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Note that (010) is further away from (100) than (001) because it differs
from (100) in the second place while (001) differs in the third. Both (010)
Exercises and (001) differ from (T00) in the first place, and so each must be at least

one unit away. But how far are they from each other?

1. List all cycles of prime period 4 for the shift map. 11 | 1 |
a(@D), @00) = (5 +7) + (5 + )+ (s *35) *

There are twelve periodic points of prime period 4: 2724 16 " 32 128 © 256
a*(0001) = ¢*(0010) = o%(0100) = ¢(1000) = (0001); wBo 8 8
o4(0011) = o*(0110) = ¢*(1100) = o(1001) = (00T1); % mwhh 255
o*(1011) = o3(0111) = 0%(1110) = o(1101) = (1011). =3 T-1/8
Note that all 2-cycles and fixed points are trivially 4-cycles. 6
7

Compute d[s, t] where:
2. s = (100), t = (001) Thus, they are closer to each other than they are to (100) because they
agree in the first position.

s g 11 11
s s,ﬁo:_lm v w+@v+ﬁﬁ+§v+.: 4. s = (T010), t = (01)
b5 - — +1 11 1
4732 m,a d[(T011), (0101)] = +31)+(Grm+re)+
11
lmh tptogt v HM am+
=5 H\A —=7. H\a
1-178 =T 11716
10 o
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Considering the fact that the maximum distance between any pair of strings
in X 1s two units, the above 4-cycles are surprisingly far apart. (Do you see
why?)

5. Find all points in ¥ whose distance from (000...) is exactly 1/2.

First of all, any such string ¢ must be in My, otherwise d[(000...),t] > 1.
It turns out that there are two strings ¢ such that d[(000...),t] = 1/2,
namely, (010) and (00T).

This result may be generalized. Let s = (s081...). There exist two
strings ¢ such that d[s,t] = 1/2", namely, (051 ...3,5n415n42.-.) and
A.mmm_ e ‘m;wa+uw:+m Vi v

6. Give an example of a sequence midway between (000...) and (111...).
Give a second such example. Are there any other such points? Why or why
not?

One of the two points midway between (0) and (T) is (0T) since d[(0T), (0)] =
d[(0T), (T)] = 1. The other point is (10), and these are the only such symbol
sequences by virtue of the Proximity Theorem.

7. Let Mgy ={s€X|so=0,51=1}and Migy = {s€Z|so=1,8 =
0,s2 = 1}. What is the minimum distance between a point in My; and
a point in Mi01? Give an example of two sequences that are this close to
each other.

Let s € Moy and t € Myp;. Then d[s, t] > 3/2since s and t differ in the first
two positions. For example, let s = (011) and ¢ = (10T). Then d[s, t] = 3/2.
More generally, suppose t = (101#3t4...). Then s = (011t3t4...) is exactly
3/2 units away from t.

8. What is the maximum distance between a point in My; and a point in
M7 Give an example of two sequences that are this far apart.

The maximum distance is 2 units since the strings need not agree at any

position. Given any t € Mgy, all strings in Moy of the form (010434 ...)
are 2 units away from t.

The N-Shift:

The following seven exercises deal with the analogue of the shift map and
sequence space for sequences that have more than two possible entries, the
space of sequences of N symbols.

Exercise 12 84

10. Let ¥y denote the space of sequences whose entries are the positive
integers 0,1,..., N —1, and let o be the shift map on £y. Fors,t € Dy,
let

o |8 — il
- L
&?__.—mn ﬂu = M 9.2.|...

i=0
Prove that dy is a metric on Xy
The function dy is nonnegative since |s; —t;| > 0 for all ¢, and it vanishes if
and only if s = t. So all we really need to show is symmetry and the triangle
inequality. Symmetry follows since |s; — t;| = |t; — s;| for all numbers s;
and ¢;. The triangle inequality is a consequence of the triangle inequality
for ordinary numbers:

oo )

mu.lam m»,lﬁ-,
Q_Z?HS._;&E?_—LHM”_ sﬁ, _+M_ 2,_ |
.c

i=0

_ w _mm |ML -+ _mm. — gm_
4 N
1=0
S
- Ni
i=0
= dn|[s,u).

Thus dy is a metric and {dy,Xy) is a metric space.

11. What is the maximal distance between a pair of sequences in Lx?

The maximum value of |s; — ¢;] is N — 1, and therefore, the maximum
distance between two sequences in Ly is

= |si — i)
dns, 6] =~
i=0
2 N-1
> il
oo / >__.-
i=0
= (il
- 1-1/N
= N.

So, in general, the maximum distance can be no more than the size of the
alphabet.
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12. How many fixed points does oy have? How many 2-cycles? How many
cycles of prime period 27

Let on be the shift map on p. Specifically, let on: Xy — X with
on(S08182...) = (s18283...).
Now on has N fixed points; indeed,
fixeny = {(000...),(111...),...,(kkk...)}

where &k = N — 1. Recall that o2 has two points of prime period 2 and we
wonder if o has NV points of prime period 2. It turns out that this is not the
case since any sequence of the form (5537) is of period 2, and there are N2
such points. But NV of these are fixed, and so there are N2— N = N(N —1)
points of prime period 2.

13. How many points in £y are fixed by ofy?
For starters, how many periodic points of period 3 are there? We have that
pers on = {(305152) | S0, 51,52 € En }

and so |pers on| = N3. Of these, N3~ N = N(N?—1) are of prime period
3 since N of themn are fixed. It’s not very difficult to see that

|per, on| = N",

in general. For example, o has N* 4-cycles and N* — N? = N3 (N? - 1)
sequences of prime period 4, but it’s not clear how many points of prime
period n there are in general.

14. Prove that op: Xy — X 1s continuous.

First we give a careful proof that ¢: ¥ — ¥ is continuous, a result which
boils down to the following important fact:

Lemma 9.1 @e&:hammm.w .a ‘v“ :cu_um v H_ < H\w3+_,__ then
Rmﬁmpmumm _— .vu anm.mw - vw M H\Nz.

Proof: If d[(sgs152...), (tot1t2...)] < 1/27*! then s; agrees with ¢; for
i € {0,1,...,n 4+ 1} (by the Proximity Theorem). And if s; = ¢; for
i€ {0,1,...,n+ 1} (and hence, for i € {1,2,...,n+ 1}), then

&_—Ammmwhw i .v_ﬁmumu“m & H_ M m\wﬁ_
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also by the Proximity Theorem. (]

Using this result, the proof that ¢ is continuous proceeds as follows:

1. let € > 0 be given, and

2. choose n such that 1/2" < ¢;

3.let 6§ =1/2"+1 and

4. suppose d[(sgs152...), (totita...)] < §;

5. then d[(s18283...), (t1tals...)] < 1/2" < e.

Next we need a generalization of the Proximity Theorem. Let s,t € Ty
and suppose s; =t; for i € {0,1,...,n}, then

o |si — 1]
R G2 3 I. ]
Hmunu MU N
i=n+41
o0
< N = 1
= 20
i=n+4l1
1/NnH1
=(N-=-1}"——
( : —-1/N
_ 1
B
The converse is also true: if d[s,t] < 1/N™, thens; = t; fori € {0,1,...,n}.
We remark, however, that it is not the case that s; = t; fori € {0,1,...,n}

if and only if d[s,t] < 1/N", and the reader is encouraged to find an
appropriate counterexample (see Exercise 5 for a hint).

To show that op is continuous, let € > 0 be given and choose n so that
1/N™ < e. Now suppose § = 1/N"*! and d[s,t] < 6. Then s; = t; for
i€{0,1,...,n+ 1}, and

dlon(s),on(t)] < 1/N" <,
both by the above analogue to the Proximity Theorem. Thus o is contin-
uous.

15. Now define
. (s, t
dss, ] = M ,E

k
k=0 N
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where
0 ifsp =t
&,rAm~ &w - AH _.H. S % u.‘n . HQ.HV

Prove that dj is also a metric on L.

Is d5 a metric? And is the particular choice of 6 important? What if
6r(s,t) = s + & mod N, or

Io ;.mr.ﬂar.
.Em_:u TN 1 et ES
for instance? Well, certainly ds[s, t] > 0 since 8 (s,t) > 0 by definition in
all three cases. But is ds[s, t] = 0 if and only if s = t7 The answer is “yes”
m: the case of B 1) and (9.2), and “no” when 6i(s,t) = sp + tx mod N
(since 6;((0),(N)) = 0, for instance).

Both (9.1) and (9.2) are symmetric, that is, ds[s, t] = ds[t, s], but what of
the elusive triangle inequality? Consider the situation in (9.1) where we
must show that 6;(s, t) + 65 (t,u) > 6;(s,u). There are four cases to check:

Op(s,t)  Op(t,u) di(s,u)

0 0 0
0 1 1
1 0 1
1 1 Oorl

In all cases, 0x(s,t) + 6p(t, u) > éx(s,u) and so dj satisfies the triangle
inequality. Likewise, enumeration will also show that (9.2) gives rise to a
metric space.

16. What is the maximum distance between two points in X when the
previous metric djs is used?

Since 6x (s, t) given in (9.1) is at most 1, djs, t] can be at most N/(N — 1)
because
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We leave it to the reader to determine the maximum distance between two
points in Ly for 6;(s,t) in (9.2).

18. Each of the following defines a function on the space of sequences ¥.
In each case, decide if the given function is continuous. If so, prove it. If
not, explain why.

18a) F(sps182...) = (0sps152...).

Let s = (s0s182...) and t = (fotit3...). Then F(s) = (0sps152...),
F(t) = (0tptyta...), and

dF(E), Fo) = 3

_ _m"ln |N~I~_
- MM 9i-1
_ w um& e mn,_
= MM 9i
i=0

= WRT.&‘

This suggests we prove F' continuous as follows: Let ¢ > 0 be given,
and choose n such that 1/2" < e. Now let § = 1/2"~! and suppose
d[s,t] < 8. Then

d[F(s), m_c_u dfs, t] < .Tina

and so F is continuous.

18b) G(sps152...) = (05905, 055 ...).

We proceed as in Exercise 18a. In the present case, d[G(s), G(t)] is
strictly less than d[s, t]/2 however, since

Il
b | &7
F
T

d[G(s), G(t)]
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_.w.« ti

<3 sy el

i=0

— m&_uw_ E.
Therefore,
1 B, 1
d[G(s), G(t)] < 5dls, t] < 56 = o < ¢

upon choosing appropriate values for n and §.

18c) H(sos182...) = (515053525584 - ..).

Suppose s and t are such that sop41 # topq1 and sgp =19y for all k. In
other words, s and t differ with respect to every other entry starting
with s, and ¢;. Then

|$2i41 — t2i41]

d[H(s), H(t)] = ) _ g
mnc

_ MM [s9i41 — taig1]

Mm»._nu
= M&_ﬂm. t].

For example, let s = (000...) and t = (0I). Then H(s) = s and
H(t) = (10), and so we have
4

-= R_Hm.ﬁmv_ mﬁnd =

2 4
- 2d[s,t] =2 3 = 3.

3
Now suppose sa; # o and Sgpq1 = fap4q for all k. These symbol

sequences still differ with respect to every other entry, but offset by
one position. In this case,

d[H(s), H(t)] = MU _mwmﬂu,

i=0

1w |52i — tai]

9 M 92i
=0

o w%;_.
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Now, the claim is that for s, t € X,

1
5dls, 8] < d[H(s), H(t)] < 2d]s,¢]. 9.3)
If you believe this, then the continuity of H follows almost immedi-
ately. As usual, let € > 0 be given, and choose n so that 1/2" < .
Then let § = 1/2"+! and suppose d[s,t] < 6. But d[H(s), H(t)] <

2d[s, t] by (9.3), and moreover,
2d[s, t] < 26 = 1/2" < e.

Thus d[H(s), H(t)] < ¢ and so H is continuous.
18d) J(sos5152...) = (S08182...) where §; = 1 if s; = 0, and §; = 0 if
si=1.

We claim that d[J(s), J(t)] = d[s, t]. This is because |s; —1;| = |3; —1;|
which is easily seen by enumerating all possible cases (of which there
are only four). The proof that J is continuous is immediate. Just
choose é = e.

Hmav Mﬂamcmpmw o V ] AAH - .mcx”— — mwxu— - mmV v v

We remark that the mapping K makes sense only if we think of the
s; as binary digits (which they aren’t!). In this context, K = J of
Exercise 18d and so K is continuous since J is.

”—mc M\Am_u.m._.mm i u = Amamwmgmm i v

The trick here is to pick é small enough so that s and t agree on the
first 2n + 1 entries.

As always, let € > 0 be given and choose n so that 1/2" < ¢. Now let
6 = 1/2?" and suppose d[s, t] < 6. Then by the Proximity Theorem,
si=1;fori=0,1,...,2n, and so,

d[L(s), L(¢)]

Wou [s9; — 2]
i=n41 w»
s 1
i=n+l1 z
H\m:t
1-— #\M

IA
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Thus L is continuous.

wmmv aﬁmompmu = v = ﬁmomuam_aom_ccc o v
This exercise parallels the previous one, except this time we must

choose § to be very, very small. Specifically, we may choose § = 1/219"
so that s and t agree on the first 10” + 1 entries.

19. Define a different distance function d’ on £ by d'[s, t] = 1/(k+1) where
k is the least index for which s; # {; and d'[s,s] = 0. Is d' a metric?

Yes, d' is a metric. Observe that d’[s,t] > 0 for all s and t, and that
d'[s,t] = 0 if and only if s = t. That d’[s,t] = d'[t,s] is also obvious
from the definition. But does d’ satisfy the triangle inequality? Let s, t,
and u be symbol sequences in X, and let k; = min{i € N | s; # ¢;} and
ko =min{i €N |t; # u; }. A key result is

1

d’ = ——
—m_ﬂ_ Sum:.n,kr_b.mw ’
but clearly,
1 2 1 " 1
min{ky, &2} ~ min{ky, k2}  min{k,, ka}
< 1 1

and so the triangle inequality is satisfied.

Exercise 19

92



Chapter 10

Chaos

Exercises

For each of the following sets, decide whether or not the set is dense in
[0, 1].

1. 5) is the set of all real numbers in [0, 1] except those of the form 1/2"
forn=1,2,3,...

Yes, 51 is dense in [0, 1]. One way to show this is to first let w = 1/2" for
some fixed positive integer n, and then produce a sequence z; in S; such
that z; — w as k — cc.

We use a bisection technique on the interval [w,2w)]. Begin by letting
zo = 2w = 1/2"~! and forming the sequence

for & > 0. For example,

w+ze  1/27 4 1/271 3

T = ) o B = wa+~u
_ w4z 1/ 43/ 5
B=Ty T 2 = i

wtzy 1/ +5/27t2 9
Ir3 = = =

2 2 g+’
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and in general, it appears that

2k 41
Tk = Snvr

which the reader is asked to show by induction. Note carefully that z; € S;
for k > 0. We claim that 2 — w as k — oo.
To see this, consider the function
wte
2

where w is any real number. Note that F, is a linear map with attracting
fixed point w. Moreover, its basin of attraction is the whole real line.!

In summary, let w = 1/2" ¢ Sy, 2o = 2w, and Fy,(z) = (w + z)/2. Then
F¥(z0) — w as k — oo, and Ff(zg) € 51 for all positive integers k. This
proves that S; is dense in [0, 1].

Fu(z) =

2. Sy is the set of all rationals in [0, 1] of the form p/2" where p and n are
natural numbers.

Note that Sy contains all multiples of 1/2, all multiples of 1/4, etc. In fact,
z € 59 if and only if & has a terminating binary expansion. Assuming this
to be true for the moment, we may easily show that S, is dense in [0, 1] as
follows:

Let w = 0.b1b2b3. .. be an arbitrary point in [0, 1]. If w terminates, then
we are done, so suppose it does not. Then the sequence

0.b1, 0.b1ba, 0.b1babs, .

obviously converges to w, and each element of this sequence is in S3. q.e.d.

Using a bisection technique, we now exhibit such a sequence in S» converg-
ing to w. Take the unit interval, divide it in half, and determine which half
contains w. Discard the half which does not. Halve the remaining interval,
and again ask which half contains w. Continue this halving process, each
time throwing away the half interval which does not contain w. This bi-
nary search technique, as it’s called, captures w to any degree of precision
one cares to specify.

A corresponding algorithm is given in Figure 10.1. ‘The variables [ and 7,
are the left-hand and right-hand endpoints of the subintervals, respectively,

1We say that w is a globally attracting fixed point for Fy,.
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V= |
? = Ow TR =
loop
my = Qa + ;.u\w
if w < my then
by :=0; rp = my,
else if w > m; then
b = 1; Iy :=my
end if
k=k+1
end loop

Figure 10.1: A binary search algorithm for w.

and my is the computed midpoint. We’ll describe the b in a moment, but
first observe the following facts:

1. both l; and 7y are in S3, and hence, m; € Sy (in fact, m; = 1/2);
arguing inductively, if I; and r; are contained in S5, then so is my,
and hence, all {;, and r; are contained in S3;

2. since w ¢ Sy, w # my for all k;

w.gw — w as k — 00.

The binary search algorithm in Figure 10.1 can also be thought of as a
binary tree with the elements of Sy at the nodes, and 0s and 1s decorating
the edges. See Figure 10.2.

In this tree, a movement to the left traverses an edge marked with a 0, while
a motion to the right picks up a 1. These bits correspond to the binary
expansion of w, and are precisely the bz given in the algorithm. In fact, the
concatenation of all these by corresponds to one of the terminating binary
expansions mentioned earlier.

3. Sj is the Cantor middle-thirds set.

The Cantor set K can not be dense. There can’t possibly be a sequence in
K converging to 1/2, for example, since the interval (1/3,2/3) was removed
at the first stage of the Cantor set construction.
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P\o\ /.m
Pw Am mw Am

AT T A
L] L]

Figure 10.2: A binary tree of the elements in S,.

4. 54 is the complement of the Cantor middle-thirds set.

Recall that the ternary expansion of @ € K has no Is. Any point which
does have a 1 in its ternary expansion is in K’s complement. Moreover,
any finite string can be prepended to such a point, and the result is still in
K’s complement. Thus the complement of K is dense in [0, 1] since there
are (uncountably many) points in K’s complement arbitrarily close to any
point @ in the Cantor set. Just prepend the first n + 1 bits of z to your
favorite point in the complement of K.

5. Sg is the complement of any subset of [0, 1] which has countably many
elements.

Note that the set 57 in Exercise 1 is a special case of S5. Yes, the unit
interval remains dense even after removing a countably infinite number of
points,

The following argument depends on the fact that open intervals are un-
countable sets.? Let @ be any point in the complement of S5, and let ¢ > 0
be given. Now let N = N(z) be any e-neighborhood of . Then N N Sy is
nonempty since N is an open interval and hence, uncountable. Hence, S5
is dense in [0, 1].

For each of the following sets, decide whether or not the set is dense in T.
Give reasons.

6. MJ. = .“ﬁ.mc.w_mw...w _ 84 = Ow
2Thanks to John Thoo for reminding me of this.
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Any point s ¢ T} is of the form (5951525315556 ...). The point in 77 closest
to s is (5051525308556 ...), and in fact,

.m_HAmomphummHmmmm . .vuAmQ..:._wumﬂDMmmm - H_ = —
Therefore, 77 can not possibly be dense in I.

7. Ty is the complement of 7.

Observe that Ty = {(sgs152...) | 52 = 1}. By an argument virtually
identical to the one in Exercise 6, T3 can not possibly be dense in E.

8. T3 = {(s0s182...) | the sequence ends in all 0s }.

We will show that T3 is dense. Take an arbitrary s = (sgs162...) in ¥ and
construct a sequence of points s,, such that

Sn = (5051 - . .5n_10).

Note that each s, € T5 and that s,, — s as n — co. Thus T3 is dense in .
(See Exercise 2 for a related problem.)

9. Ty = {(s08152...) | at most one of the s; =0}.

This set can not possibly be dense in X. Consider the point (001) in T}’s
complement. There is no sequence of points in T; converging to (001).
Indeed, the closest point in 7} to (001) is (01), and

d[(007), (0T)] = 1/2.

In fact, there is no sequence in 74 converging to any point in its complement.
Let s ¢ T4. Then s has at least two 0s. Now suppose s; is the second of
these two 0s. Then each point in T} is at least 1/2¥ units away from s, and
so there can be no sequence in Ty converging to it.

10. T5 = {(s05152 ...) | infinitely many of the s; = 0}.

Take a point in T5’s complement which has but finitely many 0s. Then it
has infinitely many ls, and in fact, the tail of the sequence must be all 1s
and hence of the form (sps; . ..s,1) for some n. But the sequence of points

(5051 -..500), (s081...5,10), (5051 ...5,110),...

converges to (sps1 ...m:m.v, and each such point is an element of T5. Thus
Ts is dense in X. (See Exercise 8 for a related problem.)
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11. Tg is the complement of T5.

As argued in Exercise 10, a point in 75 must end in all 1s. Consequently, we
proceed as in Exercise 8 by constructing a sequence of points, each ending
in all 1s, converging to any point in X.

We remark that 75 1s not the same as
{ (sos152...) | infinitely many of the s; =1}

since there are strings in the latter which are not in Ts. The string (01) is
one such example.

12. T7 = { (505152 ...) | no two consecutive s; =0 }.

In words, 7% consists of those strings in which every 0 is followed by a 1.
The complement of this set consists of all strings with a consecutive pair of
0s. The string (001) is one such example. Unfortunately, there is no string
in T close to this string—in fact, the element in 7% closest to (001) is (0T),
and d[(001), (01)] = 1/2. Therefore, T is not dense.

13. T3 is the complement of T%.

The complement of 7% is dense in . As mentioned in Exercise 12, Ty is
the set of strings containing a consecutive pair of 0s. Now take any point
in ¥ and construct a sequence in Ty converging to it. (The sequence in
Exercise 8 will serve this purpose just fine.)

15. Is the orbit of the point (01 001 0001 00001...) under o dense in L?

No—in fact, the orbit of (01 001 0001 00001...) stays away from M
altogether. And there’s really nothing special about the systematically
increasing number of 0s in this string. No element of

{strings of 0s and 1s not having 11 as a substring}

has an orbit which is dense in .

16. Is it possible to give an example of an orbit under & that accumulates
on (i.e., comes arbitrarily close to but never equals) the two fixed points of
o, but which is not dense?

Consider the orbit of

(01 0011 000111 00001111...)
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under o. This orbit comes arbitrarily close to either of the fixed points,
but it is not dense since it stays away from all other periodic points, for
example.

17. Prove that, if s € X, there are sequences t arbitrarily close to s for
which d[a"(s), e™(t)] = 2 for all sufficiently large n.

Let s = (sos182...) € £ and consider the point
t= Amomp . .m:..m:.._.w.ma‘*m . u

By the Proximity Theorem, we know that
1
d[s, t] < —
(5,1 < 5
but
do*(s),o*(t)] = 2

for all & > n.

18. Prove that the set of endpoints of removed intervals in the Cantor
middle-thirds set is a dense subset of the Cantor set.

Points in the Cantor set have no 1s in their ternary expansion, while end-
points of removed intervals correspond to terminating ternary expansions.
The rest of the proof is straightforward (see Exercise 2).

19. Let V(z) = 2|z| — 2. Find the fixed points of V and V2. Compute an
expression for V3.

The function V:[—2,2] — [—2, 2] is a piecewise linear approximation to our
old friend Q_»:[-2,2] — [-2,2]. See Figure 10.3. Note that both V and
@Q)_, are 2-to-1 and onto the closed interval [-2,2].

Now, by definition of absolute value, we have that

%—2 f0<z<?2
_\Euﬁlwalm :tmmam@‘

Setting each part of this piecewise linear map equal to z and solving, we
get
fixV ={-2/3,2}.
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Figure 10.3: The quadratic map Q_»(z) = z? — 2 and its piecewise linear
approximation V(z) = 2|z| — 2.

Now recall that a formula for V?(2) was derived in Section 10.2 of the text.
It is

dz—-6 ifl1<x<2

—4x+2 f0<a<l1

de+2 if —1<2<0

—4r—-6 if —2<z2<-1

Viz) =

and s fixed points may be found similarly. (See Figure 10.4a.) The reader
should verify that
6 22
fixV3=q——,—2,2.23,
X ﬁ 5735 W

We now derive an expression for V3(z). First observe that V partitions the
closed interval [-2, 2] into two subintervals, [~2, 0] and [0, —2]. Let’s denote
this partition by [—2,0,2]. Now, the second iterate V2 further partitions
[~2,2] into the four subintervals given by [-2,—1,0,1,2]). But where did
the numbers 1 and —1 come from? Well, they happen to be the zeroes of
V. (This is no accident. Do you see why this must be so? If not, take a
moment to review the derivation of V2(z) in the text.)

So let’s iterate this procedure! What are the zeroes of V27 Setting each
part of V?(z) equal to zero and solving, we get {3/2,1/2,—1/2,-3/2},
which is not all that surprising considering the symmetry properties of V
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|
—
=

(a) The graph of V2,

(b) The graph of V2,

Figure 10.4: The second and third iterates of V(z) = 2|z| — 2.

and its iterates. These calculations suggest the partition
3 1 1 3
P A (N

ﬁ 1 t wvou wv ¥ g

for V3. (Exercise: What partition might we try for VV47)

Back to the derivation of V3(z). There are eight cases to consider, four of
which are detailed below:

—2<2<-3/2 = 1<V(z)<2and0<Vix)<2
=  V3(z)=V(V¥(z))
= V(~4z — 6)
= 2(—4z — 6) — 2
=—8z—14
-3/2<z2<-1 = 0<V(z)<land —2<V?3=z)<0
= V3(z) =V (Vi(z))
= V(—4z — 6)
=—-2(—4x—-6) -2
=8z 4+ 10
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-1<V(z)<0and —2< V3(z) <0
Vi(z) = V(V¥(2))
V(dz +2)
- |MAﬁH + MU -2
=—82—6
—2< V()< —-land 0 < V¥(z) <2
V3(a) = V(V¥(z))
=V(4z +2)
2(4x+2)-2
=8z+2

—1<z<-1/2

44

il

~1/2<2<0

44

Completing the remaining four cases we get the following expression for
Vi(z):

([ —8z—14 if —2<z<-3/2

8z+10 if —3/2<2< -1

—8z—-6 if —1<e<-1/2

8z +2 if —1/2<2<0

-8z+2 if0<z<1/2 ’

8z—6 if1/2<z<1

—8z+10 if1<z<3/2

8x—14 if3/2<e<2

"

The graph of V3 is given in Figure 10.4b.
20. Prove that the doubling function given by

[ ife<1/2
b@u,ﬂ MTH:HNE

is chaotic on [0, 1). Compare this result with your observations in Experi-
ment 3.6.

Choose z € [0,1) and write it in binary; that is, let
2 = 0.bybsbs ...
where b; € {0,1}. Now, compute D(z). If b; = 0, then 0 < z < 1/2 and
D(z) = 0.bsbsbs. ..

since doubling shifts the binary point one place to the right. If b; = 1, then
1/2<z<1and

@ﬁn‘.v = AH.@u@m?_ u v —-1= O.&m&w@» 15 mn
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In either case, D(x) = 0.b2bsbs . .. and so we see that doubling is equivalent
to the shift. Consequently, anything true (in the dynamical sense) of the
shift is also true of doubling, and in particular, D is chaotic because o is.

21. Prove that the function

2z if 2 <1/2
9-2 ifz>1/2

is chaotic on [0, 1].

We will show that the doubling map is semi-conjugate to the tent map T'
via T itself! That is, we will show that

0,1 —2-> [0,1]

T T

0,1 ——> [0,1]

commutes. (Note that the doubling map D needs to be defined on the
closed unit interval for this to work.) Thus T will be chaotic by virtue of
Exercise 20. This is because orbits under iteration of D map to dynamically
equivalent orbits under T'. In fact, we now prove by induction that

T o DAt g0 (10.1)
for all n > 0. Suppose Equation 10.1 is true for n := k. Then

MJObaiw s N#
=ToToD¥ ! =ToT*,

and since T'o D = T'o T (this will be verified in a moment) we have
T o D* = Tk+1
which completes the inductive proof. We remark that (10.1) gives an ex-

plicit formula for 7" (z) since we already know that D"~!(z) = 2"~z mod
| &
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We now show that D is semi-conjugate to 7" via T', or in other words, that
ToD =ToT. There are four cases to consider for T'o T":

0<z<1/4 = 0<£T(2)<1f2 = ToT(e)=T{(2)
= 2(2z)
=4z
1/4<2<1/2 = 1/2<T(x)<1 = ToT(z)=T(2z)
= 2-2(2z)
=2—-4z
12<2<3/4 = 12<T@<1 = ToT(z)=TE-2)
=2-2(2-22)
=4z -2
= 0<T(x)<1/2 = ToT(x)=T(2-2z)
=2(2 - 2z)
=4—4x

3/4<z<1

Similarly, there are four cases for T o D:

0<z<1/4 = 0<DE)<12 = ToD()=T(2)
= 2(2z)
=4z
1/4<z<1/2 = 1/2<D(x)<1 = ToD(z)=T(22)
=2 -2(2z)
=2 -4z
12<2<3/4 =5 0<D{z)<1/2 = ToD(z)=TQ2z-1)
=2(2z-1)
=4x -2
3fd<z<1 = 1/2<D(x)<1 = ToD(z)=T(2z-1)
=2-2(2z-1)
=4 —4z

We have to be a little bit careful at 2 = 1/2 since D is not continuous there,
and also at x = 1 since we haven’t yet defined D(1). But the reader may
check that T'o D(1/2) =T 0T(1/2) = 0, and that ToD(1) = ToT(1) = 0
provided we define D(1) to be either 0 or 1. It is also straightforward to
check that both ToT and T o D are continuous on [0, 1]. So what we have
shown is that

4z if0<a<1/4

2-4z if1/4<z<1/2

-2 if1/2<x<3/4

4—4z if3/d<z<1

ToD(z)=ToT(z) =
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and so D is conjugate to T via T". See Figure 3.9a for the graph of ToT =
ToD.

22. Use the results of the previous exercise to construct a conjugacy be-
tween T on the interval [0, 1] and G(z) = 222 — 1 on the interval [—1, 1].
We will show that

[0,1] —— [0,1]

U u

-1,11-%5 1,1

commutes, where U(z) = cos(wa). In other words, we will show that
UoT=GoUl. (10.2)

Note that U:[0,1] — [—1,1] is a homeomorphism. Now, the left-hand side
of (10.2) is given by
_ | cos(2w2) if0<z<1/2
Usdig)= A cos(2rz —27) if12<z<1
But cos(27z — 27) = cos(2ma), and so
U o T(z) = cos(27z).

Applying the double-angle formula for cosine, the right-hand side of (10.2)
is GoU(z) = 2cos?(wz) — 1 = cos(2nz), and so

UoT(z)=GolU(z).
Hence, G is chaotic since T' is chaotic (see Exercise 21).

23. Construct a conjugacy which is valid on all of R between G in the
previous exercise and Q_,. (Hinl: Use a linear function of the form
z— az+b.)

We seel a linear function L such that

Eﬁ*—@

G
—_
Q-2
l

e
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commutes. That is, we seek a homeomorphism L such that
LoG=Q_50L.

Suppose L:R — R is of the form L(z) = az +b. Then L o G(z) = a(2z? —
1)+b = 2az?—a+b, whereas Q_s0L(z) = (ax+b)?—2 = a?2? 4 2abz+b2—2.
Equating coefficients, we obtain the system of equations

2a¢ = a
0 = 2ab
b—a = b2-2

a = 2

b = 0~
Let’s check this result: Lo G(z) = 2(222 — 1) =422 -2, and Q_z 0 L(z) =
(2z) -2=422-2. v

which has solution

24. Prove that Fy(z) = 42(1 — z) is chaotic on [0, 1].
Our goal is to find a linear map W:[-2,2] — [0, 1] such that

FaoW =Wo@_s.
Suppose W(z) = az + b. Then

FaoW(z)=4(azx + 0)(1 — az — b)
= 4(az — a’2? — abz + b — abz — b?)
= 4((a — 2ab)z — a’z? + b — b?) (10.3)

whereas

WoQ_s(z)=a(x®—-2)+b
=az? - 2a+b. (10.4)

Equating coefficients in (10.3) and (10.4), we arrive at the following system
of equations:

—4a® =a (10.5)
4(a—2ab) =10 (10.6)
4(b — %) = —2a + b. (10.7)
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From (10.5), we see that a = 0 or a = —1/4. Plugging the latter into (10.6),

we find that —1 + 2b = 0 which says that b = 1/2. Checking these results
against (10.7), we have

Thus,

and the reader may check that Fy o W(z) = W o Q_»(z). Hence, Fy is
chaotic by virtue of Exercise 23 where it was shown that Q_» was chaotic.
Indeed, combining the results of Exercises 20-24, we have that

T U

Ol =T 0 s e, Helo 18,0 s i 1]
D T G Q-2 Fy
0,1] —— [0,1] -5 [-1,1] 2> [=2,21 > 0. 1]

commutes. Note that all conjugacies but the first are homeomorphisms.



Chapter 11

Sarkovskiil’s Theorem

Exercises

1. Can a continuous function on IR have a periodic point of period 48 and
not, one of period 567 Why?

Yes. Observe that 56 = 23.7 precedes 48 = 2%.3 in the Sarkovskii ordering.
Thus, if a continuous function F' has a cycle of period 56, then it also has
a cycle of period 48. Now there is a continuous function £ with a cycle of
period 48 that does not have a cycle of period 56 (in fact, by the theorem on
p. 138 of the text, there exists a continuous function with period 48 having
no cycles of any period preceding 48 in the Sarkovskii ordering) but this is
not necessarily so. In other words, a continuous function F with a periodic
point of period 48 may or may not have a periodic point of period 56.

2. Can a continuous function on R have a periodic point of period 176
and not one of period 967 Why?

No. In this case, 176 = 2% .11 precedes 96 = 2% - 3 in the Sarkovskii
ordering, and so, by Sarkovskii’s theorem,! a continuous function with a
periodic point of period 176 must also have a periodic point of period 96.

3. Give an example of a function F': [0, 1] — [0, 1] that has a periodic point
of period 3 and no other periods. Can this happen?

!For an interesting proof of Sarkovskii’s theorem, see: Harvey Kaplan (1987). A
cartoon-assisted proof of Sarkovskii’s theorem. Amer. J. Physics 55(11), 1023-1032.
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0 T % 1

Figure 11.1: A discontinuous piecewise linear map having only period 3
points.

Well, Sarkovskii’s theorem applies only to continuous functions and so it
follows that such a function must be discontinuous. Consider the function

. [z+1/3 f0<z<2/3
EHTTTMB mw\mmamH

which has lots of 3-cycles:
0—1/3—2/3—0
1/6+—1/2—5/6— 1/6
1/12+ 5/12+— 9/12+— 1/12
1/5—8/15—13/15— 1/5
Indeed, the graph in Figure 11.1 clearly shows that
F[0,1/3] = [1/3,2/3]
F[1/3,2/3] = [2/3,1)
Fl2/3,1]=10,1/3]

and so every point is of period 3 (except the endpoint 1 which is eventually
period 3).
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Here are some related exercises:

Exercise. Assign values to each of the endpoints in (11.1) and (11.2). Justify
your choices as best you can.

_J=+1/2 f0<z<1/2
&El?i\w if1/2 <z < 1 (ALL)

_[z+1/4 if0<z<3/4
EHTTLE if3/4<z<1 (11.2)

Exercise. In general, show that for any integer m > 1,

f[az+1/m if0<z<(m-1)/m
Sm(z) = ﬁalﬁﬂ:i:}: :T:lsxﬁAaAH

has nothing but periodic points of period m. Also show that
_ o1
Sm = S j(m-1)

(In Exercise 3, for example, it is easily checked that F' = S5 = _m..,u.l....w.v

One final note: Babbage? gives many examples of functions F' such that
F3(xz) = z. None is continuous of course, and all are conjugate to the linear
fractional transformation

ax+b
d— nuuwavmu_”au&

M(z) =

which the reader may check satisfies M3(z) = z.

4. The graphs in Figure 11.2 each have a 4-cycle given by {0,1,2,3}. One
of these functions has cycles of all other periods, and one has only periods
1, 2, and 4. Identify which function has each of these properties.

Note that each of these functions is continuous and so we need only find a
3-cycle to identify which has cycles of all periods. On the other hand, it
may be easier to prove the nonexistence of the 3-cycle, which we now do.

First consider the graph in Figure 11.2b. By inspection, we find the cycles
1/2—5/2+— 1/2

2Charles Babbage (1816). An essay towards the calculus of functions, part II. Philo-
sophical Transactions of the Royal Society 106, 179-256.
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(a) Graph of F. (b) Graph of G.

Figure 11.2: Two graphs with period 4.

1/4—11/4+—3/4+—9/4— 1/4
1/8+—23/8+—T7/8+ 17/8+—1/8

and other 4-cycles are readily found. Indeed, we will show in what follows
that G has nothing but 4-cycles.

The equation of the piecewise linear graph in Figure 11.2b is

3—2 if0<z<l
Gz)=<4-2z ifl<z<?2
x—2 if2<z<3

Now let 0 < & < 1. Then —1 < —z < 0 and s0 2 < 3 — 2 < 3. In other
words, G[0, 1] = [2, 3], and similarly, G[2, 3] = [0, 1]. (These facts are easily
verified by inspection of the graph of G.) This means that no point in
[0,1] U [2,3] can have odd period. Now let’s see what happens when we
take an arbitrary z € [0, 1] and iterate G.

since z € [0, 1]

since 3 — 2 € [2, 3]
since 1 — 2 € [0, 1]
since 2 + z € [2, 3]

Gz)=3-=2

G (z)=GB3-z)=B-2)-2=1-2
Gz)=G(l-z)=3-(1—-2)=2+=2
GYz)=CG2+z)=(2+2)-2==
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So every point in [0,1] U [2,3] is of period 4. Now G[1,2] = [0,2] and
G[0,2] = [0,3]. But as soon as a point leaves the closed interval [1,2], it’s
locked into a 4-cycle. So the question is: are there points in [1,2] that
remain in [1,2] for all time? The answer is no! The orbits of points close
to the fixed point # = 4/3 oscillate away from the fixed point (since it’s
repelling) and eventually enter [0, 1], an interval of 4-cycles.

In summary, G has a repelling fixed point, a neutral 2-cycle, and a whole
bunch of neutral period 4 points. Everything else is eventually periodic
with period 4. We remark that G is the double of z — 3 — 2 on [0, 3]
which is easily seen to have nothing but period 2 points (see Devaney’s An
Introduction to Chaotic Dynamical Systems, Second Edition, pp. 67-68).

Now what about the dynamics of F? From the graph in Figure 11.2a, it’s
clear that

F[0,1]=[1,2] (11.3)
F[1,2] = [2,3] (11.4)
F[2,3]=[0,3] (11.5)

and so we have [0,1] C [0,3] = F3[0,1]. Therefore, F' has a period 3
point in [0,1] and this 3-cycle must be repelling. (How do we know it’s
repelling? Because the mappings (11.3-11.5) have constant slope 1, 1,
and —3, respectively, and hence, the derivative of the period 3 point is

1:1-(=3)=-3)

6. Consider the piecewise linear graph in Fig. 11.3. Prove that this func-
tion has a cycle of period 7 but not period 5.

Assuming F:[1,7) — [1,7], the 7-cycle

1l—4—5~3—0—2—T—1

is repelling since each lap of I in Fig. 11.3 has constant slope greater than
or equal to one in absolute value. Now, let’s apply F five times to each of
the unit intervals in [1, 7] and see what happens:

*[1,2] = [4,7)— [1,5]— [3,7) = [1,6]— [2,7]
and [1,2]N[2,7] = {3} € per; F.

[2,3] = [6,7]— [1,2] = [4,7] = [1,5] — [3,7]
and [2,3]N[3,7] = {3} € per; F.
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1 2 3 4 5 6 17

Figure 11.3: This function has a 7-cycle but no 5-cycle.

* (3,4 [5,6] — [2,3] — [6, 7] — [1,2] > [4,7]
and [3,4]N[4,7]) = {4} € per; F'.

e [5,6]— [2,3]— [6,7]— [1,2] — [4,7] — [1,5]
and [5,6]N [1,5] = {5} € per, F.

©[6,7]— [1,2]— [4,7] > [1,5] = [3,7] = [1,6]
and [6,7]N[1,6] = {6} € per; F.

Thus, there are no period 5 points in these intervals. Also notice that
[3,4] — [5,6]— [2,3] = [6,7] — [1,2] — - - —[1,7].
But what about [4,5]? Since
[4,5] +— [3,5] — [3,6] — [2,6] — [2,7] — [1,7] (11.6)

there is indeed a period 5 point in [4,5]. But we claim that there’s exactly
one such point in [4,5], and in fact, it’s the fixed point = 13/3. This is
because each of the mappings in (11.6) is strictly decreasing and therefore
F®:[4,5] — [1,7] is strictly decreasing (since the composition of an odd
number of decreasing functions is decreasing). Thus F'® has a unique fixed
point in [4, 5], and moreover, this point must be the fixed point of F.

Does F' have a 3-cycle? No, for if it did, it would also have a 5-cycle which
we’ve already shown does not exist,.
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5 4
4
3
3
2
N \
1 1
0 0
o I 2 3 4 5 0 1 2 3 4
(a) (b)

Figure 11.4: Two graphs with no odd periods.

By the way, there’s a nice pattern here that deserves mention.
Period 5, but not period 3:

l—=3—42—51. (11.7)
Period 7, but not period 5:
1—4=5—36—2—T7—1. (11.8)

See how (11.8) is obtained from (11.7)7 Just add one to each point in the
period 5 orbit and then add the iteration 7 + 1 at the end. Similarly, we
may construct a map with a period 9 orbit, but not period 7. The necessary
9-cycle would be

1564 —7—3—~8—2—9—1. (11.9)

The map corresponding to (11.9) is not hard to construct, and is left as an
exercise.

7. Consider the graph in Figure 11.4a. Prove that this function has a
cycle of period 6 but no cycles of any odd period.
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This function has the 6-cycle
0—=4—1—5—~2—3—0

which may be checked easily from the graph, and so F' has periodic points
of all even periods. The mappings

[0,1] — [4,5] — [1,2] — [3,5] — [0,2] — [3,5] > - -

[2,3] — [0,2] > [0,5] > - --

clearly show the absence of odd periodic points, however. Take period 3
points, for instance. Since

F3[0,1] = [3,5] (11.10)
F3[1,2] = [3,5] (11.11)
F3[3,5] =[0,2], (11.12)

there are no period 3 points in these intervals since [0, 2] maps to [3, 5], and
vice versa. The only remaining interval is [2, 3], but it contains absolutely
no periodic points save the lone fixed point of F. So F' has no period 3

points.

Let’s also check period 5 points. Again, there aren’t any since (11.10-11.12)
hold with F3 replaced with F5. In fact, there are no periodic points with
any odd period since

Fantlp 1] =[8,5]
F2+11, 2] = [3, 5]
Fintls 5] = [0, 2]

for all positive integers n.

Here’s a totally different approach to this problem: First, verify that the
piecewise linear function in Figure 11.5 has the period 3 orbit

0—1/2—1+0.

Since this function is continuous, Sarkovskii’s theorem guarantees that it
has periodic points of all periods.
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Figure 11.5: A continuous function with a 3-cycle.

Now construct the double of this function® to produce the graph in Fig-
ure 11.4a.* Since the period of every orbit has doubled, this function has
only even periodic points.

8. Consider the function whose graph is displayed in Figure 11.4b. Prove
that this function has cycles of all even periods but no odd periods (except

1).

Observe, first of all, that 2 is fixed by F.® Inspection of the graph in
Figure 11.4b shows that [3,4] + [0, 1] and [2, 3] ~ [1,2], both of which
map to [2,4]. But [2,4] — [0,2], and vice versa. In general,

Finrtlo, 1] = F?*H[1, 2] = [2,4]

and
F2n+19 3] = F2n+1[3,4] = [0, 2],

and hence, there can be no odd periodic points. On the other hand, all
even periodic orbits exist since

F?0,1] = F?™[1,2] = [0,2]

3See pp. 67-68 of R. L. Devaney’s An Introduction to Chaotic Dynamical Systems,
Second Edition, Addison-Wesley, 1989.

4This is not quite true, but the discrepancy is not important.

5 Indeed, any multiple of a power of two in [0,4] is eventually fixed.
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and
F™[2,3] = F?"[3,4] = [2,4].

Thus we have that

[0,1] € [0,2] 2 [1,2]
and

(2,31 C [2,4] 2 [3,4]
and so even periodic orbits are guaranteed to exist.

9. Consider the subshift of finite type £’ C £ determined by the rules 1
may follow 0 and both 0 and 1 may follow 1, as discussed in Section 11.4.

9a) Prove that periodic points for o are dense in £’.

Let s = (sgs152...) € &', Given € > 0, choose an integer n such that
1/2" < €. Now consider

t = (8081...8,1)

and observe that s and t agree up through their respective (n + 1)st
entries.® By the Proximity Theorem,

dfs,t] < 1/2" < ¢

and so we’ve found a periodic point arbitrarily close to s. Hence, these
periodic points are dense in ¥'.

9b) Prove that there is a dense orbit for o in X’.

Like the full shift, there is a point in ¥’ with a dense orbit, but it is
slightly more difficult to write down. It’s constructed just like § on
p. 116 of the text, but of course any sub-block containing a pair of
adjacent zeros, or any pair of adjacent sub-blocks ending and starting
with zeros, must be omitted, for such a point is not in X',

If you believe that every transitive dynamical system has a dense orbit
(see p. 117 of the text), then the proof is easy. Let s = (s9s182...)
and t = (Zgl1f3...) be any two points in £’, and let € > 0 be given.
Then there is a third point, namely,

A%omh . ..wzwucnh ceolp .. v

SNote that t = (3051 - - - 8n) will not work since both sg and s, may be zero, and
hence t ¢ &',
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./...r!l,l,ll;l\ll* frr]l[ll.llh
o 1 2

Figure 11.6: A subshift of finite type on three symbols.

which is within ¢ of s, and whose orbit comes within ¢ of t. Note
that a 1 has been inserted between the s; and the ¢; in the event that
sp = tg = 0. The tail of the sequence is arbitrary.

Incidentally, the previous two facts taken together show that the subshift
is sensitive to initial conditions’ from which it follows that the subshift is
chaotic.

The following four problems deal with the subshift of 3, the space of
sequences of 0’s, 1’s, and 2’s, determined by the rules that 1 may follow 0,
2 may follow 1, and 0, 1, or 2 may follow 2.

Let X3 = * (s08182...) _ s; € {0, H,mﬁv and let
L3 D 85 = {(s05152...) | 2 must follow 1 must follow 0 }.

See Figure 11.6.

10. Is this subset of 3 closed?

Yes. Choose s ¢ 4. Then there exists a & such that both sy and s;_1
are both zero or one. Choose € < 1/2F and let t be any point in X3 such
that d[s,t] < €. By the Proximity theorem, s and t agree up through the
kth position. In particular, s = t; and sg_1 = -1, and so 13 and #_;
are both zero or one. Hence, t ¢ £} and so the complement of £} is open.
Therefore, Lf itself is closed.

11. Are periodic points dense for this subshift?

Yes. The proof mirrors the one given in Exercise 9a except here we let,

t = (5051...5n2)

"See J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey (1992). On Devaney’s
definition of chaos. Amer. Math. Monthly 99(4), 332-334,
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Nl

Figure 11.7: A subshift of finite type with a 3-cycle but no fixed or period 2
points.

where n is chosen in such a way that 1/2" < € and s, = 2 (which can
always be done since s contains an infinite number of 2s). This ensures

that t € Xf.

12. Is there a dense orbit for this subshift?

We will show that this subshift is transitive. Let s = (sps152...) and
t = (fot1t2...) be any two points in 2%, and let € > 0 be given. Choose
n such that 1/2" < ¢ and s, = 2. Then any point beginning with the
sequence $g8i - . .8ptoty - - .1, 18 within € of s and has an orbit which comes
within € of t.

13. How many periodic points of periods 2, 3, and 4 satisfy these rules?
Period 1: (2) 1
Period 2: (2),(12), (21) 3
Period 3:  (2),(012), (120), (201), (122), (22), (212) 7
Period 4: (2),(12),(21),(0122), (1220), (2201), (2012),
(2122), (1222), (2221), (2212) 11

True or false: There are 3 4+ 7+ 11 = 21 periodic points of period 57

14. Construct a subshift of finite type in L3 which has a period 3 point but
no fixed or period 2 points,

Consider the subshift depicted in Figure 11.7. It has but three points, all
of which are 3-cycles.

15. Discuss the dynamics of the subshift given by the directed graph in
Figure 11.8a. Are periodic points dense for this subshift? Is there a dense
orbit? How many periodic points of period n does this subshift have?

There’s not much difference between this subshift on three symbols and the
full shift on two symbols. The only difference is that strings may start with
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iig

o 1 2 0 1
(a) (b)
Figure 11.8: More subshifts of finite type.

the symbol 2 in the case of the subshift. Indeed, for s € £}, we have that
o(s) € B, and in fact, per,, ¢ is the same as before (the size of per, ¢ has
doubled, however).

16. Discuss the dynamics of the subshift given by the directed graph in
Figure 11.8b. Are periodic points dense for this subshift? Is there a dense
orbit?

Except for those strings beginning with 1, there’s a 1-1 correspondence
between elements of £4 and ¥,: just substitute 0 for every 01, and 1 for
each 21. It seems that this subshift is equivalent to the one in Exercise 15.



Chapter 12

The Role of the Critical

Orbit

Exercises

1. Compute the Schwarzian derivative for the following functions
cide if SF(x) < 0 for all .

1a) F(z) = z%; F'(z) = 2z; F"(z) = 2; and F"'(z) = 0.

sF()= 20 _ W Té@ ﬂ

Fi(z) F'(x)
3ra7®
LT,LM
__3
T 9222

<0 for all z.

In fact, for the quadratic family, Q.(z) = z% +¢,

e

22

for all c.

and de-

Exercise 1

1b) F(z) = z%; F'(z) = 32%; F"(z) = 6z; and F'"'(z) = 6.

@) 3 [F()]?
SF@) =T 2 Té_

_3[62]
2| 322
xr

<0 for all x.

E

b

3z

|

b

Le) Flx) =" P a) = 8P FMz) = 9™ :ond P (5] =27,

B F'"(z) 3 [F"(x) 2
SF@) = Ty ~ 2 Td@
_ 273 3 [9e37]?
T 3edr 2| 3e3e
.
T2
< 0.
In general, for F'(z) = e**,
2
SF(z) = -5

1d) F(z) = cos(z?® + 1); F'(z) = =2z sin(z? + 1); and
F"(z) = —422 cos(x? + 1) — 2sin(2? 4 1). Also,

F"(z) = 8z3sin(z? + 1) — 8z cos(2? + 1) — 4z cos(z? + 1)
8z3sin(z? + 1) — 12z cos(z? + 1).

SF(z)
_ m.\:mav Im MMS.AH”. 2
Fi(z) 2| Fix)

8z3sin(z? + 1) — 12z cos(z? + 1)
—2zsin(z? + 1)
3 —IAHN cos(z? + 1) — 2sin(a? + 1)]°
—2zsin(z? + 1)

2

124
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2 3 2 A¥
= Gcot(z® + 1) — 42° — 3 2z cot(z® + 1) + —
z
= 6cot(2? + 1) — 4% — W Amau cot?(z2 + 1) + 4 cot(z? + 1) + Puv
&

3
=—|4 6z cot? 1)
Aa + 622 cot®(2? + wawv

<0 for all z.

We better check our work. Let C(z) = cosz and G(z) = 2% + 1 so
that C o G(z) = cos(z? + 1). An easy computation yields

sin 3 [—cosz]?
SC(z) = -
(2) —sina wﬁlm:ﬁL
HIHIWSH_N

and

0 3 g
8G(z) =5~ ﬁm_
3
22’

5o, by the chain rule for Schwarzian derivatives,

5(C o G)(z) = SC(G(2)) - [G"(2))? + SG(z)
= AIH - W cot?(2? + Cv A4z? — ww]m
= —42® — 62?2 cot?(z? + 1) — w'Mm_

which checks.
le) F(z) = arctanz; F'(z) = (1 + 22)~!; and F"(z) = —2z(1 + 2?)"2.
F'"(z) = 82%(1 + 2%)~3 — 2(1 4+ z2)~2

2(1 + 2*)73(42? — (14 2?))
2(1 + 22)~3(322 - 1).

_F(z) 3 [F()
SFE) = Fi) LEL
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2142?3322 -1) 3 [-22(1+2?)2]°
-3 |

(1+22)~! (1+22)"
_2(3a%-1) 3[ 221"
T (1422)2 IMT+&L
_ 1222 -4 1222
T T o1+ 22
_ 2
=T oP

<0 for all .

2. Is it true that S(F + G)(z) = SF(x) + SG(z)? If so, prove it. If not,
give a counterexample.

False. Unlike ordinary differentiation, the Schwarzian derivative does not
distribute over addition. Let F(z) = G(z) = €®. Then

@

SF(x)+5G(@)=2( % TH

€
3
|M i
A w
but
e 4 oF 3 [e® 4 e 2
SIF +G)(@) = e +ef 2 T.a. +mL
3
I_.Im
=2
=-3

3. Is it true that S(F - G)(z) = SF(z)-G(z)+ F(z)- SG(z)? If so, prove
it. If not, give a counterexample.

Unfortunately, there is no product-like rule for Schwarzian derivatives. Let
F(z) = €** and G(z) = €3*. By Exercise lc, SF(z) = —2 and SG(z) =
—9/2. But

SF(z) - G(z) + F(z) - SG(z) = —2¢>* — (9/2)e**
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# —25/2
= S(F - G)(x)

since F - G(z) = e%°.

4. Is it true that S(cF)(z) = ¢SF(z) where ¢ is a constant? If so, prove
it. If not, give a counterexample.

Neither multiplicative nor additive constants have any effect on the Schwarz-
ian derivative. Since (c¢F)(") = ¢ F(") for all n, we have that

_eF"@) 3 [eF"(2)]?
SteF)(e) = S - 3 [ S
_ F(z) B m _an:...ﬁﬁv_u
Fi(z) 2| F'(2)

Also, since (F + ¢)(™) = F(") for all n,
S(F + ¢)(z) = SF(z).

5. Give an example of a function that has SF(z) > 0 for at least some
z-values.

Exercise 4i at the end of Chapter 5 provides such an example. There we
found the origin to be a weakly repelling fixed point for F(z) = —z — 23
since

|M»ﬁau\\mcv . WM._TJ.._AOVHN =12.
(This is the same as computing SF(0) = 6, by the way.) In fact,

S =L ) _ w j:?w_ ?
—6z

F'(z) Fi(z)

—6 3 )
~oS=ie 3§ ﬁlH Iwaw_
_ 6 — 3622
T (14 322)?

which is positive when
6 —3622>0
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or when

V6
_.ﬁ_ < ﬂ

This example illustrates but one of the two cases mentioned in the proof of
the Schwarzian Min-Max Principle given in the text.

6. Prove that S(1/z) = 0 and S(az + b) = 0. Conclude that SF(z) =0

where
1

Let R(z) = 1/ and L(z) = az + b. Then R'(z) = —1/2?, R"(z) = 2/23,
and R"(z) = —6/2%. Also, L'(z) = a and L(™)(z) = 0 for all n > 1.
Therefore,

—6z=% 3[223]°
i —z-2 2 —IalL
_ 6 6
Tz g?
=10
and 5
0 310

Applying the chain rule for Schwarzian derivatives,
S(Ro L)(x) = SR(L(2)) - [L'(2))? + SL(x)
=0-a240
=0.
Question: Do all totally periodic functions have zero Schwarzian deriva-
tive?
7. Compute SM(z) where

az + b

M) =T

We will show that a linear fractional transformation, or Mobius transfor-
mation, has zero Schwarzian derivative. Qur goal is to find constants k;,
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ks, and k3 such that

axr <+ & _ .ﬁ.»m

ce+d I_f+.s+~£.

Then the Mobius transformation is the composition of functions that we
have already shown to have zero Schwarzian derivative (see Exercise 6).
Hence, the Mobius transformation itself has zero Schwarzian derivative by
repeated applications of the chain rule. If € # 0, then we may write

ax+b %z+4?

EE &+m . ﬁ—w.c
Now,
ky k(x4 k3)+ ko
#_+H+.¢m| H.._..h,..m
= mJH.TQuH.le_- __muv AHM Mv
x+ ks ' '

Equating coefficients in (12.1) and (12.2), we see immediately that k; = a/c
and k3 = d/c. Also,

b
- =kyks + ko
[
= mnlﬂ + ko
cce
which implies that
ko = b_ad
¢ cc
_b—ad
=
Thus,
az+b a =24
+ LW

yna.,.m

and we are done since we have shown that the Mobius transformation is
the composition of both linear and inverse transformations.

9. Give a formula for S(F o G o H)(z) in terms of SF, SG, SH, and the
derivatives of these functions?
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Two applications of the chain rule for Schwarzian derivatives yields
S((FoG)o H)(z)

S(F o G)(H(2)) - [H'(x)]* + S(H)(z)

[SF(G o H(z))-[(G' o H)(x))? + SG(H(z))]

I

[H'(z))? + SH(z) (12.3)
= SF(Go H(z))-[(G' o H)(z) - H'(z)]?

+ SG(H(z)) - [H'(2)]® + SH(z) (12.4)
=SF(Go H(z)) [(Go H)(x)]*+ S(G o H)(z)
=S(F o(Go H))(z).

Either of (12.3) or (12.4) solves the exercise, but we have shown more, that
is, composition of functions is associative with respect to the Schwarzian
derivative.

10. Compute the Schwarzian derivatives for each of the following functions:

10c) F(z) = sin Amau+wv

We would like to apply the results of Exercise 9. To this end, we
begin by letting H(z) = sinz. Then H'(z) = cosa, H"(2) = —sinz,

H"'(z) = — cos &, and
_m.m,?vllooma 3 [=sinz]?
T cosz 2| cosz
HI-IW?EMH.

Now let E(z) = e*. But E is its own derivative, and so

sEEy =23 _W_M

e? 2 1e*

3
=1-3
1

2
For Q(z) = 2 + 2, we have Q'(z) = 2z, Q"(z) = 2, Q"'(z) = 0, and

SQ(z) =0- w mﬂ
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e h ) which is practically the same answer obtained in Exercise 1d. At any
222 rate, the last step is to let R(z) = 1/z. By Exercise 6,
Note that E = v 42
e (R T T g S(Ro C0Q)(z) = SR(C 0 Q) - [(C o QY @) + S(C 0 Q)(e)
HoFEoQ(z) = sin Amanﬁv : = 5(C o Q)(z)
To apply Exercise 9, we must compute since SR = 0.
S(E 0 Q)(z) = SE(Q()) - [Q'()]* + SQ(z)
_ 1, 3
=3l g
3

= —9222 — %.

Finally, since (E o Q)(z) = 2ze® 2, we see that

S(H o EoQ)(z)

SH(E 0 Q(z)) - [(E 0 Q) (z)]* + S(E 0 Q)(2)

=- h_. + W tan® Amau+uvv Tam%aui_ - hwﬂu + %&mv

<0 for all z.

10d) F(2) = o=y
Let C(z) = cosz. By Exercise 1d,
SC(z) = —-1- W cot?(z).
Now let Q(z) = 2%—2. By Exercise la and the fact that S(F4-c) = SF
(which was shown in Exercise 4), we see that
3

In fact, SQc(z) = —3/(22?) for all c. Now consider C o Q. By the
chain rule for Schwarzian derivatives,

S(CoQ)(x) = SC(Q(2)) - [Q'(x))* + 5Q(=)

(4 3 2 2 2_ 3
IA 1 w.oon. (z wvvma 922

3
g 2 2¢,..2
= — A&Hu + 6z“ cot H.&. = Mu %v



Chapter 13

Newton’s Method

Exercises

1. Use graphical analysis to completely describe all orbits of the associated
Newton iteration function for F.

la) F(z)=4—-2z = F'(z)=-2 = F'"(z)=0.
NF(z)=z— F(z)/F'(z)=2-(4-22)/(-2)=z— (2 —-2) = 2.

All orbits are eventually fixed on the fixed point 2 after one iteration.

See Figure 13.1.
1b) F(z) = 2% -2z = Fl(z)=2z-2 => F"(z)=2.

F(z)
NF(z) =z —
D=2 T
— z? - 22
- 9z — 2
_ 222 -2z — (2% — 22)
- 2 — 2
Hm
Hwﬂlw.

All orbits, except that of 1, converge on a root. The basins are appar-
ent from the graph (see Figure 13.2).
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/’v.

TN

NF

4.

Figure 13.1: The Newton LF. for F((z) = 4 — 2z is constant.

NF

NF

Figure 13.2: The Newton LF. for F(z) = 2% — 2z is a typical example.
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’ F
NE
Figure 13.3: The Newton LF. for F'(z) = /3 is linear. Figure 13.4: The Newton L.F. for F(z) = z* + z2.
le) F(z) = 23 = F'(z) = 22713 = F'(z) = 2g=4/3, _ 42t + 22 — (2% +2?)
2% + 22
22/3 3P4z
2~n_ﬁ3uall|m.ﬁ|iw T 422427
3
=z —3z/2 Curiously, the graph of NF' depicted in Figure 13.4 is almost linear,
= —z/2. Indeed,
33 +z 3x+l 3
P 3 . . . . . = — — as r — 00
Observe in Figure 13.3 that F is not differentiable at the origin, yet 42242 44 %m 4 !

NF has an attracting fixed point there. In fact, all orbits are attracted

to 0, but not quadratically. and since

This example is typical of an entire class of functions, namely, Fa(z) = (NF)(z) = F(z)F"(z)

x? with 1/2 < d < 1. In each case, F is not differentiable at the origin, S [F'(z)]?

yet Newton’s wdm.&om converges ::9.,“:._% with slope (d — C.\a_. Mop. 22(z? 4 1)(1222 + 2)
d > 1, the derivative exists (but vanishes) and the Newton iteration o 3

4z2(222 4+ 1)

(2? +1)(62% + 1)
1d) F(z) = 2% + 22 = 2%(2 +1). =Tyl

F'(z) = 423 + 22 = 22(22% + 1).
F'(2) = 1222 4 2.

function still converges.

we have that (NF)'(0) = (1)(1)/2 = 1/2. Recall, however, that if p is
a root, of multiplicity m, then (NF')'(p) = (m—1)/m, and since m = 2

iy g2 in this case, the previous calculation is verified.
'+
NF(z) =2 - g5 5= le) F(z) = 1/z =2~! = F/(z)=—2"2 = F"(z) = 2z73. But F has
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(a) The Newton LF. for F(x) = 1/« is (b) The Newton LF. for F(z) =1/ -1
linear. is a parabola.

Figure 13.5: Two members of the family F'(z) = 1/z + c.

no roots, and

Pt

NF(z)

xr —

—g—2
T4z
=2,

Hence, all orbits, except the orbit of 0, diverge. (See Figure 13.5a.)
If) F(z) =1/z — 1= (1 — z)/z. (Note that F'(z) vanishes when = = 1.)

F'(z) = -1/2% = —2~2.

PUa)y= 223 =253,

—z-2
2

NF(z)==z —
=r+x—x

=2z —2? = 2(2 — z).

In Figure 13.5b, graphical analysis suggests that
{z|(NF)" (z) = lasn—oo}={z|0<z <2}
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1g) F(z) = z/v1+ 2% = z(1 + 2?)~1/2,

By the product rule,
Fl(z)=(1+ HJL\S + IWVC -} aﬁlaﬁﬁwav
= (1+2%)7%?[(1+ 2%) - 2?]
= (1+23)~3%/2,

The Newton iteration function for F' is
aAH = HJI:.M
(1+z2)-32
=z —2(l+2%

= |Hw

NF(z) ==

and so DNF(z) = —32%. By inspection of Figure 13.6, we see that
(NF)?(1) = 1, and so 1 is a period 2 point for NF. But the corre-
sponding 2-cycle is repelling since

D(NF)*(1) = DNF(1) - DNF(-1)
~31? ~(~3)(~1)
=9.

From the graph, it appears that the open interval (—1,1) is the im-
mediate basin of 0. Indeed, observe that
NF(z) = —2®
(NF)(z) = ~(—2°)® = &°
(NF(z) = ~(=2%)* = —2*

(NF)"(2) = (-1)"2®"
and [(NF)*(z)j = |(—1)*22"| = |2®"| — 0 as n — oo provided |z] < 1.

1h) F(z) = ze® = F'(z) = e® + ze” = e” 4+ F(z). Consequently,

ze®

et + ze®
ze® + z2e® — ze®
et + ze*

z?e” x

er 4 xe® 14a

r —

NF(z)

2
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Figure 13.6: The Newton LF. for F(z) = z/+v/1+ z? is a simple cubic

polynomial.

The reader should verify the following observations taken from Fig-
ure 13.7, some of which are trivial:

1. F has a minimum at z = —1.

2. x = —1 is an asymptote for NF',

3. F(z) = 07 as ¢ — —oo.

4. NF(z) — z as ¢ — —oo0.

5. NF(z) — « as ¢ — +oo0.

6. For —oo < 29 < —1, (NF)*(z() — —o0 as n — oo.
7. For —1 < ¢ < 0o, (NF)"(2z0) — 0 as n — oo.

2. What happens when Newton’s method is applied to R(z) = /=7
For R(z) = \/z, we have R'(z) = 1/(2+/z). Thus,

_ Ve
»PQ&AHV = — §

=z— 22
=—z.
See Figure 13.8. Now we know that per, NR = R since (NR)*(z) = z for

all 2, and so Newton’s method fails miserably in this case. Why? Most
likely because R'(0) does not exist.

Exercise 3

NF

NE

a

Figure 13.7: The Newton L.F. for F(x) = ze®.

NF

Figure 13.8: The Newton LF. for R(x) = \/z is linear.

140
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3. Find all fixed points for the associated Newton iteration function for
F(z) = z/(x — 1)™ when m = 1,2,3,.... Which are attracting and which
are repelling?

We write F'(z) = z(z — 1)™™ and compute via the product rule
Flle)=(z= 1) —ma(x - 1)"™"!
=(z-1)"""Yz-1- ma)
= (2(1=m) - 1)/(z - 1)™*!

which vanishes when z(1 —m) — 1 = 0 or when & = 1/(1 — m), provided
m # 1. Likewise,

m_:ﬁﬁv =(1- ._,:XH. — Hv|n3+: —(m+1)(z(1 - .:av _ Sﬁa _ Clﬁ3+5
= (= 1)1 - m)(z — 1) = (m+ 1)(z(1 —m) — 1))
=(z— CJ?;&AHT:N —m) + 2m)

which we’ll use later in this exercise. Now the Newton iteration function
for F is

NF(z) =z - %MHW
e zf(z—-1)™
(z(1=m)—1)/(z — 1)m+!
— .
z(l—m)—1
_z(z(l=m)—1)—x(z—1)
- z(l—m)—1
ma?
= .T...Aj. (13.1)

Setting Equation (13.1) equal to « and solving, we find that fix NF = {0, 1}.
Note carefully that these fized points are independent of m. (See also
Figures 13.9 and 13.10.) But are they attracting, superattracting, repelling,
or what? To answer this question, we compute

F(z)F"(x)
(F'(2))?

» ﬂﬁaniav._-u_d
(e=1)m™  (z—-1)m+2

()

DNF(z) =

(@—1)m+T
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NF

Figure 13.9: The Newton LF. for Fi(z) = 2/(x — 1) is the parabola z + 22,

_ z?(m? — m) + 2mz
R = e (13.2)

Thus, DNF(0) = 0 and

m? —m+2m

b?i:ntisvwiwﬁlavi
_ m? 4+ m
T (1-m)((1-m)—-2+1)
m-+1
“m-1

which is greater than unity for all m > 1. So the latter fixed point is always
repelling.

Now it appears as though NI has fwoe critical points when m = 3 but
only a single such point for m = 2 (see Figure 13.10). Let’s examine this
conjecture more closely. Setting the derivative in (13.2) equal to 0, we have

maz(z(m— 1) + 2)
(z(1 —m)—1)2
= mz(z(m—-1)+2)=0
= =0 or z=2/(1-m),

=0

and so indeed, there are two critical points for all m > 1. But why isn’t
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Aa.-vg"m

(b)m=23

Figure 13.10: Two more members of the family F(z) = z/(z — 1)™.

the second one visible in Figure 13.10a? Well, for 22 = 2/(1 — m), we have

4m

?QHAHV — |Q_

and so for m = 2, the critical point is at (—2, —8). But this point is beyond
the scope of the graph in Figure 13.10a, and sure encugh, zooming out we
get the more complete picture seen in Figure 13.11.

4. Consider the Newton iteration function for F(z) = secz. What are
the fixed points for NF'? Does this contradict the Newton Fixed Point
Theorem? Why or why not?

We begin with the following calculations:

F(z) = secx; F'(z) = secxsec’z + secz tan z tanz

F'(z) = secztanz; = sec z(sec? z + tan? z).

Hence,

F(z)

NF(z)=a — @)
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/)

Figure 13.11: A distant view of F(z) = z/(z — 1)%.

sec x
=y - —
secx tanx

=gz —cotz (13.3)

has fixed points at the zeros of the cotangent function, that is, at 2 = kx /2
for nonzero integers k. This result is unexpected however, since I itself has
no zeros whatsoever. But observe that these are precisely those values for
which secant is undefined. Moreover,

F(z)F"(x)
(F'(z))?
sec? z(sec? ¢ + tan? z)
(sec x tan x)?

(NFY (=) =

=1+4csc’z

which may also be obtained by direct differentiation of (13.3). Now, cose-
cant obtains relative optima at the fixed points of NF' (or the zeros of F').
In fact, csc(kw/2) = 1 for nonzero integers k. So, (NF)(kn/2) =2 > 1,
and so these fixed points are repelling under iteration of NF.

5. Suppose P and @ are polynomials and let F(z) = P(2)/Q(x). What
can be said about the fixed points of the associated Newton iteration func-
tion for 7 Which fixed points are attracting and which are repelling?



145 CHAPTER 13. NEWTON’S METHOD

If F(z) = P(z)/Q(z), then
_ Q(z)P'(z) — Q'(z)P(z)

Fe) Q@)
and so
NF(z)=z— M_Mw
L P(2)/Q(z)
(Q(z)P'(z) — Q'(z)P(x))/(Q())?
. P(2)Q()

"~ Q@)P'(z) - Q(2)P(a)’

The fixed points for NF' are found by solving

P
Q(z)P'(z) — Q' (z)P(z)

=T

&£

which implies that

P(z)Q(z) = 0.
In other words, we have found that fix NF = {z | P(2)@Q(z) =0}.
‘Throughout the rest of this exercise, define A;(z) = Q(z)P'(z)—Q'(z)P(z)
and Az(z) = Q(z)P"(2)—Q"(x) P(x) for convenience. Now it can be shown

that Q)As(z) - 2Q(2)A(x)
atll i T)ane) — T)aglE
i Q@)
and so
oy Fl2)F"(x)
NEYE®) = Ty
P(z)  Q(x)Ax(z)-2Q'(x)A(z)
_ Q=) (Q(=))®
Ad(x)
(Q=))*
_ P(2)Q(z)As(z) — 2P(2)Q'(z) A1 ()
= ATz) ) (13.4)
But when P(2)Q(z) = 0, Equation (13.4) reduces to
o) _ “2PE@Q()A(z)
~2P(2)Q(2)

D;av
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We may sumimarize all of these results as follows. For an arbitrary rational
function F(z) = P(2)/Q(z), we have that fix NF = {z | P(z)Q(z) = 0},
each of which is attracting if and only if

7 —2P(2)Q'(z)
QSEaT@AaE&

Inverting both sides of (13.5) and simplifying, we have the equivalent con-

dition
_H _ Q@)P(2)
P(z)Q'(z)

6. A bifurcation. Consider the family of functions F,(z) = 2+ pu. Clearly,
Fu(z) = 0 has two roots when p < 0, one root when g = 0, and no real
roots when g > 0. Your goal in these exercises is to investigate how the
dynamics of the associated Newton iteration function changes as p changes.

<1 (13.5)

> 2.

6a) Sketch the graphs of the associated Newton iteration function NF), in
the three cases u < 0, g =0, and p > 0.

We handle the simplest case first. When g =0,

HM &

H
Eﬁoﬁﬁulﬁlm =z-3=3.
See Figure 13.12 for the case g = 0. In general,

_2+n
2z
2?2 —pu

2z

zmﬂtﬁ.ﬁv ==z

Typical members of this family of I.F.s are shown in Figure 13.13.

6b) Use graphical analysis to explain the dynamics of NF, when g < 0
and p = 0.
The dynamics of NFy are simple: the origin attracts all orbits, but not
quadratically. On the other hand, the Newton LF. for F}, for p < 0
is more interesting. The orbits of all positive numbers quadratically
converge to the positive fixed point, whereas the orbits of negative
numbers converge to the negative fixed point. See the graphical anal-
yses depicted in Figure 13.14.
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NE,

Figure 13.12: The Newton iteration function for F|(z) = 2? is linear.

NF

NFE
NF

(a) p<0 (B)pr>0

Figure 13.13: Typical members of the family Fj(z) = 22 + g and their
associated Newton iteration functions.
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(a)p=0 (b)u<o
Figure 13.14: Dynamics of NF),.

6¢) Prove that, if u > 0, the Newton iteration function for  — x? + 1 is

conjugate to the Newton iteration function for F, via the conjugacy
H(z) = \/mz. Conclude that the Newton iteration function is chaotic
for p > 0.

As suggested, we let g > 0 and show that

commutes. This follows since
z
HoNF(z)=H Aﬂv = ,\mﬂ

and

NF, 0 H(z) = NF,(\/p z)
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_—u._ h

s

7

Figure 13.15: Chaotic dynamics of NF), for p > 0.

_ ez —p
2/px
p(e?-1)

PN
21

z
=R
6d) Find an analogous conjugacy when p < 0.
We will show that

NF_,
R———R

H H
vV NF,
R——=R
commutes, where H(z) = \/—px. Again, this is so because

2241 22+ 1
mozﬁzésmﬁﬂa v:,\ﬂ ok

and

NFy 0 H(z) = NF,(/=jiz)
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(V=pz)’—n
N ETE
—u(z? + 1)

2/—pe

22 41
= .._____I_t |MHJ|‘

7. A more complicated bifurcation. Consider the family of functions given
by Gu(z) = 2%(z — 1) + p.
7a) Sketch the graphs of the Newton iteration function NG, in the three
cases i < 0, g =0, and g > 0.

We have that G,(z) = z(3z — 2) and G/j(z) = 6z — 2, and in fact, all
of G’s derivatives are independent of y. Now,

Xz —1)+p

NG, () =2z - G-
_#?Bz—-2)—=2*(x—1)—p
N z(3z — 2)
2Rz —1)—p
T z2(3z-2)

In particular, when p = 0,
z(2z -1

zﬁcﬁav = |.‘Mw.ﬁ. =0 v

which is shown in Figure 13.16. Other representatives of this family
of I.F.s are shown in Figure 13.17.

Let’s also compute
Gu(2)Gl(=)
(Gu(=))?
(£%(z = 1) + )62~ 2)
(2(3z — 2))?

(NG,) (z) =

(13.6)

which we’ll use below.

7b) Use graphical analysis to discuss the fate of all orbits in case p = 0.
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NG,

Figure 13.16: The Newton iteration function for Go(z) = z%(z — 1).

NG

\\\_

(a)p>0 (b) p<o0

Figure 13.17: Typical members of the family G,(z) = z?(z — 1) + p and

their associated Newton iteration functions.
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e
ol

Figure 13.18: Dynamics of NGo(z) = (z(2z — 1))/(3z — 2).

It’s clear from Figure 13.16 that fix NGy = {0, 1}. (These fixed points
are most easily obtained as the zeros of (Gy.) Now the derivative of
NGy may be computed directly from (13.6):
s (EmT)E#~3)

:/_«ﬁucv A.H.v = Qw& = wvu s
Thus, & = 1 is superattracting since (NGy)'(1) = 0, but = 0 is not
since (NGy)'(0) = 1/2. This is because 0 is a root of multiplicity two
of Go(z) = 0.
It can be seen from Figure 13.18 that the orbits of all points to the
right of the vertical asymptote converge (quadratically) to & = 1, while
those to the left of the asymptote converge (linearly) to = 0. Since
x = 2/3 has no preimage, these statements are true without exception.

7c) Show that NG, has exactly one critical point which is not fixed for all

but one p-value.

The critical points of NG, are precisely the zeros of G, as well as the
zeros of its second derivative. The latter gives rise to the critical point
x = 1/3 which is clearly independent of g. The remaining critical
points, the zeros of (7, are solutions to

-z’ +u=0, (13.7)

a nontrivial cubic equation. By Descartes’ rule of signs, it’s clear that



153 CHAPTER 13. NEWTON’S METHOD

(13.7) has but a single real root, but a closed form solution is difficult.
Maple claims that
T = H\w + wy + we
where
wy = (1/27 — p/2 — ws/18)!/3,
wy = (1/27 — p/2 + ws/18)*/3,

wz = \/3p(27p — 4).

Note when ¢ = 0, w3 vanishes, and so w; = wy = 1/3. Thus the
root in this case is unity, which agrees with that obtained by a direct
manipulation of (13.7).

and

8. Consider the function G(z) = 2* — 2% — 11/36.

8a) Compute the inflection points of G. Show that they are critical points
for the associated Newton function.

Observe that & is an even function with two real roots and two com-
plex conjugate roots. (See Figure 13.19a.) The latter are investigated
in Chapter ?7 of the text; the former are calculated below. Now the
derivative of G is G'(z) = 423 — 22, and so

zt — 2% —11/36
2(2?-1)
224222 — 1) — 2* + 22 + 11/36
2z(222 - 1)
32— 22 +11/36
2x(22% — 1)
We remark that NG is an odd function. Next we compute G"(z) =

122? — 2 (another even function) which has zeros at z = +1//6. From
this it follows that

NG(z)

xr —

(2% — 2? — 11/36)(122? — 2)
422(222 — 1)2

(NG)'(z) =

which obviously has critical points at 4+1/4/6. Indeed, the zeros of G
are always critical points for NG since

G(z)G"(z)

TZ«QV___AHL — !ﬂquﬁﬁvuu .
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NG

(a) Graph of G(z) = z* — % — 11/36.

Figure 13.19: A quartic polynomial and its associated Newton LF.

(b) Dynamics of NG.

Note that the zeros of G are also critical points for NG, and in this
case they are roots of

z*—2?-11/36=0
which, by the quadratic formula, satisfy

i _ 326

Now only two of these are real (let’s denote them by py and p_), and
are given by

x

3+2/5
P =\ ——.

8b) Prove that these two points lie on a 2-cycle.
A single calculation takes care of both cases:
3(£1/v6)* — (£1/v/6)* +11/36
2(£1/V6)(2(£1/v6)2 — 1)
3(1/36) — 1/6+ 11/36
2A£1/v/6)(1/3— 1)

NG(+1/V6) =
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8/36
(4/3)(F1/V6)
1/6
F1/V6
Fv6/6 = ¥1/V6.

il

8c) What can you say about the convergence of Newton’s method for this
function?

Graphical analysis (see Figure 13.19b) suggests that for v/2/2 < 24 <
00, (NG)"(z0) — p4 as n — oo. Similarly, for —co < 2o < —v/2/2,
(NG)"(®9) — p- as n — oco. But what happens in the interval
—V2/2 < o < V2/2? Since (NG)'(£1/V6) = 0, this 2-cycle is
superattracting and so Newton’s method fails to converge for some
xo, and instead oscillates back and forth in the vicinity of 1/ V6 and
—1/+/6. The immediate basin of this 2-cycle is pretty small however,
since experiments indicate that the orbits of all 2y outside the pair of
intervals 0.29 < |z¢| < 0.51 converge.

9. Use calculus to sketch the graph of the Newton iteration function for
F(2) = z(2? + 1). For which z-values does this iteration converge to a
root?

Observe that the origin is a zero for I, and in fact, it’s the only real root of
F(z) = 0. Now we also have that F’(z) = 32? + 1 and F"(z) = 6z. Thus,

_ e(e®+1) =3z’ +1)—a(z?+1)  22°
HEGl=ms 3224+1 3z2+1 T 32241

and
(NFY(2) = F(z)F"(z) _ z(z?+1)-6z _ 6z%(z% + C.
F@)? ~ @@ I @1
Since this derivative is always positive, the Newton function never oscillates
(can it ever?). Indeed, we have that (NF')'(0) = 0 and so the origin is
superattracting. See Figure 13.20 for the graphs of F and NF, and some
typical orbits.

10. Prove that the critical points of the Newton iteration function associ-
ated with
F(z) = (22 = 1)(z* 4+ A)
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NF,

Figure 13.20: The Newton iteration function for F(z) = (2% + 1) has a
globally attracting fixed point at the origin.

lie on a 2-cycle when A = (29 —+/720)/11.

First, some preliminary calculations:

F'"(z) =222+ A - 1) + 22(42)
=42 + 2(A — 1) + 822
=122? +2(4 - 1).

F(z) = (2% — 1)(2® + A);
F'(z) = (2z)(a® + 4) + (2? — 1)(22)
=22(22% + A-1);
Now the Newton iteration function for F is
(2 = D(a? + 4)
20(222+ A-1)
222(22? + A — 1) — (22 — 1)(2? + A)
20(222+ A—1)
4t + (A —1)22% — (2% — 2 + Az? — A)
22(222 + A — 1)
3zt +(A-1D2?+ A
2¢(222+ A—1)

NF(z)==z

which agrees with the equation given on p. 170 of the text. Since

3(=2)+(A-1)(-2)*+ 4
NE=2) = = ae=r +4-1)
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. wﬂ»+~\~l5ﬁu+l] NF(z)
T T T (222 A1) i

we have that NF is an odd function and may therefore solve NF(z) = —a

to find the 2-cycles for NF':

et +(A-1)z2+ A
NF@) = s a-1) =%
N 3z +(A-1Da?+ A+ 223222+ A - 1) 5
2¢(222+ A-1) B

=72t +3(A-1)22+ A= 0. (13.8)

Recall that the critical points of NF are either zeros of F or F”. In par-
ticular, the latter are roots of 1222 + 2(A4 — 1) = 0 which has the pair of
solutions

PR | (13.9)
6
Substituting these values into (13.8), we obtain
-4\ -4\
T/ —=] +34-1)[+/—=] +4=0
6 6
1-A\? 1—A
uqm[ﬂv Lwcr\:m%vfg|o
7 i )
Uﬁw|mv:|& +A=0
—11 58 )

= 11-584+114%=0
which, by the quadratic equation, has solutions

58 +v/58% — 4. 112
22
29 £ /720
11 .

Ar =

Of these two roots, only A_ produces a real value when plugged into (13.9).
See Figure 13.21 for the corresponding Newton iteration functions. Notice
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(a) A = (29 +/720)/11 (b) A = (29 — /720)/11

Figure 13.21: A pair of Newton L.F.s for F(2) = (2% — 1)(2% + A).

the striking similarity between Figure 13.21b and Figure 13.19b—there’s a
conjugacy lurking about!

11. Prove that the equation F(z) = 0 has a root of multiplicity m at xq if
and only if F(z) may be written in the form

F(z) = (z — 20)"G(x)

where G does not vanish at z¢. Hint: Use the Taylor expansion of ¥ about
zg.

The hint will be useful going in one direction only. By definition, bg,m.._?&
vanishes for § = 0,1,...,m — 1, whereas D™ F(z,) does not. Now by
Taylor’s theorem, there exists a £ (which depends on z) between z and
such that

(z — zo)™*!

D™ E DL p
P X ©

(20) i
(@ 20)™ + fnF 1)

. (D"F(zo) D™1F
= (z — zo) A SM o) + G _wm_v (z — aovv
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where G(zg) = D™ F(zp)/m! does not vanish.

Going the other way, suppose F(z) = (x — 2¢)™G(2) with G(zo) # 0. By
Leibniz’s rule,

D"F(z) = M.,U AJ D¥ (z — 20)™ D" G(z).

j=o M

But for n = 0,1,...,m — 1, we have that D" F(zg) = 0 since

j-1
Di(z — mo)™ = (2 — z0)™ [J (k- )
i=0
vanishes at £ = zg for j = 0,1,...,m — 1. On the other hand, D™(z —
)= Eﬁmu?y —1i) = m!, and so D™F(zg) = m!G(zo) which doesn’t

vanish by hypothesis.

12. Let G(z) = exp(—1/2?) if # # 0 and set G(0) = 0. Compute the
Newton iteration function for G. What can be said about the fixed point
of NG? Why does this occur?

Straightforward calculation yields

_ 2exp(=1/2?) _ 2G(=z)

G'(x) = 25 23
and
- 223G"(z) — 622G (=
o7(e) = 20 e) - 657016)
_ 4G(z) — 62%G(=)
= e
G2
= G(z) h_u% (13.10)
Thus,
G(z z?
NG(z) =z — m%_av_ =i

Note that & = 0 is the only fixed point of NG, and

" . 32
(NG)(z)=1- -
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NG

Figure 13.22: The Newton LF. of G(z) = exp(—1/z?) has a weakly attract-
ing fixed point at the origin.

by direct calculation. But (NG)'(0) = 1 and so we must apply the results of
Chapter 5. To this end, note that (NG)"”(0) = 0 and (NG)"'(0) = -3 < 0.
Hence, by Theorem 5.2, the origin is weakly attracting. But why does this
happen?

It should be clear from the graph in Figure 13.22 that G’(0) = 0. Indeed,
the graph appears very flat in the vicinity of the origin. In fact, D"G(0) = 0
for all n, an amazing fact which we now show analytically.

By definition,

G'(0) = Jim E

=lim ——
Py hexp(1/h?)
= 1
= «_l_ﬁ.o ey where t = 1/h
. t
= lim ——

=% exp(®)
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which has the indeterminate form 2. By L’Hdpital’s rule,

L 1
im ———— = lim ——— =
___[_mwo exp(t?) 100 9 exp(t?) 0

which shows that G’(0) = 0. A similar calculation shows that G"(0) = 0.
That D"G(0) vanishes for all n follows by induction, for D"G(z) is a finite

sum of terms of the form
kG(z)

Ha
each of which vanishes as x — 0. Indeed,
Ha

D m@v = D(kz~™G())

= kz~™G'(z) — Ewalmﬁtuﬂﬁhv
kG'(2) mkG(z)

- m pm+l
_ 2kG(z) mkG(z)
T~ Tpm+3 T pmil

For example, when £ = 2 and m = 3,

i AMQE v _4G(x) _ 6G()

a3 z6 xl

which agrees with (13.10) above.

We leave the details of this proof to the interested reader. The upshot of
all this is that the origin is a zero of infinite multiplicity, and so G is not
analytic at the origin. This explains why it’s only weakly attracting for

NG.

The reader may alsc enjoy verifying the following facts:

1. G has inflection points at 2 = ++/6/3.

2. lim,_o G(z) = 0, and hence our choice of G(0) is justified.
3. limg . 400 G(z) = 1.

4. G"(0) = 0, by arguments similar to the above.
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