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Abstract

We give a complete description of the dynamics of the mapping f(z) =
22+ < for positive real values of e. We then consider two generalizations:
the case of complex € and the mapping z — 2™+ 5, where e is positive and
real. In both of those cases we provide a full characterization of the map
for a certain set of parameters, and give observations based on numerical
evidence for all other parameter values. The dynamics of all maps that we
consider bears striking resemblance to that of complex quadratic maps.

Introduction

In section 1, we describe the dynamics of f.(z) = 2> + £ in the complex plane
for all positive values of e. We show that there is only one bifurcation value ¢
of € in Ry, and the family of maps {f.|e > 0} consists of only two equivalence
classes with respect to conjugacy. In section 2, we generalize some of our results
for the class of maps z — 2" + 5, where € > 0. It turns out that more than
one bifurcation is present if and only if m > 1. If m=1, we give a complete
description of the dynamics of the family. Otherwise, we point out the obstacles
that prevent us from doing that. Finally, in section 3 we return to the map f.,
and allow € to be complex. The dependence of the map on € turns out to be
non-trivial in this case, and the set of the values of € for which there is a finite
attracting orbit has complicated structure. We give a picture of that set and
prove some basic theoretical results on its structure.

Before we begin, let us list the most important theorems we rely on, and
give references to the books that contain their proofs. First, we will make heavy
use of the famous Julia theorem, which is proved, for example, in [3].:

Theorem 1 (Julia) For any holomorphic map of the extended complex plane
to itself, an attracting periodic cycle must attract at least one critical point.

Another general result can be found in [1] (§9.8, Theorem 1).
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Theorem 2 If a rational map R of C possesses a superattracting fized point
20 (i-e. R'(20) =0), and all of the critical points of f are attracted by zy, then
the Julia set of R is totally disconnected, and the dynamics of R on that set is
conjugate to full shift on n symbols, where n is the number of the critical points
of R.

Finally, we will rely on the following criterion of hyperbolicity for complex
rational map. For its proof we refer to [5].

Theorem 3 A rational map of degree d > 2 is hyperbolic if and only if the
closure of the union of orbits of all critical point is disjoint from the Julia set.

1 The dynamics of f.(z) =2*+ <, € > 0.

Before we treat the dynamics of f. in C, let us briefly characterize its behavior
in R. The derivative of f is decreasing on (—00,0) and (0, {/5) and increasing
on ({/5,+00) (see Figure 1). Let us denote the critical point of f in Ry, {/5,
as Ze.

Since f.(1) is less than 1 for e < 1, all three fixed points of f. lie on the
real line if € is small. As € increases, so does the value of f.(z) at each point of
R, . At the bifurcation value ¢y of € the two positive fixed points collide in a
saddle-node bifurcation, and for € > ¢ there are no fixed points for f. in R.
A computation shows that ey = 24—7. The third fixed point remains in R_ for all
values of e. We denote that point z_, and the other two fixed points, z; and 2z
(where z; < 25 if both are real).
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Figure 1: The graph of f.(z) for e = 21—7



Proposition 4 Before the bifurcation value €9, z_ and z2 are repelling, while
z1 1s attracting. After the bifurcation value, all three fized points are repelling.

Proof Since f'(z) =2z — 5 =3z — 1(2% + £), it follows that f'(z) =3z —1 at
all fixed points of f. In particular, the value of f'(z) at z_ is always less than
—1. The value of f'(z) at the positive fixed points is always greater than —1,
and it is less than 1 only if the point is to the left of % On the other hand, as €
grows, z1 increases and zp decreases, and at the bifurcation value ¢g = 24—7 both
fixed points coincide at % Therefore, before the bifurcation z; < % < 29, and
S0 2z is attracting, while 2z is repelling.

After the bifurcation, the fixed points z; and z2 become two complex con-
jugate numbers; their sum is twice their real part. Since the equation for the
fixed points is 22 — 22 4+ € = 0, by Viet’s theorem the sum of the fixed points
must be 1. Since z_ decreases after the bifurcation value, the sum of the other
two fixed points has to increase. Therefore, the real part of both z; and 25 is
greater than % after the bifurcation. Hence neither of them lies in the circle of
radius § around %, and if z = 21 or z = 23, then |f'(z)| = 3|z — 1| > 1, so both
z1 and 29 are repelling. O

One checks easily that before the bifurcation z. gets attracted to 2z, (we
will prove that fact in general form in Section 2). It follows that, if € < €, all
points in [z}, 22) are attracted to z;, where z} is the positive real preimage of
zo different from zs. All other points of the positive real line are attracted to
infinity. It is also clear that, for € > ¢g, all points of the positive real line are
attracted to infinity. The dynamics of f. on the positive real line will play a
crucial role in our analysis of the behavior of f. in the complex plane.

We note that f. possesses a remarkable symmetry (which remains valid even

for complex € ). Let w = cos(%) + isin(%), so that w® = 1. Then

fe(wz) = w2f€(z) (1)

(Obviously, that also means f(w?z) = wf(z)). In particular, the rays wR., and
w?R. are mapped into each other by f. In this section we will say that two
points, z and v, are symmetric to each other if z = wkv for a positive integer k.

Before the bifurcation, f has one attracting fixed point, 21, in R4. Due to
the symmetry (1), the pair (wz1,w?2;) is also an attracting periodic orbit of
period 2. Since all three critical points of f, namely the three cubic roots of £,
tend to one of these two periodic orbits, f cannot have other attracting periodic
orbits in C. It is clear that infinity is also an attracting fixed point (of order 2).

We shall describe the dynamics of f, in C completely by means of a geometric
construction. Consider a circle C' close to infinity. Its preimage consists of two
closed curves. One of them is also close to infinity, and it is mapped onto C
in a two-to-one fashion, making two twists counterclockwise around the origin.
Let us call that curve C';. The other piece of the preimage is close to zero,
and it is mapped in a one-to-one fashion onto C', making one twist around the
origin clockwise. We denote that curve Cs (see Figure 2). All points outside
C1, as well as all points inside C2, get attracted to infinity, and all interesting



Figure 2: The division of the complex plane into regions for € < 4/27.

dynamics happens in the annular region R between Cy and C;. To make use of
Theorem 3, we want to remove parts of that region that contain the orbits of
the critical points.

Proposition 5 Before the saddle-node bifurcation, there is a simply connected
region D1 C R that includes z1 and z., gets mapped into itself by f., and consists
only of points that are attracted to 2.

Proof Fix € € (0, 5). Let N be a small circular neighborhood of z; that is
mapped into itself, and consists only of points that get attracted to z;. If we take
the connected component of the preimage of N containing NV, and repeat this
operation sufficiently many times, we will get the required region D1, because
the critical point z. is attracted to 2. O

The symmetry (1) produces a corollary:

Corollary 6 Similar regions Dy and D3 can be constructed in such a way that
D5 contains wz; and wz., while D3 contains w?z, and w?z.. Dy and D3 are
mapped into each other, and oll points in both of them are attracted by the period
two orbit (wz1,w?z1).

Remark 1. D; can be chosen in such a way that it maps precisely onto itself,
and D, and D3, onto each other; to get such D7, we simply take the immediate
basin of attraction of 2.



Remark 2. D; lies entirely inside the region —% < arg(z) < %, because all
points of the rays wR_ and w?R_ do not get attracted to z; (since wR gets
mapped to w?R, and vice versa). Similar statements hold for D, and Dj.

Let us consider the region that is obtained from the annulus between Cy and
C} by excluding Dy, Dy and D3. We cut that region into three parts with the
rays arg z = 0, arg z = 2* and argz = %, and denote the parts Ry, Ry and Rj.
We also denote the arcs of C' corresponding to those regions as Ay, Az, and Aj
(see Figure 2).

By now we know these facts (see Figure 3):

1. The outer boundary of R; (curve 1 on the figure) is mapped in a one-to-one
fashion onto A; and A, (by the definition of C}).

2. The common boundary of R; and Ry (curves 2 and 4) is mapped on the
segment of w?R, that lies between C' and D3, and also inside Dj3; this
mapping is two-to-one.

3. The common boundary of R; and D» (curve 3) is mapped inside Ds,
making one full turn around w?z;. This is because D, contains one critical
point of order 2.

4. The inner boundary of R; (curve 5) is mapped in a one-to-one fashion
onto As.

5. The common boundary of R; and R3 (curves 6 and 8) is mapped partly
the segment of R between C' and Dj, and also inside Dq, in a two-to-one
fashion.

6. The common boundary of Ry and D; (curve 7) is mapped inside Dy,
making one full turn around z;.

Therefore, the image of the region R; includes R;, R,, and R3, as well as
some points of D; and D3, and the entire D5. It follows by symmetry that
the same can be said about the images of R, and Rj3, except that the image
of Ry covers D; entirely and D» and Ds, partially, and the image of R3 covers
D3 entirely, and D; and D», partially. We will use regions R;, R, and Rj3
to introduce symbolic dynamics on the Julia set J of f.. In the statement of
the following theorem we include pieces of the rays argz = 0, argz = £ and

3
argz = —% in Ry, Ry and Rg, correspondingly.

Theorem 7 There is a semiconjugacy between the mapping f. on its Julia set J
and the full shift on the space of sequences of three symbols. The semiconjugacy
is given by associating each point of J with the sequence of the numbers of
regions in which the iterates of that point lie.

Proof The two things we need to prove are that each sequence corresponds
to at least one point, and that no sequence corresponds to two different points.
The first follows the fact that the image of each of the three regions covers all
three. The second follows from the hyperbolicity of f., which is established by



Figure 3: The image of R; includes all three regions R;, Rz, and R3. The
boundary of R; is shown by the bold lines; the boundary of its image, by dashed
lines. On the right is the set of points whose orbits do not tend to infinity.

Theorem 3, since the orbits of all three critical points are disjoint from the union
of Ry, Rs and R3. O

We note that almost all points that lie on the boundaries between the regions
Ri, Ry, and Rj are attracted either to 21, to (wz1,w?21), or to infinity. It follows
from the symmetry (1) and from the dynamics of f on the real line that the
only exception is zo and its symmetric images, wzs and w?z,. Thus there are
two cases when different sequences correspond to one and the same point: a
sequence ending with a series of 2’s is equivalent to the same sequence ending
with a series of 0’s, and a sequence ending with 111111. . .is identical to the same
sequence ending with 020202.... All those sequences correspond to preimages
of either 2z or the period two orbit (wzs,w?2;). If we exclude these cases, our
semiconjugacy becomes a conjugacy.

Also, we can now describe the bifurcation at € = 0. In that case the Julia
set is the unit circle, and the action of f. on it is semiconjugate to full shift
on two symbols. For € > 0 the hyperbolicity of 22 implies that there is still
an invariant curve close to the unit circle which gets mapped onto itself in a
two-to-one fashion. The points of that curve correspond to the three-symbol
sequences that obey the following rules:

1. 0 can be followed either by 0 or by 1.
2. 1 can be followed either by 0 or by 2.
3. 2 can be followed either by 1 or by 2.

The shift map on such sequences is semiconjugate to the map z — 22 on the
unit circle, because if we divide S! into three equal parts instead of two, we
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Figure 4: The left picture shows the division of C into regions and the image
of R; after the bifurcation. On the right is a sketch of the Julia set of f.; the
action of f. on it is conjugate to a shift on three symbols.

get precisely that subshift. Therefore, all the dynamics that existed at € = 0
remains there for small positive €, though much more complexity is added.

Now let us consider the case € > ¢y. As before, we can exclude the critical
points from the annulus, and then divide it into Ry, Re and R3 and introduce
symbolic dynamics in the same way. The only difference is in the construction
of Dy, Dy and D3. This time we want all points of D; to tend to infinity, and
the whole D; to be mapped into the union of D; with the outside of C. That
can be achieved in the same way we did it before the bifurcation (in the proof of
Proposition 5), except that our initial open set, Ny, will be a tiny neighborhood
of [z, fe(z)], where z is a very large positive number (z is much larger than the
radius of C). Also, after we get a region that contains z., we take one extra
connected preimage of that region and denote it as D;. This will ensure that
D; contains the entire intersection of R4 with the annulus between Cy and Cs,
and that, in turn, will show that the Julia set in this case is totally disconnected
(see Figure 4).

After we construct D; in this way, we can construct Ds and D3 as its sym-
metric images, and then divide R into R;, Rs and R3 as before. Again, we
check easily that the image of each of the three regions covers the entire region
R, and also some points of C — R, which eventually escape to infinity. Therefore,
we can introduce symbolic dynamics on J in the same way we did before the
bifurcation.

We see that the structure of the map fc(z) = 2% 4+ £ in the complex plane
depends only on whether € is less than %. If it is, there are fractal sets of points
that get attracted to 21, to the attracting period two orbit (wzl,w2z1) and to
infinity; also, the dynamics of f, on its Julia set is semiconjugate to a full shift
on three symbols. If it is not, all points tend to infinity, except for the Julia set



of f, on which the dynamics is fully conjugate to the full three-shift. It follows
that if both € and e lie in (0, %), or they both lie in (%, 00), then the maps
fe, and f., are conjugate to each other.

2 Generalization for 2" + -5, n > 2

In this section we show a way to extend our reasoning to the dynamics of
z — 2" + ;& in the case m = 1, and to certain values of € in other cases. First,
let us explain what causes the dichotomy between m = 1 and other values of m.
Let he(z) = 2™+ -%. Asin section 1, one can see that h. has no more than two
fixed points in R, and for small values of € it has exactly two. Let us denote

those critical points z; and z3, 21 < 2».

Proposition 8 z; is attracting for all € € (0,€0) if and only if m = 1.

Proof The derivative of he is (n + m)z"~' — Zh(z), which is equal to
(n+m)z""! —m at the fixed points. Therefore, h’(z;) is greater than —1 for
very small values of € if and only if m = 1. (h.(z;) cannot be greater than 1
before the bifurcation, because h¢(z) < z for z slightly greater than z;.) O

The symmetry property has to be modified in the general case: it now states
that

he(az) = a™he(2),

where a = cos(2%-) + i sin(;2%-) is an (n +m)-th root of unity. In this section
we shall say that z is symmetric to w if z = a*w for some positive integer k.
A simple computation shows that for any m and n the value of € at which

two fixed points coincide in a saddle-node bifurcation is

m41
B (n—l) (m+1)"—1
€0 =
n+m n+m
Since z; depends continuously on €, and h.(z;), depends continuously on z; and
€, hl(z1) is a continuous function of €. Therefore, since hl(z;) = 1 for € = ¢,
there is an interval of parameters (€1, €9) on which h.(z) is greater than -1. For
any e from that interval z; is attracting.

If 2 is attracting, or if all points of the real line are attracted to infinity,
then we can describe the dynamics of f completely in the same fashion we did
for n = 2, m = 1. Namely, we define the annular region containing the Julia
set in the same way, exclude from it small regions containing the orbits of the
critical points, and divide the remainder into n + m symmetric parts, each of
which is mapped over the entire region (see Figure 5). Before the bifurcation,
this partition allows us to introduce a semiconjugacy between the action of h,
on its Julia set and a full shift on n+m symbols; the only points that correspond
to more than one sequence are the preimages of the repelling fixed point and
the points symmetric to it. After the bifurcation, there is an actual conjugacy
between h. on its Julia set and the full shift on n + m symbols, because the




Figure 5: The partition of C into regions for € < ¢y (left) and € > ¢ (right),
n=4m=1.

Julia set does not intersect the positive real line (thus no point can correspond
to two different sequences).

If m = 1, this completes the description of the dynamics of h.: the only
bifurcation occurs at € (and it is of saddle-node type). Otherwise, as € decreases
below €1, the dynamics of he becomes increasingly complicated.

Proposition 9 Assume n > 1, m > 1, and m and n are not equal to two
simultaneously. Then full period-doubling cascade can be observed in Ry as €
decreases from ey to zero.

Proof We will rely on a result from [2], which states that the full period-
doubling cascade is present if there is a parameter value €, for which hfc (z¢)
coincides with the repelling fixed point. Our goal is thus to show that there
is such an ¢.. We start by observing that for € very close to €y, z. is less
than z; (because hl(z1) is positive). In that case h. increases on [z.,z21], and
ze < he(z:) < h?(2;) < 21 < z2. Therefore, for € close to €, h?(2.) is less than
z9.

The next step is to show that if € is very close to zero, then h?(z.) is greater
than z,. Since h. decreases on (0, z.], it suffices to show that h.(z.) is less than
24 for very small values of €. Here 2} is, as before, the positive preimage of 2,
different from 25.

Since 2z is less than 1 (for positive €), —&

(z5)™

is greater than em . We also know that z, = mty/2 ) and thus

S B ——
he(Zc):€m+" ( * n—n+ * m)

is also less than 1, and thus 2}



If 7 is greater than L then for € very close to zero he(z.) will become less
than 2} (because the former is order em+= , while the latter is at least order ewr).
Finally, a simple calculation yields

n 1 1
>—emh-1)>nem>14+ ——
n—+m m n—1

which always holds if m > 1, n > 1 and m and n are not equal to two simul-
taneously. Therefore, by the Intermediate Value Theorem there is €. for which
he, (2¢) = z2, and thus the full period-doubling cascade is present. m|

We have just shown that if n > 2, m > 2, and m and n are not equal to two
simultaneously, then for very small values of € 2. is mapped outside of [z}, 22],
and so the dynamics of h, on [2}, 22] is conjugate to a full shift on two symbols.

In the exceptional case n = m = 2, the critical point 2. never escapes
[25,22] (the proof is an easy computation). Nevertheless, it is likely that a
period-doubling cascade is still present in this case. The existence of the first
period-doubling bifurcation at € = 22—6 can be easily proved analytically (by
checking the non-degeneracy conditions), and further bifurcations have been
observed numerically.

3 The case of complex e.

We now consider again the map fc(z) = 2° 4+ £, but this time we let € be a
non-zero complex number. Clearly the symmetry (1) remains valid. Since the
three critical points are all symmetric to one another, they either all tend to
infinity or all have bounded orbits. Therefore, it follows from Julia theorem
that if at least one critical point escapes to infinity, then there are no attracting
periodic cycles other than {oo} for f.. The set of the values of € for which the
orbits of the critical points are bounded has complicated structure; it is natural
to give it a special name.

Definition 10 The set P = {¢| the orbits of the critical points are bounded for
fe} will be called the pseudo-Mandelbrot set.

P is shown on Figure 6. Numerical observations show that it includes many
parts homeomorphic to the Mandelbrot set; each of these parts corresponds to
a period-doubling cascade in the z-plane. We will prove two theoretical results
about the structure of P. The first describes the main figure-eight of the pseudo-
Mandelbrot set, i.e. the set of the values of € for which the map possesses an
attracting fixed point (cf. the main cardioid of the Mandelbrot set).

Proposition 11 The set of € such that f. possesses an attracting fized point is

the image of the open disk |z — 5| < & under the map 1(z) = 2* — 2.

Proof. We note that the condition on the existence of an attracting fixed point
2o is the following system of equations:

{fe(20)=20 ©{5=33—33 ©{|3z0—1|<1

|fé(z0)] < 1 220 — 5[ <1 €= 22— 23

10



Figure 6: The pseudo-Mandelbrot set (left) includes infinitely many parts that
are topologically equivalent to the Mandelbrot set. One of them is shown on
the right.

which is what we need. a
In the second result we show that the pseudo-Mandelbrot set is contained
within the open unit disk.

Theorem 12 For any € such that |€| > 1 infinity is a superattracting fizved
point, and all three critical points lie in its immediate basin of attraction.

Note that, by Theorem 2, it follows that the Julia set of f. is totally discon-
nected, and the action of f. on it is conjugate to the full shift on 3 symbols for
any € with |e| > 1.

To prove Proposition 12, let us first show that for any non-zero e the imme-
diate basin of attraction of infinity contains {2 : |2| > 1 + |¢|}.

Lemma 13 If |z| > 1+ |¢|, then lim,_,o f/*(2) = 0.

Proof. Suppose |z| > 1+ |e|. Then |2?|-(|z| —1)| > |e|, because it must hold
that |z| > 1. Therefore, |2*| — 2| > |£], and thus |2%| — |£| > |z|. It follows that
[fe(2)] = 122 = |£] > |z].

We see that 1+ || < |2| < |fe(2)] < |f2(2)| < ..., i.e. the sequence of
|f*(z)| is increasing. To show that it converges to infinity we need to prove
that it does not have a finite limit. Indeed, assume the contrary is true, and
lim, 00 | f7*(2)| =, |I| < co. Then by the compactness of a circle the sequence
f2(z) has an accumulation point zg on the circle |z| = I. Tt follows by continuity
that |fe(20)| < |20|, which is a contradiction, because |z9| > 1 + |€|. Therefore,
our assumption is false, and lim,,_, |f*(2)| = oc. m|

Proof of Theorem 12 Fix € with |e| > 1. To show that oo is a superattracting
fixed point, we note that m =
fixed point.

z§—+€ and for that map 0 is a superattracting

11



Now let z. be a critical point of f, i.e. z, = f/g (we do not specify which
of the three cubic roots we consider, because our proof works for all three). We
claim that all points of the ray {kz. : k € R,k > 1} get attracted to infinity.
Once we prove that, it will follow that z. lies in the immediate basin of attraction
of infinity.

We fix k > 1 and get

felkze) = Ve (k—2 + ﬁ)

i1k
The function F(k) = —’3“\/14_ + ? reaches its minimum on [1,00) at 1, and that
minimum is equal to -sj—— Therefore, f.(kz.) = pv/e?, where p = —’3“—\/22 + % is

greater than or equal to %. Further,

1
ff(kZC) = 1‘726\3/E + /e
p
and from this and |¢| > 1 we obtain
1 1
|f2(kze)| > [pPe + o p*lel - 5
To complete the proof, we have to show that the number on the right is greater

than 1+ |e|: it will then follow from Lemma 13 that f2(kz.) lies in the immediate
basin of attraction of infinity. On the other hand,

1 +1
2 p
Pl =2 >1+ldeld> 55

(because |p| > 1). The right-hand side of the second inequality reaches its
maximum on [%,oo) at %, and that maximum is less than 0.6 . Therefore,

the second inequality always holds if |e| > 1. O
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