Chapter 14

Fractals

Exercises

1. Without using the computer, predict the structure of the attractor
generated by the iterated function system with contraction factor 4 and

fixed points p;:

la) B=1/3; po = (), p1 = (5), P2 = (})-
The given data correspond to the iterated function system

()-4()
Q) o
)=+ )

which gives rise to a type of Sierpinski triangle which, quite surpris-
ingly, has fractal dimension D = log3/log3 = 1. The attractor of this
IFS is

[ e Ty B O

{(z,y) EKxK|y<1l-—=z}

where K is the Cantor middle-thirds set. See Figure 14.1 for the first
two iterations of (14.1).

1b) B=1/2po= (), 11 = ().
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Figure 14.1: Two iterations of Equation 14.1.

The corresponding iterated function system is
x 1/
n(;)=1(;)
“\y 2\y
x 1/z-1 1
a(;)=3(3")+ )

Note that the unit interval is fixed with respect to this transformation
and, hence, is its attractor with fractal dimension D = log2/log2 = 1

(as expected).

Le) B=1/3; po = (), 1 = (o), p2 = (3), ps = (})-
The attractor of the iterated function system

#(;)=3(;)
n(;)=3("
4(5)=3(,2)+ ()
#(;)=3(21)+()

is precisely K x K, and its fractal dimension is D = log4/log 3 which
is exactly twice that of K. What do you think the fractal dimension
of the three-dimensional analogue of the Cantor set K will be?

ol = o] = o] =

& = |
[
S
+
L T Y
TR

2. Give explicitly the iterated function system that generates the Cantor
middle-fifths set. This set is obtained by the same process that generated
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0 + 3 1

Figure 14.2: The first stage in the construction of the Cantor middle-fifths
set.

the Cantor middle-thirds set, except that the middle fifth of each interval
is removed at each stage. What is the fractal dimension of this set?

Recall that the Cantor middle-thirds set K is generated either by the planar
IFS
x 1/
#(;)=1()
! @v 3\y
T 1fz—1 1
A =
()=3(7)+0)
or the one-dimensional iterated function system

1
kﬁomﬂu = MH
2

1
A(z) = w&._- 3

Now the Cantor middle-fifths set is generated by removing the middle fifth
of any remaining closed interval. In particular, the open interval (2/5,3/5)
is removed during the first stage of the construction (see Fig. 14.2). This
gives rise to the iterated function system

Il

2
Ao(z) = 52

2 3
.NA;H.U = W&uﬁj W

()
(5)+6)

which also has the planar form
() =
Y
()
)

S < T X

Exercise 6 166

Finally, the Cantor middle-fifths set has fractal dimension

log 2
D=—— =0.7564T...
Tog5/2 0.756

which is greater than the fractal dimension of the Cantor middle-thirds set
since less is being taken away at each stage of the construction.

The following seven exercises deal with the Sierpinski right triangle (see
Figure 14.3) generated by the following contractions:

“()-30)
() e
o()=36)+ )

4. What are the fixed points for Ag, A;, and A5?
The fixed points are po = (J), p1 = (}), and ps = (9), respectively.

5. Show that A7 (}°) converges to (p).

Since the y-coordinate is divided by 2 each iteration, it clearly goes to 0.
Let’s look at the z-coordinate more closely which boils down to iterating
the linear function
z+1
F(z) = T

This function has a fixed point at = 1, and of course this fixed point is
attracting since F'(z) = 1/2.

Another approach involves showing p; is an attracting fixed point using the
Jacobian of A;, but we haven’t developed the appropriate machinery to do
this.!

6. To which point does the sequence

(4(3)

1See Encounters with Chaos by D. Gulick (McGraw-Hill, 1992) or R.L. Devaney's An
Introduction to Chaotic Dynamical Systems (Second Edition, Addison-Wesley, 1989).
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Figure 14.3: Three iterations of Equation 14.2.

Exercise 8

&g
Yo

converge?
)= ()
fa—

Since
A m

as n — 0o, it must be true that

\»MA»A&A
& Yo

as n — 00.

Since
Lo
\ﬁ—ﬂ
ohgv

we have that
@)

n
Yo

\A._.h_u

n) = 4(0) = (17

168

0

_\wv
=3()+ (1)

= (72)

7. Show that the sequence A, Amm AM“ v converges to Anmmv.

-5 (s0)
T2 \y )’

Il
Ca

P e
55

on
zg—2"
A i v
0
T4
ﬂnlwawwus.—._
— A an+1 v
FhgT

The y-coordinate clearly goes to 0, but what about the z-coordinate? We

see that

A g

as required.

o/ =241 1
Im

zg — 2™ + antl .
= lim 1

—00



169 CHAPTER 14. FRACTALS

8. Show that the sequence

oo ()

accumulates on the two points

Apmwv and Ammmv.
eay) =5 (" )+ (o)

First compute

= [ “\wkv (14.3)
and then
e a(3) =3 (z(°, )+ )
1w+ 1)2
B mm y/2 v
” m? .H\MEV. (14.4)

Calculating the fixed points of the z-coordinates (the y-coordinates obvi-
ously go to zero) in (14.3) and (14.4), one obtains the desired results. Thus

osor ()= ()

and (Ago Ay)" @U - Q%V

as n — 00, It’s interesting to note that these accumulation points are the
period 2 points of the doubling map.

Exercise 10

9. On which points does the sequence

o ()
accumulate?
Since
(420 é@ — 4y ? )
-
and

rom(5) = a((, 7 /2)

- (G )

we solve the equations

3

(6+21) = )
mi (i) = )

R
w ()- ()

10. Show that the sequence

&

to obtain

respectively.

(Az 0 A; 0 Ag)" m&v

Yo

170
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accumulates on the points

(i) () = )

As in the preceding two problems, we calculate

e eraf§) =t (7)

= (Graraya)

I?+S\m
= (G ors) 149

and

& 845) ? o)

_ A (2/2+2)/4 v
((y+1)/2)/4

Iﬁa._.&\m
& A@ & :\mv (14.6)

(A; 0 Ag o A,) @v

and

Qoo&o}v@v w E%&A? M\w\mv
(G v 2ya)
(z+1)/8

= oi s\mv _ (14.7)

and then compute the fixed point in each of (14.5-14.7). It’s interesting to
note that 1/7, 2/7, and 4/7 constitute a 3-cycle for the doubling map.

11. Consider the fractal generated by replacing a line segment with the
smaller segments shown in Figure 14.4, where each new segment is exactly
one-third as long as the original. Draw carefully the next two iterations
of this process. What are the fractal and topological dimensions of the
resulting fractal?
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Figure 14.4: A Koch-like transformation.

Three iterations of the transformation in Fig. 14.4 give the geometric struc-
tures in Fig. 14.5. Note that the third iterate has 5 - 25 = 125 edges. The
fourth iterate shown in Fig. 14.6 has 625 edges! The fractal dimension of
this attractor is D = log5/log3 =~ 1.465. It has topological dimension 1
since any disk intersects the curve at a set of discrete points with topological
dimension 0.

14. Show that the rational numbers form a subset of the real line that has
topological dimension 0. What is the topological dimension of the set of
irrationals?

A set has topological dimension 0 if every point has arbitrarily small neigh-
borhoods whose boundaries do not intersect the set. The rationals are such
a set since the boundary of a disk with irrational radius fails to intersect
the rationals (the sum of a rational and an irrational is irrational).

It’s also true that the irrationals have topological dimension 0. To see this,
suppose we had the following lemmas:

Lemma 14.1 AC X = {—dimA <t{—-dimX.

Lemma 14.2 For A C R®, t—dimA = n <= A conteins a non-empty
open subset of R™.

Then by Lemma 14.1, the irrationals have {—dim < 1. But by Lemma 14.2
the irrationals can not have t—dim = 1 since they contain no open subset.
Therefore, the —dim of the irrationals is zero.

15. Compute exactly the area of the Koch snowflake.

Koch’s snowflake may be enclosed within a rectangle having length 1 and
width 2v/3/3, and hence its area is no larger than 21/3/3 square units.

Let Ag be the area of an equilateral triangle with sides of length 1. Since
the height of this triangle is (\w\w units, we have that 4y = ;\wk square
units. Now at the kth step of the Koch process, 3-4%~! equilateral triangles
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Figure 14.5: Three iterations of a Koch-like curve.

each with area 1/3/ (4- mﬁ.v are added to the snowflake. The combined area
of these triangles is

3.451

9

b 16

V3 4 3 33 [4\F
4.3% 4 4.9 .

Thus, the area of all these triangles is

g gio1_ V3 33K (4
mmﬁ 4.32% HOM” 9
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Figure 14.6: The fourth iterate of the transformation in Fig. 14.4.

_ 33
Toag?

and so the area of the Koch snowflake is

- V3 33 _ 238
A=Ag+Y Ap=—=40 =200
&~ 472 75

square units.

17. Consider the standard Pascal’s triangle generated by binomial coeffi-
cients. In this triangle, replace each odd number by a black dot and each
even number by a white dot. Describe the figure that results.

See Figure 14.7 which resembles a Sierpinski triangle.

18. Rework Exercise 17, this time replacing each number by a black dot if
it is congruent to 1 mod 3 and a white dot otherwise. (That is, points that
yield a remainder of 1 upon division by 3 are colored black.) Now describe
the resulting figure. How does it compare with the figure generated in
Exercise 17?7

Figures 14.8 and 14.9 display the points congruent to 1 mod 3 and 1 mod 5,
respectively.
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Chapter 15

Complex Functions

Exercises

1. Compute the following:
la) (34 7i)? = 9 + 49:% 4 42i = —40 + 42i.
1b) (4 — 21)® = (4 — 20)*(4 — 2i) = (12 — 16i)(4 — 24) = 16 — 88i.
Le) (7 + 2i)(5 — 3i)(4d) = (41 — 113)(4i) = 44 + 164i.

342 _ 3+2i 6+5i 18410+ 15i+12i 8+ 274

1d = : = -
) 65 “ 65 6+ bi 36+ 25 61
1 A 1 3-—%)\? 1 1
le) = - . or — = :
(3 + 2:)2 3+4+2i 3-—2 (B3+20)2  (9—4)+12i
Awrﬁ 2 _ 1" 5-12
= I?S_v B+ 12 5—1%
_ (1) Z1a u%|+mm
= - .
518 w It
= T 169

2. Find the polar representation of each of the following complex numbers:

2a) —7i
By inspection, r = 7 and 6 = 37 /2.
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Therefore, —7i = 7(cos(37/2) + isin(37/2)) = 7(0 — i) = —75.
2b) -6
Again by inspection, r = 6 and 0 = 7.
Thus, —6 = 6(cos 7 + isinw) = 6(—1 + i - 0) = —6.
2) 24 24
In this case, r = /22 + 22 = /8 = 24/2 and by inspection, 6 = 7 /4.
So, 2+42i = 2V/2 (cos(m/4)+isin(n/4)) = 2v/2 (V2/2+iV/2/2) = 242i.
2d) -2+ 2¢
Similarly, r = \/(=2)2 + 27 = 21/2, but this time 0 = 37/4.

So, —2+2i = 2/2 (cos(3x/4)+isin(37/4)) = 2v/2 (—v/2/2+iv/2/2) =
~-2+ 2i.

2) 14+ /3i

Here, r = /124 (V3)2 =T+ 3=2and 0 = /3.

Thus, 1++/3i = 2(cos(m/3) +isin(n/3)) = 2(1/24i/3/2) = 1+/3i.
26) —1 4+ /34

Likewise, r = /(—1)2 + (v/3)2 = 2, but ¢ = 2x/3.

Therefore, —1+v/3 = 2(cos(2r/3)+isin(21/3)) = 2(~1/2+iV/3/2) =

—-1+/3i.

3. Find the complex square roots of each of the complex numbers in the
previous exercise.

3a) V-Ti = +V7 (cos(3w/4) + isin(3m/4))
= £V (-V2/2 +iV2/2)
—V14+iVi4

e 3 .

Check: Au\mm_._{mvm = HK::TM,\H,\Q_. = =28 _ 7. s

=—3 =

3b) /=6 = £/6(cos(n/2) + isin(x/2)) = +/6(0 +i - 1) = £ /B which

is obvious when you stop to think about it!
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3¢) V24 2i = £/ wz\wmnom?\ww + isin(w/8))

= +/22 Az\mﬁ||<m+3\mwl&v

- 2/2 (242 . [2/2(2-V2
=% z\ A» u + J\ A» uv

= (Vo 4 )
uwﬁ,\e\mii}\wl&.
Check: AJ\<\m+H+m/\,\mI— *
=(V2+1) - (V2-1)+2iVV2+1V/V2-1
=240 «

Note: The above value for sin(w/8) is obtained from the half-angle
formula for sine:

sin AMVHH \Hloow?\& _ 4 :Im\w\wun.n \ml.n_,\w

and so

2-v2 _2+V2
G = :

cos? AHV =1-sin®(r/8)=1- 1

8

3d) V=2 + 2i = £/2v/2 (cos(37/8) + isin(3r/8))
=23V (/58 4 i/
=+ (VVE-1+i/VE+1).

Check: T\,\ml+r\,\m+_ m.
V2-1)-(V2+ 1) +2iVV2-1V/V2+1

=-242 ¢

3e) V1 +V/3i = £/2(cos(x/6) + isin(w/6))
=12 T% +ﬁwv =+ Tm!m i.%v .
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2
Check: (Y8 +i¥7)" = & — 2 49T = 14 \/3i. v

3f) V =1+ V3i = £/2(cos(27/6) + isin(27/6))
= +2 @i%v uﬁﬁ%fm%v.
Check: T% i%% =2-8422¥8 = 1430 v

4. What is the formula for the quotient of two complex numbers given in
polar representation?

Let z; = r1e®1* and 25 = rye®?f. Then

#1
21 __"Nne _ pmmaulmnvh

Zg q.mmmum i

assuming ra # 0 (which is the same as saying that z # 0). In other words,
the ratio of two complex numbers is a third complex number whose modulus
is the ratio of the two moduli and whose argument is the difference of the

two arguments.

5. Let La(z) = az. Sketch the orbit of 1 in the plane for each of the
following values of a:

Sa) o =i/2
Facts: rea = 0;ima=1/2;r = /02 +(1/2)2 = 1/2< 1; 0 = n/2.

0r=1a(3) =4 (3) -5
2w =ta(-3) =3 () =5
a=io(v5) =3 (%) =
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i
/

Figure 15.1: The orbit of 1 under iteration of L(z) = iz/2.

As seen in Figure 15.1,

zi=|(3)

n

= (1/2)" = 0

{3

2

as n — co.
5b) @ = 24
Facts: rea = 0;ima=2,r=v/02+22=2>1;0 = n/2.
LL(1) = Lo(1) = 2i(1) = 2i
L2(1) = Lo(2i) = 26(2i) = —4
Lo(1) = La(—4) = 2i(~4) = —8i
L3(1) = Lo(—8i) = 2i(—8i) = 16

Le(1) = (2i)"
As indicated in Figure 15.2a,
[La()] = [2i]" = (2)" — 00

as n — o0,

5¢) a = 1++/3i

Exercise 5 184

(a) L(z) = 2i2. (b) L{2) = (1 4 V31i)=

Figure 15.2: The orbit of 1 under iteration of complex linear maps with a
repelling fixed point at the origin.

Relevant facts: rea = 1; ima = v/3; r = {/124+(/3)2 = 2 > 1;
6 =m/3.
Lg(1) = La(1) = (1 +V3i)(1) = 1 + V3
Li(1) = La(1+ V31) = (1 + V3i)(1 + V3i) = -2+ 2V/3
L3(1) = La(=2+2V3i) = (1 + V3i)(-2 + 2V3i) = —12
Ly(1) = La(—-12) = (L + V34)(-12) = —12 — 12V/3i

L2(1) = (1 + V33
As in the previous exercise,
ILa(D)] = 1+ V34"
as n — 0o. See Figure 15.2b.
5d) o =1
Facts: rea =0;ima=1;r=v02+12=1;0 = /2.
LX) = La(1)=i(1) =3

2" - 0
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(a) L(z) = iz. (b) L{z) = e2mil9 ;.

Figure 15.3: The orbit of 1 under iteration of complex linear maps with a
neutral fixed point at the origin.

L2(1) = Lo(i) = i(5) = -1
.%En Lu:um (1) = —i
El —i) = i(—i) =1

Le(1) = ()"
In this case, as indicated in Figure 15.3a, |L2(1)| = |i|* = 1 for all n.

5e) a = e27¢/®

Observe that r = 1 and 0 = 27/9 (that is, = 1/9).

LL(1) = La(1) = e27/5(1) = ¢27#/°
h\MAHu = QAmmﬂ,....@v ~ mma“_\wmmuﬂ&wu = dmif9
L3(1) = Lo(e27i/9) = 27il9(¢4mil9) — 6mif9
H\Mﬁ: — Qﬁmma_\mv = mwa.\wﬁmaﬂ_mwv — Bmi/9

hMAHv o H\Qmmumamxwv = nuamxmﬁmpmﬂ:wv — mpma—.\_w — .wu.__.u =1
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See Figure 15.3b.
5f) a = eV2ri
Observe that » = 1 and § = /2« (that is, 7 = v/2/2).

hwﬁuv = Lo(1) = mz\mﬂ,:v — m,\mam

hWAHv = hQAmz\miv - mx\Ma.mA_m/\maJ - mwa\wam

hwﬁv = hﬁmmma\miw — m/\mimmw,\miv - mwc\mi
AH: Lol we\mav sl mﬁﬁmwa\ma,v - mf\ma«

H\NGV — et 2wi

This irrational rotation of the circle is tough to sketch. Each point
on the orbit of 1 is rotated v/2 7 radians around the circle (v/2/2 of a
revolution) and the orbit is dense.

G. Prove that the complex function F(z) = az + # where a and 3 are
complex is conjugate to a linear function of the form L,(z) = yz. Determine
7 in terms of & and 3. What happens when o = 1?

We hope to find a homeomorphism H of the form
H(z)=z+b

such that

g—" it

H H

Voo

C———>C
commutes. That is, we will find an H such that H o F = Lo H. But
HoF(z) = (az+B3)+band Lo H(z) = y(z+b), and so az+f+b = y2+~b.
Equating coefficients, we have that @ = v and 8+b = 4b. The latter reduces
to b = /(o — 1) where of course o # 1 (when a = 1, the dynamics of F
are atypical in the sense that z — z + f is not structurally stable). We
conclude that F' and L have the same slope (see Figure 15.4).
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Figure 15.4: An affine map F is conjugate to a linear map L via another
affine map H.

The following fact is useful when proving a function is not complex
differentiable (and will be used in the sequel): If lim,_q+(t) = 2o, then

F(y(t)) — F(z0)
T (15.1)

lim 26—~ = lim

2= 2g z—z t—0

For example, let y(t) = z + t so that y~1(t) = ¢t — z,. Now make the
substitution z := () in the definition of F/(z). As z — zg, we see that
t — v~ (20) = 0, and so (15.1) holds. Similarly, if we let n(t) = zp+it, then
n~1(t) = (t—20)/i, and the same thing happens if we make the substitution
z 1= 7(t). In general, let v(t) = zg + ¢t where ¢ is any complex number.
Then v~(t) = (t — z0)/c and substituting z := v(t) in F(z) we have

i FO0) = F(z0)

t—0 ..\Qv -2

which is a particular branch of F'(z).

7. For which of the following complex functions does the complex deriva-
tive exist?

Ta) F(z +iy) = (z + iy)?
This function is actually z + 2% in disguise. As expected, it has a

Exercise 7 188

complex derivative, and in fact, F’(z) = 322 since

F(z)—F . 323
lim E = lim L iy
z—+2g z—2p Z—zg Z— 2Zp
; — 20)(22 24 22
— Jim %) (2" + 20z + %)
220 z— 2
= lim (22 + 202 + 23)
Z—+iZg
= Nm + zozg + Nm
= 322,

Tb) F(z +iy) = &* + iy?
This function is not complex differentiable. Let y(t) = (2o + t) + iyo
and n(t) = o+ i(yo + t). Then

i Q@) = F(z0) _ . (@0 +8)* + iy§ — (2§ + iv8)
=0  y(t) — 20 t—0 (wo +1) + iyo — (zo + iyo)
_ lm & + 2wo + 12 + iy? — a2 — iy}

t—+0 2o+t 4+ iy — ®o — Yo

— lim (20 +1)
t—0 i
= Mec

but

. F(n(t)) — F(z) .. x2+i(yo +1)? — (2 +iy?)
lim = lim - :
t=0  q(t) — 2o t=0 2o+ i(yo +1) — (2o + iyo)

2§ + (Y3 + 2tyo + 1) — 2 — iy}

= lim - : :
t—0 zo + tyo + 1t — xo — iy
. (2 ¢

= lim m|mal+lv
t—0 it

= 2yo.

7d) F(z) =22 4 ¢
Recall that the function z + z does net have a complex derivative
(see p. 213 in the text). We’ll employ a similar approach here.
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Let ¥(t) = zo +t and n(t) = 29 + it. Note that

lim (1) = lim () = z

and so it makes sense to write

=0 (1) =z t—0

(o +t)>+c— (22 +¢)
zo+t—2z
— lim (ZB+2z0+t)+c—23—c
t—0 {
T nAMNc + uv
t—0 .m
=2z

and
(0 + )2 +c— (2 +¢)
Zo+ it — zg
— lim (22 — 2itz, |ﬁuv+nimm —c
t—0 11
= lim INAMW.N_H +1)
t—0 it
= JMMG

. F(nQt)) — F(z0) _ .
MWM—M ﬂwmﬁv — 20 W_I—Hw

which are negatives of one another. So F' does not have a complex
derivative, and we begin to suspect any complex function with a con-
jugate in its definition.

Te) F(z +iy) =iz —y
Since iz — y = i(x + iy), this function is actually z + iz in disguise,
and so we guess that F’(z) = ¢, a constant. Sure enough,

. Fla)-F . iz—1
lim |K|ANV (20) = Lim 2%
220 z— 2z z—zo Z— 2

. iz —2z
= lim |..|A 0)
2—2o X — Zp

= 1.

) F(z) = 22(i — 2)
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Observe that 2z(i — z) = 2iz — 222, and so we shouldn’t be surprised
if F'(z) = 20 — 4z. Indeed,

lim F(z) — F(z) ~ im 22(i — z) — 220(i — 2z9)
Z—Zo Z— 2y z—+zo zZ—Z
. 224 — 2200 — 227 + 223
= lim
Z—=Zp zZ—=2p
g T
= lim 2i(z — 20) — 2(2* — 2¢)
Z—+2p Z— 2
— lim 2i(z — z0) — 2(z + 20)(z — 20)
z—rzp z—2zp
= lim (2i — 2(z + z))
= Mm o ‘»Nc.

Tg) F(z) =22+ (i+ 1)z

The answer is just what you’d expect by now:

- 3 4 (s — (3 4 (5
s F(z)— F(z) = g EF i+ 1)z — (25 + (4 1)z)
Z—+zg Z =2 F=+rZg zZ— Zy
o BB 4+ 1)(z— 2)
2=Zp o — NO
= Lm ANM + 202+ NMVAN — ch + T+ :AN = ch
- Z—+2p Z—2g
= lim (2% + zoz + 2¢ + (i + 1))
2=Z0

322 +(i+1).

8. Find all fixed points for each of the following complex functions and
determine whether they are attracting, repelling, or neutral.

8a) Q2(2) = 22 +2
2242=1z
=222-242=0
L, o VA0 _ 1y
= . =

9 .
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Check: Q> ﬁ_"_",m\qu = A_WW\MVM +92
1-743/=7 | 8

4 1
. 242/-7

4
— __.u_uKuI.w. F

Since Q5(2) = 2z,
o (25| = 2 v = vE= v

which is greater than one, and so the fixed point is repelling.

8b) F(z) =22+ z+1
24z41=2 = 2241=0 = z= +i.
Check: F(+i) = ()2 i+ 1=—-14i+1=4i
F'(z) =224+ 1 = |F'(%i)| = |1£2i| =+/5 > 1, and so both fixed
points are repelling.

8¢) F(z) = iz?
¥ =2 =iz —2=0= (iz—1)2=0 = z=00r 2 = 1/i = —i.
Check: F(—1i) = i(—i)? = i(—1) = —i, and 0 is obviously fixed. v
Since F'(z) = 2iz, we have F'(—i) = 2i(—i) = —2i> = 2. In other
words, this fixed point is repelling. The origin, on the other hand, is
superattracting since F'(0) = 0.

8d) F(z) =—1/z
~1fz=2 = -1=2% = 2z =4i.
Check: F(+i)=—1/+i=%i. «
F'(z) = 1/2* = F'(+i) = 1/(%i)? = —1 which implies that both of
these fixed points are neutral.

8e) F(z) = 2z(i — 2)
22(i-2)=2 = 22(i—-2)—2=0 = (2i-2)-1)2=0 = z=
Oorz=1i—-1/2

Check: F(i—1/2) = 2(i—-1/2)(i —(i—1/2)) = (2i—-1)(1/2) = i—1/2,
and again 0 is obviously fixed. v
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Since F(z) = 2zi — 222, we have F'(z) = 2i — 4z, and so |F*(0)|
|2i] = 2 and |F'(i — 1/2)| = |2i — 4(: — 1/2)| = |2 — 2i| = 2v/2 >
Hence, both fixed points are repelling.

8f) F(z) = —iz(1 —2)/2
—iz(l1-2)2=2 = —iz2(1-2)/2—2=0 = —z(i(1-2)/2+1) =
0= 2=00rz=1+2/i
Check: F(142/1) = —i(1+2/i)(1-(1+2/i))/2 = —(i+2)(=2/1)/2 =
1+ 2/4, and the origin is obviously fixed. v
Since —iz(1 — 2)/2 = (iz® — iz)/2, we have that F'(z) = (2iz — i)/2.
Hence, [F'(0)| = |—i/2| =1/2 < 1 and |F'(1 4+ 2/¥) = (2i(1 + 2/7) —
1)/2] = |(2i+4—1)/2| = |(i+4)/2| = V17/2 > 1. Thus, 0 is attracting
and the other fixed point is repelling.

=

Br@E+)z=2z = B+(i+)e—2=0 = 2(224+(i+1)-1) =
0 = z=0o0r 22 +i =0, that is, z = ++/=1.

Check: F(£v=i) = (V=1 + (i+ 1)(£vV=3) = Fiv—i+iV=i £
v —1 = *x+/—i. The origin is obviously fixed. v

F'(z) = 32” + i + 1 implies that [F’(0)] = |i + 1| = v2 > 1, and
F'(£v—1) = 13(2vV=1)2 +i+1| = |3(=d) +i+ 1| = |1 -2i| = /5 > 1.

Again, both fixed points are repelling.

9. Show that zp = —1 4 1 lies on a cycle of period 2 for Q;(2) = 22 +1i. Is
this cycle attracting, repelling, or neutral?

Since Qi(i—1) = (i—1)*+i =4 +1-2i+i = —i and Qi(—i) =
¢ — 1, these points constitute a 2-cycle for Q;. Note that Q!(z)
(@)'(i - 1) = Qi(i — 1) - Qi(—1)
=2(i — 1) - 2(—)
= 4(1 + i).

Now, since [4(1 + 7)| = 4|1 + i| = 4y/2 > 1, this 2-cycle is repelling.

(=i +i=
= 2z and

10. Show that zy = e2™/3 lies on a cycle of period 2 for Qo(z) = 2. Is this
cycle attracting, repelling, or neutral?

It’s true that e2™/3 lies on a 2-cycle since Qo(c2™/3) = (£27i/3)2 = g4ni/3
while Qcﬁmnam\_mv = Amaa-.___‘muu — £Bmif3 — e27i mua-.\m i mma»..mw‘ Observe that
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Qo(z) = 2z. The 2-cycle is repelling since
(QB)'(e*"1%) = Qo(e™™/) - Q(e*™F?)

— 9¢2mi/3 Mmai\m

— 457i/3

and [4e87/3| =4 > 1.

11. Show that zo = €**/7 lies on a cycle of period 3 for Qg(z) = 22. Is this
cycle attracting, repelling, or neutral?

Straightforward computation yields Qo(e*™/7) = (e2™/7)? = ¢*"i/7 and
@oﬁmaixqv s Aaaiaqvm = 3™/7 and Qo?mi\qu — mmmﬂ.‘mqvm — m_mu._:‘q -
e?™s . 277 = 277 Gince Q4(2) = 22,

(@)'(e*™7) = Qu(e®™ /) - Q™) - Qi(e>7)
- wmua..._‘q 5 wmkammﬂ . anwﬂ«.x.w

— 8eldmi/T

and |8eM7™/3| =8 > 1.

It’s not surprising that the periodic orbits in Exercises 10 and 11 are re-
pelling since the squaring function is known to exhibit chaotic behavior on
the unit circle and so all orbits must be repelling. And it appears that
the rate of divergence is greater for cycles with larger periods—indeed, the
previous two exercises suggest that the derivative along a cycle of period n
is 2. Can you prove this?

13. Does the Boundary Mapping Principle hold for F'(z) = z? Why or why
not?

Yes, it does, despite the fact that ' does not have a complex derivative.
Consider the chunk W = {re’® | r; < r < ryand 8, < 0 < 65}. The
image of W with respect to F is F(W) = {re? |r; <r <ryand —0; <
0 < =01}, which is also a chunk (see Figure 15.5a). Hence, F satisfies
the Boundary Mapping Principle by the argument given on the bottom of
p. 217 of the text.

14. Does the Boundary Mapping Principle hold for F(a + iy) = 2? + iy*?
Why or why not?

Note that F maps the plane onto the first quadrant {z + iy | z,y > 0}.
Now there are points in the plane (which itself has no boundary) that get
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(a) The Boundary Mapping Principle (b) This particular application of the
holds for z — z. squaring function does not contradict the

Boundary Mapping Principle.

Figure 15.5: Two illustrations of the Boundary Mapping Principle.

mapped onto the positive z- or y-axis. In fact, any point on the z-axis
(that is, y = 0) gets mapped onto the positive 2-axis which is part of the
boundary of F(C), and similarly for the y-axis. Hence, F does not satisfy
the Boundary Mapping Principle.

15. Give an example of a region R in the plane that has the property that,
under Qo(z) = 22, there is a boundary point of R that is mapped into the
interior of QQo(R). Does this contradict the Boundary Mapping Principle?
Why or why not?

Take R to be any chunk which contains the fixed point 1. Then R C @Qo(R),
and every point on the boundary of R is contained in the interior of Qo (/)
(see Figure 15.5b).

This does not contradict the Boundary Mapping Principle which says that
interior points in W get mapped to interior points in Qo(W), which is the
same as saying that boundary points in Qg(W) have pre-images in W which
are also boundary points. It says nothing about the boundary points of W
themselves.
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The Julia Set

Exercises

1. Describe the filled Julia set for F((z) = 23.

Like the quadratic map @y, the filled Julia set for z — 22 is the closed unit
disk. Observe that

F(z)=2°
m_._uﬁNv =27
m‘..wANu - qu
F*(2) = el

where the latter may be proved by induction. Now recall that
2 = ﬂ_.»mnOm k@ + isin kf) = kit
where r = |2] and tan @ = im z/re z. Thus we have
Fr(z) = 23" = p3" 3™

which is analogous to the formula for Q3(z) given on p. 221 of the text.
The rest of the analysis mirrors that of Qg. For instance, it follows that
|z0] =1 = |F(z0)| =1, that is, the unit circle is invariant, since

|F(z0)] = |23] = 2o = 1 = 1.
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2. Describe the filled Julia set for F(z) = z4 for d > 4.
This is a straightforward generalization of Exercise 1. In this case,
F(z) = 24" = pd"gid"0
and
|F™(z)| = _ﬁ%m&;_

(0 ifo<r<1
[P | =41 ifr=1
oo ifr>1

as n — o0.

Thus, the filled Julia set is once again the closed unit disk.

4. Use the techniques of Section 16.2 to conjugate F(z) = 23 to a polyno-
mial P(z) via H(z) = z+ 1. What is P(2)?

In Section 16.2, it was shown that @q is conjugate to Q_o via H. We
summarize this result below:

H(Qo(2)) = Q(H(2))

w !
uv\.\\+N|N Z+4=1 i€

I

Z
4 3 2
a z HHHAN +Hv s
z z
4492241
2 B + M + i
Z
24 (2402 +1
= = .

Equating coefficients, we see that 2 + ¢ = 0, that is, ¢ = —2. Thus,

C-[-2,2 2% ¢ [-2,2]

commutes, where D is the closed unit disk.
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For F(z) = 23, we have

H(F(z)) = P(H(z))

Now, if we let w = z + 1/z, then

wt Vw2 —4

o —

2
But z_ = 1/z; (and vice versa), and so
3 3
w4+ Vw? -4 w—Vw? —4
Poy=\—7%—) +{7—=7 —

1
8

after expanding and combining terms. Simplifying, we obtain

(2w® + 6w(w? — 4))

P(w) = w® - 3w
which is a more-or-less familiar face (see pp. 27, 50, and 81 of the text, for

instance).

5. The saddle-node bifurcation.

5a) Find all complex c-values for which Q.(z) = 2% + ¢ has a fixed point
zo with Q}(20) = 1.
There is only one such point, namely, ¢ = 1/4, obtained from the pair
of equations

24e=1z
2:=1"

The corresponding fixed point is at z = 1/2.

5b) Consider the fixed points of @, in the complex plane for ¢ < 1/4, ¢ =

1/4, and ¢ > 1/4. Determine whether these fixed points are attracting,
repelling, or neutral. This is the complex saddle-node bifurcation.

The case when ¢ = 1/4 has already been discussed in Exercise 5a.
Reviewing pp. 52-55 in the text, the fixed points of Q. satisfy

Nu+nHu.
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that is,

z

_1dvl—4e

=

Call these fixed points p, and p_ as in the text. Since Q’(z) = 2z,
Q. m_&| ,\Mlﬁv —1@3/T— 4.

Now when ¢ < 1/4, it follows that 1 — 4¢ > 0, and so Q)(p4) =
14 +/1—4c > 1. Hence, py is repelling for ¢ < 1/4. For the other
fixed point, we have
L=vI=Tg|< 1

=>-1<1-v/1-4c< 1

= -2< —/1—4ec< 0

=24>1—-4¢c>0

=3>—-4c> -1

= -3/4<c<1/4
which shows that p_ is attracting in this range. For ¢ < —3/4, both

fixed points are repelling and give way to an attracting 2-cycle (see
Exercise 6).

When ¢ > 1/4, we have 1—4¢ < 0, and so the fixed points are complex.
But they are not attracting since

[1£vV1-4c| <1
= [1+ivic-1| <1
> VIi+tde—1<1
=2%/c <1
=> Ve < 1/2
=>c<1/4

which is a contradiction. To prove that the fixed points of Q. for
¢ > 1/4 are repelling, simply reverse the above steps and the sense of

the inequalities.

5¢) Determine the set of all complex c-values for which Q. has an attract-
ing fixed point. Sketch this set of c-values in the plane. Where docs
this set meet the real axis?
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Any such fixed point must satisfy the two equations
22 4ec=1z
[22] =1
simultaneously. Hence, the set of c-values for which @, has an attract-
ing fixed point is given by
{ele=2—2%and |z| < 1/2}.

The boundary of this set satisfies |2| = 1/2 which is the equation of a
circle centered at the origin with radius 1/2, that is,

Hence, the boundary of the set of c-values for which Q. has an at-
tracting fixed point satisfies

which is the equation of a cardioid in the c-plane. (See Figure 16.1.)
The intersection of this polar curve with the real axis is obtained
by setting @ = 0 and § = 7. This gives ¢ = 1/4 and ¢ = —3/4,
respectively, and agrees with the results of Exercise 5b.

5d) Umﬂm_.:::m the set of complex c-values at which the function Fy(z) =

23 4 ¢ has a saddle-node bifurcation similar to that in part b.

Likely candidates are those ¢ for which F, has a fixed point z satis-
fying F/(z9) = 1. This leads to the pair of equations

Pte=1z
3:2=1"

Since 2% = 1/3 from the second equation, we have z = +/3/3 and so
23 =z 2% = £/3/9. Therefore,

Il

c=z-2>=2V3/3-+V3/9
= +2v/3/9.
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T

=1L

Figure 16.1: The boundary of the set of e-values for which Q. has an
attracting fixed point is a cardioid.

But what about the fixed points of F, for real ¢ in a neighborhood
of these c-values? Are they attracting, repelling, or neutral? Looking
ahead at Fig. 17.11 on p. 262 of the text, we observe that the pair
of cusps on either side of the degree-3 bifurcation set correspond to
the two c-values computed above. On the real axis between these
two cusps, there is an attracting fixed point. On either side of these
two values, the fixed points are repelling. Showing this rigorously is
nontrivial, however,

6. The period-doubling bifurcation.

6a) Find all complex c-values for which Q.(z) = 2% + ¢ has a fixed point

zo with QL(z) = —1.

Similar to Exercise 5a, we must solve the system of equations

2Z24e=z
2z =-1

which has the solution z = —1/2 and ¢ = —3/4. Representatives of
the quadratic family in a neighborhood of this bifurcation point are
shown in Figure 16.2.
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ew-ii ¢=-12

c=-1

(a) The 2-cycle of Q_; is attracting and (b) The second iterates of Q. forc = —1,
real, while that of @ _; 5 is repellingand —3/4, and —1/2 clearly show the bifur-

complex. cation.

Figure 16.2: Quadratic maps in a neighborhood of the period-doubling
bifurcation point ¢ = —3/4.

6b) Show that the points
ge(c) = -z £ -V/=3-4c

lie on a 2-cycle unless ¢ = —3/4.

Straightforward calculation yields

(it (e

Note that

1

ﬁ w\élfﬂ —3 —4(-3/4) = —1/2
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which agrees with the results of Exercise 6a.
6¢) Determine whether this eycle is attracting, repelling, or neutral in the
two real cases —5/4 < ¢ < —3/4 and ¢ > —3/4.

Using the Chain Rule Along a Cycle given on p. 47 of the text, plus
the fact that Q%(z) = 2z, we have

(Q2)(g4+) = Q2la4) - Q(e-)
(—1+V=3—4c)(-
1—(-3-4¢)
=4+ 4e

=4(1+c¢)

W oy v

and similarly for (Q%)'(g-). But

c>-3/4=>c+1>1/4
= 4(c+1)>1

which says the 2-cycle is repelling in this range. When —5/4 < ¢ <
—3/4, we have

—5fd<e<-3/4=>—-1/4<c+1<1/4
=>-1<4(c+1)<1

and so the cycle is attracting.

6d) Sketch the locations of the fixed points and g4 for @, in the three real
cases —5/4 < ¢ < —3/4, ¢ = —3/4, and ¢ > —3/4. This is the complex
period-doubling bifurcation.
The bifurcation diagram in Figure 16.3 depicts a period-doubling bi-
furcation as the parameter decreases through —3/4.

7. Consider the complex function Ga(z) = A(z—2z?). Show that the points

A+1

() =4/
lie on a cycle of period 2 unless A = 0 or —1. Discuss the bifurcation that
occurs at A = —1 by sketching the relative positions of g1 and the fixed

points of G as A increases through —1, assuming only real values.
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Figure 16.3: A bifurcation diagram for Q..

It’s convenient to write Ga(z) = A(z — 2z3) = Az(1 — 22). (See Figure 16.4
for representatives from this family.) Now,

X+1Y\ A+1 A+1
AL A=+
- A A
A+1 /-1
yere)
Y o
A

and vice versa. Of course, when A = 0, g4+(A) is undefined. And when
A= -1, ge(A) =0, but 0 is fixed.
Computing the fixed points of G, we have
Az(1-2%) =2
= A1~ =1
=il =zt =1/
=2>1-1/A=22
A-1 2

s

2

Il

for z #0
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(b) ...and their second iterates.

(a) Three maps...

Figure 16.4: Representatives of G in a neighborhood of A = —1.

> — =2

which we’ll denote as p; and p_. Note the similarity between ¢4 and py.
The bifurcation diagram for this family, shown in Figure 16.5, illustrates a
bizarre relationship. By the way, it appears from the graph that the 2-cycle
of G_3/3 is superattracting. Is this true?

Also notice the relationship between Gy and the familiar logistic equation
Fy(z) = Az(1 — z). There’s a rather obvious generalization to made here,
namely,

Q?aﬁwv = MNQ - NAV.

Exercise. Completely analyze the dynamics of G 4. (One result along
these lines is that G 4 has d+ 1 fixed points, namely, 0 and the d solutions
to z¢ = (A —1)/A.)

8. Let Q;(z) = 2% + i. Prove that the orbit of 0 is eventually periodic. Is
this cycle attracting or repelling? Use the Backward Iteration Algorithm
to compute the filled Julia set for ¢);. Does this set appear to be connected
or disconnected?
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Figure 16.5: A bifurcation diagram for G,.

The orbit of 0 given by
Or=irsi—1rr —ir+i—1r ...

is eventually periodic with period 2 after just two iterations, that is, 0 €
per3 Q;. Since Q!(z) = 2z (which it is for all c, by the way) we have

(@) (i —1) = Qi — 1) Qi(-1)
= 2(i — 1) - 2(—i)
=—4i(i—1)
=444
=4(1+1)
and [4(1 +4)| = 4|1 + i| = 44/2 > 1. Hence, this cycle is repelling.

We’re unable to use Chaos and Dynamics to compute the Julia set of Q;
since the software has no option to perform inverse iteration, but we know
what’s going to happen. The Julia set of @); s connected (since the orbit
of 0 is bounded) and is something called a dendrite.!

9. The Logistic Functions. The following exercises deal with the family
of logistic functions Fy(z) = Az(1 — z) where both A and z are complex
numbers.

1See Figure 5 of the paper “Julia sets” by Linda Keen in the book Chaos and Fractals:
The Mathemaiics Behind the Computer Graphics (R. L. Devaney and L. Keen, editors),
American Mathematical Society, Providence, RI, 1989.
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9a) Prove that F|(z) = A(1 — 2z) using complex differentiation.
By definition,

F)\(z) — Fx(20)

Fy = li
A(#0) i—te z— 2
= i Az(1 — z) — Azo(1 — z0)
z2—20 z—2p
=X lim ﬁuw'.NMVl ﬁNOlNMV
=g Z—Zp
e R o |
= X lim AN Ncu AN NOV
Z—Zp Z2—2p
=Alim 1—(z+z)
Z—Zqg

since (22 — 23) = (z — z0)(z + z). Hence,
m..hﬁ.ucv = \/AH — MNQV
upon evaluating the limit.

9b) Find all fixed points for .

The fixed points of Iy are solutions to
Az(l —2) = 2.
Assuming z # 0, we have

Az(l-2)=2=A1-2)=1

=1—-z=1/X

>1-1/A=2
B

HV|M1|N.

(A similar calculation was performed in Exercise 7.) Thus,

?bﬁu?%v

since ( is also a fixed point by inspection.
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YD
NP

Figure 16.6: The boundary of the fixed point region for F).

9¢c) Find all parameter values A for which F) has an attracting fixed point.

Using the result in Exercise 9a, we see that F{(0) = A. So the origin
is attracting when |A| < 1, that is, inside the circle of radius 1 in the

A-plane.
A-1 A-1
Fy = -2 —
((*57) =2 (1-27%)

u\,A\,:mml:v

=2-A

We also have

b

and so the other fixed point is attracting when |2 — A| < 1, that is,
inside the circle of radius 1 centered at A = 2. See Figure 16.6.
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The Mandelbrot Set

Exercises

1. Prove that @, has a periodic point of prime period 2 at each root of
the equation z? + z+ ¢+ 1 = 0. Hint: Recall a similar result proved in
the real case in Section 6.1.

The second iterate of Q, is

Q2(2) = Qe(Q.(2))
(Z2+c)i+e
=242+ +¢

and so the period 2 points of Q, satisfy
42+ te=12

which is a fourth degree polynomial having four roots. Two of these roots
are the fixed points of (), and therefore satisfy z? + ¢ = z. Thus we may
factor out this quadratic from the fourth degree polynomial and get another
quadratic, the solutions of which constitute a cycle of prime period 2. In
other words, all we need to do is compute

204222 —z4 2+
2—z4¢

=22 4z+c+1

by polynomial long division, say.
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2. Show that Q. has an attracting 2-cycle inside the circle of radius 1/4
centered at —1.

From Exercise 1, the second iterate of Q. is
Q) =242+ +c
which has fixed points

fixQ2={z|2*+22? -2+ +c=0)
={z|(Z—z+e) 2 +24+c+1)=0)
ﬁwn_u(é!%u qu_..)\IAnlww
2 d 2 ’

Call these points py, p2, ¢1, and ¢, respectively. Note that p; and p, are
fixed points for Q. while ¢; and g3 constitute a cycle of prime period 2.
(Compare with the results of Section 6.1 in the text.) Also note that the
points —p; and —p, are eventually fixed since @, is an even function.

Additionally, the following relations hold:!

Lpr+pa=1
2.c=(1-p?—p3)/2
ptg=-1
dec=qga—-1

This latter fact is particularly important to our problem, as we shall see.

Using the Chain Rule Along a Cycle given on p. 47 of the text, plus the
fact that Q.L(z) = 2z, we have that

(@2 (91) = Qi(a1) - Qi(a2)
= 2q; - 2¢s,

and similarly for (Q%)'(g2). Now we want this 2-cycle to be attracting, so
we must have
[291 - 2¢2| < 1

which implies that
la1g2| < 1/4.

!See Appendix A of Hans Lauwerier’s Fractals: Endlessly Repeated Geometrical Fig-
ures published by Princeton University Press in 1991.
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Imz

Rez

L2

Figure 17.1: Complex conjugates are symmetric with respect to the real
axis.

Applying the fact that ¢ = g1¢2 — 1 from above, we obtain
le+1] < 1/4

which is a disk of radius 1/4 centered at —1 in the c-plane. All of these
points are in the Mandelbrot set since the orbit of the ecritical point 0
is attracted to this 2-cycle by the complex analogue of the theorem in
Section 12.2 of the text.

3. Prove that the Mandelbrot set is symmetric about the real axis. Hint:
Show this by proving that Q. is conjugate to Jz. Show that your conjugacy
takes 0 to 0. Therefore the orbit of 0 has similar fates for both Q. and Q-.

Since a complex number and its conjugate are symmetric to one another
with respect to the real axis (see Figure 17.1), the hint is justified.

Define H:C — C such that H(z) = z. Then

@momﬁﬂw”\mul_lm
=z224¢ since z1 %y = 7122
=z?4c since z; + zs = z1 + 22

= H 0 Qc(2).
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Therefore, Q. is conjugate to @z via H. In other words,

Q:(2) = Qc(2),

and in fact,

Qz(2) = Q2(2).
(Why?) In particular, since the complex conjugate of 0 is 0, we have that
Qz(0) = Q2(0)

which shows that the Mandelbrot set is symmetric with respect to the real
axis. This is because

1Qz(0)] = 1Q2(0)] = Q2 (0)I,

and so, as n — 00, |Q2(0)] — oo whenever [Q7(0)] — oo.

Finally, since I is its own inverse, we have the following commutative
diagram:

Qe

H

el
s
=
N
=
7 e — g

We remark that an alternative, but equivalent, approach to this problem
would be to show that

Q2(2) = Q«(2)
by induction, which further motivates the previous choice of H.
The Logistic Functions. The following seven exercises deal with the
logistic family F(z) = Az(1— z) where both A and z are complex numbers.
4, Prove that, for X # 0, |Fi(2)| > |2| provided |z] > _1\#._ + 1. Use this to
give the analogue of the escape criterion for the logistic family.
We have

|Fx(2)] = [A2(1 - 2)|

= [AllzllL - 2|
= [Allellz - 1|
> [Allzl(lz] - 1)
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by the triangle inequality. Now, since |z] — 1 > _lw; by supposition,
Mlel(l=] = 1) > Il o = e
Al
and so [F(2)| > |2
The key idea used in this proof is the fact that |z — 1| > |z| — 1, a special
case of the more general formula
|21 = 22| > || = |22].

The latter is derived from the familiar form of the triangle inequality as
follows:
_NH_ = _Nu —z2+ Nu_ m _N_ = Nu_ + _Nw_

Moving |z3| to the far left gives the desired result.

6. Show that, if A # 0, the logistic function F) is no:.?mmﬂm to the complex
quadratic function Q.(z) = z* + ¢ where ¢ = 3 — 2-. Let ¢ = V() be this
correspondence between A and ¢. Why does this Sm:: fail if A =07

Suppose Fx(z) = Az(1 — z) and Q.(2) = 22 + ¢. We seek a conjugacy
between F) and @, of the form hﬂuu = az + b such that

C———C

commutes. In other words, we want
Lo Fx(z) = Qc o L(z)
which in our case is equivalent to
adz(l=2)+b=(az+ b’ +ec.

Expanding both sides and equating coefficients, we arrive at the following
system of equations:
—a) = a®
al = 2ab . (17.1)
b= b2 +c
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Provided @ # 0, the first two of these equations yield

{4

and from the last equation in (17.1) we obtain

e
/2

c=b—-b2=X/2-2%/4

as required. The parameter A can not be zero because 0 # a = — .
Higher Degree Polynomials. The following eight exercises deal with
polynomials of the form P, 4(z) = z% +c.

11. Prove that P; ;(2) = dz%'. Conclude that, for each integer d > 1, P, 4
has a single critical point at 0.

First we need

Lemma 17.1
d d

z Z 4
|[lQ|”M SR
Z—=2Z

0 k=1

Proof:
d

NlNcMNhuur”MU .I—a._k+_. MN»&*
k=1 k=
d
|MN
k=1

._.

1

k=0
d_d

]

And now we can prove that P! ;(z) = dz%~!. Dropping subscripts for the
moment, we have by definition

Plen) = Jim T
= lim mnm n_nn.v = AN% + m.w

z—zZp Z— 2o
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d_ ,d
= Iim £ %0
2=z T— 2
d
= lim Y z7'2%*% by Lemma 17.1
Tkt
= MU lim zi~14F
&"—lemn_
d
= MUNNI—
k=1
=idet,

12. Prove the following escape criterion for P, 4. Show that if |z| > |¢| and
|z]%=1 > 2, then | Pra(2)| = 00 as n — co.

We know that
[Pe,a(2)] = |2% + ¢| > |2%] = |e|

by the triangle inequality. But

2] = lel = |2 = el > |2 — |2
since |z| > |c| by supposition. And so

|2 = [2] = |2|(|z1*" = 1) > |4

since |z|[%"! — 1 > 1 by hypothesis. Hence, |Pea(2)] > |z]. Similarly,
_bcnm,mﬁmu_ H_ﬁo.aﬁﬁn_mmuvzv_hupnﬁnv_,msam:mmuﬁ.w__éormﬁarwp

o> | Poa(R) > - > |PEy(2)] > |Peya(2)] > [2].
In fact, | P} ,(2)| is unbounded since
IPoa(2)] > |21(|2] 1 = 1) (17.2)
for n > 2. We remark that (17.2) is also true for n = 1 provided |z| > |c|.
Corollary 17.2 If |z| > |c| and |z| > 2, then |P?y(2)| — 00 as n — oo.

Proof: Simply observe that |z~ > [2]972 > ... > |22 > 2] > 2. (m]
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13. Show that if |¢| > 2/(4=1)  the orbit of the critical point of P, 4 escapes
to infinity.

The following gives a minimal escape criterion for P, 4:

Proposition 17.3 If |z| > |¢| and |z| > 2Y/(4=1) then |PP4(2)] — oo as
n — 00,

As a consequence of Proposition 17.3 (which is merely a restatement of
Exercise 12) we have?

Corollary 17.4 The filled Julia set of P, 3 lies inside the circle of radius
V2 centered at the origin.

as well as

Corollary 17.5 If |¢| > 21/(4=1) then the critical orbit of P4 escapes to
infinity.

Proof: Observe that P, 4(0) = c. Now put z := ¢ in Proposition 17.3. O

In other words, the degree d bifurcation set of P, 4 lies entirely inside the
circle of radius 2'/(4-1) centered at the origin.

16. For a fixed value of d, find the set of c-values for which P, 4 has an
attracting fixed point. Find an expression for the boundary of this region.
Identify this region in the images generated by the previous exercise.

From Exercise 11, we have that P; ;(z) = dz?~1, Now the boundary of the
fixed point region of the degree d bifurcation set satisfies |P; ;(z)| = 1. But

|P:a(2)] =1
= _Qmml: =
=dz|* =1 assuming d > (

= |z| = dva-4

In other words, z lies on a circle of radius d*/(1=9) centered at the origin,

that is, ,
z =Dt (17.3)

2Thanks to Scott Huddleston for showing this in alt.fractals.
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Now, the fixed points of P, 4 satisfy

nm+nﬂ z
Se=z—2" (17.4)

Substituting (17.3) into (17.4), we obtain
¢ = qM(=d) 0 _ gaf(1-d) die (17.5)

Note when d = 2, we get

as in the text. Equation 17.5 gives the boundary of the fixed point region
for a fixed d in (¢,0) coordinates, whereas the fixed point region itself is
given by

e=z—23% for |z] <dV/C-9),

Fixed point regions for various values of d are shown in Figure 17.2. Note
the symmetry unfolding as the value of d increases. It’s natural to wonder
what happens for other values of d, or as d approaches infinity. The latter
question is answered below.

Motivated by the form of (17.5), let us suppose

f(a) = ?i_-a ifz>0and z # 1

e~1 ifz=1

Then f is continuous at @ = 1 since

lim z1/=%) = lim exp Tom awk_liv

r—+1 r—1

. loga
o (52

= exp Az_ﬁ W\MV by L’Hoépital’s rule

z—1 —1

=e 1,

Similarly, we may show that

lim z1/0-2) =
r—+00

H
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-

-

()d=6 (d)yd=71

Figure 17.2: Fixed point regions for various values of d.
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10

Figure 17.3: The graphs of f and ¢ intersect at # = e¢~1.

and so we have a pretty good picture of this function taking the nonnegative
reals onto [0,1). See Figure 17.3.

Now consider

1 ifz=0
g(@) =1 2%/0=%) ifz>0anda#1 .
gt ife=1

Then g is continuous at & = 1 (exercise), and its value at & = 0 is justified
since

r—0t z—0+ 1=

1/2
AT

=exp| lim —=z
=0+

"NQ

=1

lim 2%/(1=%) = exp A lim qu‘.v

by L’Hépital’s rule

See Figure 17.3 for the graph of g.
We can use these results to analyze (17.5). When d = 1, we have

P .wlum-m | mlum&_
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since both d'/(1=9) and d%(1=4) approach e~! as d — 1. Thus ¢ vanishes
at d = 1, and so does the degree d bifurcation set. And as d — oo, the
quantity ddl(-a) _, 0, and so ¢ — €', that is, the degree d bifurcation set
approaches the unit circle.

The previous results suggest the following series of experiments and projects:

Experiment. As an extension of Exercise 13, compute the degree d bifur-
cation set of P, 4 for various real values of d between 2 and 5, say.

Experiment. Repeat the previous experiment for 1 < d < 2.

Project. Produce a 2-d animation of the degree d bifurcation set of P, 4 as
d varies between 2 and 5, or for d between 1 and 2.

Project. Render a 3-d image of the degree d bifurcation set of P, 4 in
(rec,ime,d) coordinates with —2 < rec,ime < 2 and 2 < d < 5, say. Hint:
Position the viewer’s eye well away n...oa the negative d axis since the slice
at d = 2 will most certainly obscure the rest of the image.

For reference, the fixed point regions for a sequence of equally spaced d
values between 2 and 3 are shown in Figure 17.4. The Maple program used
to generate these images is given below:

drawFixedPointRegion :=
proc(d)
local aoﬂga. term2, theta;
term1 := evalc(exp(I*theta))/d~(1/(d-1));
term2 := evalc(exp(d*I*theta))/d"~(d/(d- Huu
plot([abs(terml - texrm2), theta, dumem|o..w*mwu
-1..1, -1..1, nOOHamlvowmﬂu“

end:
for i from 2 by 0.2 to 3 do drawFixedPointRegion(i) od;
17. Prove that the degree 3 bifurcation set is symmetric with respect to
reflection through the origin. Hint: See Exercise 3 above.

First of all, observe that the degree d bifurcation set is symmetric with
respect to the real axis for all d (the proof is similar to that given in Exer-
cise 3). To show that it’s symmetric with respect to reflection through the
origin, define H:C — C with H(z) = —z (see Figure 17.5 for justification).
Then

PoosgoH(zx)=(—2)~¢
=(z"+¢)

H o P 5(z).

I
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(d)d=

2.6

Figure 17.4: The evolution of the fixed point. region as d varies

-1l

(e)d=28

=0.51

-
. aJ“
-5

between 2
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Rez

Figure 17.5: More geometry of complex numbers.

Therefore, P, 3 is conjugate to P_, 3 via H. In other words,
»Urn‘ma.va = lb._Un_wAN.f

and in fact,
PL.3(—2) = —Pl5(z).

(Why?) In particular, we have that

ﬁ:a.mﬁcu = IﬁMmBU

which shows that the degree 3 bifurcation set is symmetric with respect to
the origin since

|PZ 5(0)] = | = P5(0)] = |P25(0)],

and so, as n — 00, |PZ, 5(0)| — oo whenever |P}’3(0)| — oo.

An alternative, but equivalent, approach is to show that
huhmﬁuv = Iﬁun.uAINv

by induction (which may even be more straightforward!).

A similar result holds for any odd positive integer d. That is, since H is its
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own inverse, the diagram

P, 4

—_—C

m- b
Lﬁlﬁa_

—>C

commutes for any odd positive integer d.

As an afterthought, it should be possible to find H; and H, with H =
Hy 0 H; so that the following diagram commutes:

(=]
ﬁ'e___ﬁ

H H
C Iy 2 s¢C
P Pz 3 P_.3
H H
C Hisil ) i@

Exercise. Find H; and H3 such that

HyoP.3=P;30H,,
mno .ﬁm,m = »ﬁero muv and
.m.O»GPm = »Uln_woh.q

with H = Hy o H;.

18. Prove that the degree 4 bifurcation set is symmetric with respect to
rotation through the angle 27/3. Hint: Show that P, 4 is conjugate to
Peanissg 4. Generalize this and the result of the previous exercise to the
degree d bifurcation set.

The proof is similar to the one used in Exercise 3 and again in Exercise 17.

Let H:C — C with H(z) = ¢?™/32, and then proceed as before. Note that
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H is a homeomorphism with H~!(z) = e4™i/3 .

L ——

ﬁ

oa__‘___mn 4
C———>~C

In general, the degree d bifurcation set is symmetric with respect to rotation
through an angle of 27/(d — 1) radians, or any integer multiple thereof. In
other words, there are d — 1 axes of rotation. The degree 6 bifurcation set,
for example, has a five-way symmetry with respect to the angles 2k /5 for
0 <k <d— 1. Other examples are given in the following table:

d | 2 | 3 | 4 | 5 | 6 | ...
ma\EIS__ms._s. _wq_.\w_s.\m_ws.\.m_

These results agree with previous statements claiming that

1. the degree d bifurcation set is symmetric with respect to the real axis
for all d;

2. the degree d bifurcation set is symmetric with respect to reflection

through the origin for odd d.

The proof of these claims amounts to showing that P, 4 is conjugate to
Poanita-1eq Via H(z) = /(@12 the details of which are left as an
exercise.

19. Show that ¢ = —2 and ¢ = 7 are Misiurewicz points for Q,, that is, 0 is
eventually periodic for Q.. On a sketch of the Mandelbrot set, locate these
two c-values as accurately as possible.

For Q_2(z) = 2% — 2, we know that
0——-2—221..

and so 0 € per? Q_3. Similarly, for Q;(z) = 22 + 1, we have

O=i(i=1) = =i (i— 1)
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Figure 17.6: The point = = 7 is a Misiurewicz point.

which shows that 0 € per? @;. This latter c-value has been indicated with a
crosshair on a copy of the Mandelbrot set in Figure 17.6. The value ¢ = —2
lies on the negative real axis, at the leftmost tip of the spine of M.

20. For ¢ and z complex, consider the functions®
Fe(z)=c| 22+ )
[ f—. Nm L

20a) What are the critical points of F,?

Since the derivative of F, is F!(z) = ¢(2z — 2/2%), we have

1
MQANIMV =1

3Thanks to Kerry Mitchell for suggesting this family of functions.

Exercise 20 226
=>2t=1
= z=241 and 2z = 4i.

In other words, the critical points of F, are the 4th roots of unity.

20b) Prove that the orbits of all critical points have the same fate.

Evaluating the function at each of its critical points,

F(xl)=c¢ Tw:m + ﬂwﬂv =

Fo(+i) =¢ Q&.m . v =-2c

(£2)?
and again at the resulting critical values,
Fo(£2¢) = ¢ | (£2¢)2 + . =44 —
¢ - 4 EeR) T T

we find that each critical point leads to the same critical value. (Note
that F, is an even function.)

20c) Show that

-

is an escape criterion for F, that is, if any point of the orbit of z,
satisfies this condition, then the orbit of 2 escapes to infinity.

We have

Il

[x]

by
N

n

$
le e
~—

1
= fell=l |+ + —5
1
2 lellz] ~N_+_|N_Im
1 : 1 1
> _n__u_a since |z| + P > i
= |z]
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which shows that |F.(z)| > |z|. It remains to be shown that |F?(z)]
is unbounded as n — oo.

20d) Which orbit would you use to compute the analogue of the Mandelbrot
set for this family of functions?
Any of the critical points suffice since they all have the same critical
value (see part b).

Exercise 20

228



Appendix A

Mathematical Notation

Sets:
]

[a, 8]

(a,0)

the empty set; the set containing no elements; sometimes written
as {} but never as {0}; the latter is a set—it is just not the empty
set.

is an element of; for example,

1 1
mmﬁa+H :mZWM

but there is no z such that z € 0.

the closed interval with endpoints a and b; formally,

[e,0] ={z€R|a<ax<b}.

the open interval with “endpoints” a and b; in this case,
(a,0)={z€eR|a<z<b}

some authors use the notation Ja, b[ to avoid ambiguity with the
ordered pair (a,b); for example, the complex number z + iy is
associated with the point (z, y) in the complex plane.

is a proper subset of; when we write A C B, we mean that every
element of the set A is also an element of B, but A # B; in
other words, A is properly contained in B; for example, the open
interval (@, b) C IR for any finite real numbers a and b.
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C

151

is a subset of; A C B means that every element of A4 is also an
element of B, but here 4 and B could be equal; for example, the
only open interval which is not a proper subset of R is R itself;
yes, R is open, and we sometimes write (—oco, 00) = R.

cross product; new sets are sometimes built up from existing sets
by means of cross products; for example, the cross product of
any two closed intervals is a rectangle in the plane, which itself is
denoted by R x R = [R2,

the size of the set S; for a finite set, |S| is simply the number of
elements in S; for example, if |[S| = n, then the set of all subsets
of S (called the power set of S) contains 2" elements, that is,

[P(3)] = 2151,

Number Systems and Constants:

N
Z

the natural numbers; N = {0,1,2,...}.

the integers; the natural numbers together with their negatives;
B=deany—2,~1,0,1,2,...}

the rational numbers; ratios of integers; for nonzero ¢, Q = { p/q |
P,9E€EZ}.

the real numbers; includes the rational numbers together with
those that are not (that is, the irrational numbers).

the complex numbers; C = {a +ib | a,b € R }; each complex
number a + ib is associated with the point (a,b) in the complex
plane.

the golden ratio; ¢ = (1 + v/5)/2; a fixed point of the map
F(z) = 2® — 1; arises naturally in conjunction with the Fibonacci
sequence.

the base of the natural logarithm; it is shown in calculus that

and that e = 3 ;o 1/k! = 2.71828 . . ..
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the ratio of a circle’s circumference to its diameter; the constant
7 =3.14159 .. ..

the imaginary unit; ¢ = v/—1; ¢ and its negation —i have squares
which are negative unity.

Real Variables and Special Functions:

i

N

a real variable; often used as a function argument (as in F(z), for
example) or the real part of a complex number such as z + iy; the
subscripted variable zg usually denotes the first in a sequence of
real numbers sometimes obtained by iteration.

usually denotes a real variable; often used as a function value as in
y = F(z), or the imaginary part of a complex number like z + iy.

the absolute value of z is defined to be —z if  is negative, and z
otherwise; formally,
&
x| =
2= {7,

the magnitude of z; the positive distance between  and the origin
on the real line.

ifz>0
ife<0’

the square root of z; defined to be that number whose square is
E,

Complex Variables and Special Functions:

z

rez

im z

a complex variable; 2 = z + iy where z,y € R; z; usually denotes
the first in a sequence of complex numbers obtained by iteration.

the conjugate of z; if z = z + iy, then z = = — iy.
the real part of z; if z = z + iy, then rez = z;

the imaginary part of z; if 2 = z + 4y, then imz = y; taken to-
gether, the real and imaginary parts completely specify the com-
plex number z in what is known as rectangular coordinates.

the absolute value or modulus of z, often denoted by the letter r;
defined to be the real quantity \/(re 2)? + (im z)?; the Euclidean,
or straight-line, distance between z and the origin in R x IR,
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arg z

vz

the argument of z, oftentimes denoted by #; taken together, the
modulus and argument completely specify z in what is known as
polar coordinates.

the square root of z; defined to be that number whose square is
z; for an arbitrary complex number z,

Vz = /7 (cosf + isin6)

where r = |z| and tand = im z/ re z.

Functions and Functional Notation:

F

F(z)

dom F
range I

image F'

F.(z)

a function, or mapping between two sets; sometimes written as
F: A — B; the lone symbol F' refers to an object of great concep-
tual power,

a function value, sometimes written as y = F(z); this notation
suggests a process whereby x is mapped to y via F'; for example,
if F(z) = 23 + «, then y = F(1) = 2; that is, (1,2) is a point on
the graph of F.

the domain of F'; the set of all possible inputs; if F': A — B, then
domF' = A.

the range of I'; any set containing all possible outputs; if F: A —
B, then range F' = B.

the image of the function F'; the set of all possible outputs; if
F:A — B, then imageF' = F(A) C B; if range F' = image F,
then we say that F' is onto B.

maps to; specifies a function with no name; for example, when
we write 2 +— 22% — 2 4+ 1, we mean that each z in the function’s
domain gets mapped to a corresponding y in the function’s range
via the rule y = 222 — # + 1; a convenient notation in those
situations where a function name is unnecessary or awkward,

a family of functions dependent upon a parameter c; for exam-
ple, T.(z) = 2 + ca defines a family of cubics that includes the
member T with rule 7 (z) = 2® — z.

a value of the function F¢; in the previous example, T_,(1) = 0.
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the identity function; F%(x) = 2 for all 2; we sometimes write
FO=id.

the inverse of F; if F: A — B and F is one-to-one and onto B, then
F~1: B — A exists; moreover, F(F~1(z)) = F~1(F(z)) = z, that
is, composing a function with its inverse (or vice versa) gives rise
to the identity map; for example, let F':[—1/2,00) — [-17/4, c0)
with F(z) = 2®+2—4 so that F~1: [~17/4, 00) — [—1/2, 00) with
F=Y(2) = \/x + 17/4 — 1/2 is the inverse of F (in this example,
the reader should verify that F(F~1(z)) = F~1(F(z)) = = before
graphing F' and F~! on the same set of coordinate axes); the
graph of a function and its inverse are symmetric to one another
with respect to the diagonal y = z.

a value of the function F'~!; in the previous example, the rule

which produces this value is F~1(z) = \/z + 17/4 - 1/2.

Composition of Functions:

o

m.uu

composed with; the process F o G(z) is just another notation for
F(G(z)); for example, F'o FF~! = =10 F is the identity function
since

FoF Yz)=FloF(z)=2

by definition; note that composition of functions is not generally
commutative, that is, o G # G o F' (exercise: find a counterex-
ample).

the n-fold composition of a function with itself; the iterative def-
inition is simply

F" =FoFo---0F
{

n times

while the recursive definition is given by

m,:lﬁm.om..alﬁ forn>0
= > &l
F forn=20

where F is the identity transformation; the alternative notation
F°" is sometimes used in lieu of the potentially ambiguous F".
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()

F="{(z)

Fixed
fix F

a particular value of the composite function F™; also thought of
as the process of iterating I n times on z, thereby producing the
forward orbit of # comprised of the sequence of values

z,F(z), F¥(z),..., F*(z);
the forward orbit of z is sometimes denoted by O (z).

the n-fold composition of F~1 with itself; like the above definition
of F, the iterative definition of F'=" is

ﬁl:”%i_omﬂlpc...oﬁrw

"
n times

while the recursive definition is given by

Fn— Ahﬂlmo‘mﬂlmziuv forn>0
Fo forn=0

where once again F' is the identity transformation.

a value of the function F="; also seen as the process of iterating
F~! n times on z; this gives the backward (or inverse) orbit of &
consisting of the sequence of values

2, F=Na), F=¥ ), 00, ),

the backward orbit of  is sometimes written as O~ (z).

and Eventually Fixed Points:

the set of fixed points of the function F; z € fix F if F(z) = &; in
terms of the graph of F', a fixed point occurs at every intersection
of the graph with the diagonal.

the set of eventually fixed points of the function F; z € fix I’
if there exists an m > 0 such that F™(z) is fixed, that is, if
F™tl(2) = F(F™(z)) = F™(z); note that all the fixed points of
F' are eventually fixed with m = 0, that is, fix F C fix F.
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Periodic and Eventually Periodic Points:

per,, F'

perpt I

per, '

the set of periodic points of period n of F'; z € per, F if F™(z) =
z, that is, periodic points are fixed under F"; alternatively, think
of iterating F' n times before returning to  as in the orbit

z, F(z), F¥(z),...,F"(z) = =;

we say @ is of prime period n if n is the smallest integer such that
F?(z) = x; note that per; F' = fix F' by definition.

a subset of the eventually periodic points of period n of F; & €
per? F if F™+"(2) = F™(z), that is, eventually periodic points
of I" are eventually fixed under F™; in this case, think of iterating
F' m times before entering the periodic part of the orbit of z, and
then n more times to traverse the loop as in

2, P(z), F(®), ..., F™(2), F™¥(g),..., F™n—1(g) Frie(g)

where F™*"(z) = F™(z); the integer m is called the preperiod
of the orbit of .

the set of eventually periodic points of period n of F; z € per,, F'
if there exists an m > 0 such that F™(z) is periodic, that is, if
Fmin(g) = FP(F™(z)) = F™(x); note that all periodic points
are eventually periodic by taking m = 0, and that per; F = fix F;
also note that

per, F = C per F,
meN

that is, the set of eventually periodic points may include points
of arbitrary preperiod.

Basins of Attraction:

W (p)

w*(p)

the stable set of the periodic point p; € W*(p) if there exists
an n such that F*(p) = p and F**(z) — p as k — oco.

the unstable set of the periodic point p; € W¥(p) if there exists
an n such that F™(p) = p and F~**(z) — p as k — oo.
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Miscellaneous:

approaches; for example, when we write F™(z9) — 2 as n — oo,
we mean that the orbit of 2y gets arbitrarily close to 2 as the
number of iterations n gets large.

infinity; a set is countably infinite if it can be put into one-to-one
correspondence with the natural numbers, otherwise it is uncount-
able; the integers and the rationals are countably infinite, but the
reals are uncountable, which is meant to suggest that there are
more irrational numbers than there are rationals.

implies; often used in a mathematical derivation to indicate that
one step logically follows another.

assign to; denotes a process of substitution; used in programming
languages and pseudocode algorithms to denote the assignment
of a value to a variable; for example, y := y + 3 adds 3 to the
old value of y and then assigns this sum to the variable y; the old
value of y is lost as a result.



Appendix B

Map Index

This is an index to all of the iterated mappings referred to in the text
A First Course in Chaotic Dynamical Systems by Robert L. Devaney. A
boldfaced entry is the page number for a figure or table, while an #alicized
number is the page of an exercise. Otherwise the entry is a textual reference
to that particular mapping. Superscripts indicate multiple references on the
same page or set of pages.

Linear Functions:

Ap =114, 4 10
Pay1 =rPy 11
Flg) =2 36, 45
F(z)= —z 45
L) = wa 22
By =T1s 10
T(z) = 2 21, 94

A(z) =rz 11

INDEX
Alz) = az
H(z) = \/uz
F(z)=(2-2)/10
mﬂﬁﬁv = WH -2
maAHv = =2z +1
Flz)=4-22
Flz)=3zx+2
F(z)=az+b

Quadratic Functions:

F(z) = 2*

F(z)=2%+0.25

F(z)=2%-0.24
F(z)=2?-0.75
F(z)=2z*+1
F(z)=2%-1
F(z)=2%-1.1
F(z)=2z%>-1.25

Q-16(x) =2*-1.6
le.mﬁav = .......N —1.8
Q(z) = x® — 1.7548777

238

38, 39¢
1Y
50

34

34

178

27

35, 162

19, 21, 22, 262%, 33, 34, 34,
37, 37-38, 38, 42, 49, 158,
161, 281

49
49
49

17-18, 26, 27, 34, 170-171,
171, 172, 174, 275

20, 21, 46, 46, 47, 48, 49,
166, 167

31, 312, 35, 49

49

126, 127

126, 127

143-147, 143, 144?, 145



239

F(z)=2%-2
Qe(z) =22 +¢
G(z) =222 -1
F(z) = —22
F(z)=1-2*

Flz)=2z—-2=2(1-2)
F(x) = 04z(1 — z)
F(z)=1.6z(1-z)
F(z)=22(1-2)

F(z) = 242(1 - z)

F(z) =32(1 - 2)
F(z)=4z(1-z)
Fy(z)=dz(1 —2z)

Poy1 = AP (1 - Py)
F(z)=2®—-=z/2
F(z)=2"—-2z
F(z) =z +2*
He(z) = z + ca?

APPENDIX B. MAP INDEX

21, 22-23, 23, 24, 25, 26, 27,
121, 124, 127-128, 128, 132

17, 25, 52-56, 53, 553, 59,
59-60, 60, 61-63, 63-66, 64*,
674, 69-75, 70, 712, 72, 73,
74?%, 80, 82-88, 84?%, 852, 89—
92, 906, 915, 92, 93, 94, 97
98, 106-111, 120, 128, 129,
142, 142? 1442, 145, 154,
158, 174, 178

1822

34

27, 50
34,45, 45, 49, 50

49

49

34, 40, 41, 49

49

49, 50
31-32, 32, 126, 126, 132

17, 57, 59, 602, 60, 61, 66,
67-68°, 811, 88, 88, 92, 94
95, 96, 128, 129, 155

12

50

173

50, 172, 173
67

INDEX

Flz)=2%—z—4

F(z)= IWam._. Wa +1

P(z)=2+z+ )

Cubic Mappings:
F(z)=2®

F(z)=2"+c¢
F(z)==z+2®
F(z)=2%—=2
F(z) = z° - 32
F(z) =2 -5z
G(z) = 4a® — 3z
Fy(z) = Az + 2°
Fo(z) = 2° — az
F(z) = —2°
F(z)=z-2°
Fy(z) = Az — 2®
Fy(z) = Mz — 23/3)
F(z) =z* +32°
F(z) =}z - 1)
Gu(e) =2’z —1)+p
iy &

240

19
20-21, 48

672

19, 32, 333, 33, 42, 161, 279~
280

67
45, 50, 167, 174
51, 281

27, 50, 81

169, 170

126, 127, 132
67°

266

34, 42

45, 50

63, 653, 68

94

167,172, 173
168

17

50
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Fo(z) = 2 + ca® + 2°

Higher-degree Polynomials:
F(z) = z* + 2?
F(z)=2* — 42242
G(z) = z* —2? —11/36
Fyo(z) = (2* - 1)(=* + a)
z+— dz(l —z)(1 - 2z)?
F(z) =2°
F(z) = —z°
Fy(z) = 2° — X

F(z) = ®

Piecewise Linear Mappings:

A(z) = ||

F(z) = |z -2
Fl@)=|z—-2|-1
V(z)=2|z| -2

_Je+1 ifz<3b
EaTﬁ ma|m:av,§

_ | 3 ifz<1/3
Ea1ﬁ ~32+3 ifz>1/3
V[ 2 if0<z<1/2
b?TAETH if1/2<z<1
_f 2 if0<z<1/2
H?ulﬁmuwa if1/2<z<1

APPENDIX B. MAP INDEX

67

173

50

174

170, 175, 277
952

27

3

68

27

26, 27%, 34

27, 34

50

121-124, 1222, 123, 131

a0
132

24-25, 24, 274, 50, 132, 171,
282, 283

285, 84, 50, 132

INDEX

_ ] 3= ifz<1/2
ﬁaTﬁ wiuazav:m

I fo<z<1/2
ﬂoﬁavlﬁ alnammH\mMHm_

Rational Maps:

m.ﬁeuﬂw

1
hum.ﬁv” .w.l&
Fz)= W -1
kgl nﬁun_.@
P = g
F(z) = 1/z*

=

_—

B

—

Il

b2 | =
AT
&

+

| en
~—

Radicals:
F(z) =z
F(z) = 21/3

F(z) = 223

807, 112-113

953

34, 50, 162, 173, 282
34
173

162

163
a0

166

13-15

173

182, 30, 30, 179, 281
169, 282
173

242
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&r

F(z)= Iﬂ

Exponentials and Logarithms:

E(z)=¢€"

E(z) = —ee”

E(z) = Wma gl
Ex(z) = Ae®
Fla)=¢e"

F(z) = ze®
Ex(z)=¢€e"+ A
E)(z) = Me® — 1)
G(x) = exp(~1/2%)
L(z)=In|z — 1]

Trigonometric Functions:

S(z) =sinz

S(z) = —sinz

F(z)=04sinz

S(z) = Wmm:_ x

S(z) =wsina
Su(z) = psinz
S(z) = sin(2z)

F(z)=zsinz

APPENDIX B. MAP INDEX

173

34, 154
51

270, 50

17, 2702

161

178

57, 59, 59%, 60, 61
672

167, 175

51

18, 19, 20, 34, 49, 50, 155,
272

50
49
50

81
17, 57, 672, 94
26

27

INDEX

F(z) = sin Amauﬁv

C(z) =cosx

gy = Wno@. -

C(z) =mcosz
Cx(z) = Acosz

C(z) = —2cos(wz/2)
F(z) = cos(z? + 1)

1
cos(z? — 2)

T(x) =tanz

Flz)=

A(z) = arctan z
Ax(z) = darctan z

Az) = Im arctan(z + 1)

F(z) = tan Aﬂ“@v
(=) = cot(xz)

F(z) =secx

Circle Maps
D(6) = 26
F(0) = 30
B(6) = 2 cos

163
192, 20, 30, 31, 119
50

158, 159
946
123, 123
161

163

50, 163, 280, 281, 282
50, 161, 280, 281, 282
159, 160

50

163

172
173

125-126
132
125-126, 126

244
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Symbol Maps
S, the itinerary

o, the shift map

oy, the N-shift

Complex Functions

Linear Functions:
Lo(z) = az
F(z)=az+p

Quadratic Functions:

Qz) = 2*

F(z)=22+1
Qi) =2 -1
Qa(z) =22 +2
Qi(z) =22 +i
Qe(z) =2 +¢

F(2) =i2?

APPENDIX B. MAP INDEX

98, 106-111, 112, 120, 148

103-109, 116-117,119-120, 1313,
148, 150, 152-153°

1127

209-212, 214, 218-219, 219
219

217, 2192, 220, 221-224, 225,
925, 274, 275, 2782

216, Fig. 18.4a, 275, 276, 278
242, 273, 275, 277

219, 243

3, 219, 244-245

Plates 1-24, 32, 4, 213, 216,
217, 218, 221, 224, 225, 227
243, 2442, 246-260, Figs. 17.8—
17.10, 2603, 261, 262

219

INDEX

QNANVHNm+m
L(z)=z+22
F(z)=2*4+2+1

L(z) = .Wnﬁ —z)

F(z) =2z(i - 2)
F(2) = —iz(1 - 2)/2
Fi(z) = Az(1 —2)
F(z)=(2—a)(z - )

Cubic Mappings:
F(z +iy) = (z +iy)®
F(z)=2°
Gz) =21
Fo(z) =22 +¢
P(z)=22-32+3
P(z)=23—-162+1
Cap(2) =2 +az+b
C_a0(z) = 2° —az
F(z) = 2%(z - 1)
Ga(2) = Mz - 2%)
F(z) =2 +(i+1)z

Higher-degree Polynomials:

Fo(z) = (22 -1)(2% 4 a)

260
278
219

278

2192
219
245, 260, 261°
278

219
243, 244

Fig. 18.4b, 276

244

266°

267

264-266, 266°, 267
266

278

244

219*

Figs. 18.5a-b, 276, 277

246
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szt a2 +ba+c
ba_ANVHNa_

Foa(z)=2%+¢

Rational Maps:

F(z)=-1/z
H(z) = mMN
H(z) = NHW.

z—=]
Hiz)= i
H(z)== W

N(z)=

Eaan|Wv

Fo(z) = e(2% 4+ =)

Exponential Functions:

z e’

z+—0.3¢*
E(z) = Man

€
2= (1 4+ 29)e?
Ex(z) = Xé?

APPENDIX B. MAP INDEX

267%
243, 278
219, 261¢, 2622

219

278
275, 278
274, 278
244, 245
273, 274
275

262

2760, 278
270
270

269
Plates 30-33, 267269, 2702

INDEX

F(z) = z¢*

Trigonometric Functions:

Sx(2) = Asinz

z2++2.95cosz2

Ca(z) = Acosz

Sx(iy) = idsiny
Ciu(z) = ipcosz

Non-analytic complex maps:

F(z) = ||

F(z +1iy) = & +iy°
Flz+iy) =iz —y
F(z + iy) = 2% + iy?

LT..ANV =Z
RAGANV = 72
Acz) =2 +¢

248

278

Plates 25-29, 4, 270, 271, 2726,
272

4

Plates 34-35, 271, 272, 272,
272, 273

272
273

219
214, 216

219

219, 220

213, 219

264

Plates 36-38, 219, 263, 264°



