW,. If this
were not possible, then all rays in v(¢1,t3) would land at p. This gives a
contradiction because the set of angles § € R/Z such that the landing point
of the ray with angle 6 is p has measure 0 ([12], Theorem 17.4).

So suppose we have such g and m. As above, let v(qg/m, (¢+1)/m) denote
the union of the external rays contained between ¢/m and (g + 1)/m. After
m iterations y(g¢/m, (¢ + 1)/m) is mapped over all of B. In particular, if the
external ray of angle # lands on 9(C — B), then there is a ray of angle ¢ €
v(g/m, (¢+1)/m) whose image under F}" is y(f). Since ¢ € v(gq/m, (¢+1)/m)
we have that v(¢) does not land on 0W,. Hence there exists a neighborhood
Ny of y(¢) such that Ny N W, is empty. However, since F}"(y(¢)) lands on
the boundary of W, we know that F}*(Ny) N W, is not empty. This is a
contradiction since points not in W, never enter W,. Hence, we can never
have two rays landing at the same point on 0B, implying that 0B is a simple
closed curve.

It follows that all of the preimages of B are also bounded by simple
closed curves. We claim that no two of these curves can intersect. To see
this, suppose first that there exists a point 2o € 0B N JT. Then there exists
an external ray v in B landing at z,. In T, there also exists a preimage,
7, of an external ray that connects 0 to z;. But the images of  and 7 are
the same external ray, and so it follows that zy is a critical point. But this
contradicts our assumption that all critical orbits tend to oco. So 0B and 0T
are disjoint simple closed curves.

Now suppose that two earlier preimages of 0B intersect, say one preim-

age in F,"(0B) and one in Fy,™(0B). If n # m, then by mapping these

17



preimages forward, we see that 0B and 0T also meet, which cannot happen.
If n = m, then this intersection point must again be a critical point, so this
cannot occur either.

O

This completes the proof of part 3 of the Escape Trichotomy Theorem.
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