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Abstract

In this paper we establish rigorously that the family of Burgers vortices of the
three-dimensional Navier-Stokes equation is stable for small Reynolds numbers.
More precisely, we prove that any solution whose initial condition is a small per-
turbation of a Burgers vortex will converge toward another Burgers vortex as time
goes to infinity, and we give an explicit formula for computing the change in the cir-
culation number (which characterizes the limiting vortex completely.) We also give
a rigorous proof of the existence and stability of non-axisymmetric Burgers vortices
provided the Reynolds number is sufficiently small, depending on the asymmetry
parameter.

1 Introduction

Numerical simulations of turbulent flows have lead to the general conclusion that vortex
tubes serve as important organizing structures for such flows – in the memorable phrase
of [9] they form the “sinews of turbulence”. After the discovery by Burgers [1] of the
explicit vortex solutions of the three-dimensional Navier-Stokes equation which now bear
his name, these solutions have been used to model various aspects of turbulent flows [17].
It was also observed in numerical computations of fluid flows that the vortex tubes present
in these simulations usually did not exhibit the axial symmetry of the explicit Burgers
solution, but rather an elliptical core region. This lead to a search for non-axisymmetric
vortices [13], [9], [6]. While no rigorous proof of their existence was available until recently,
perturbative calculations and extensive numerical simulations have lead to the expectation
that stationary vortical solutions of the three-dimensional Navier-Stokes equation do exist
for any Reynolds number and all values of the asymmetry parameter (which we define
below) between zero and one.
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When addressing the stability of Burgers vortices, it is very important to specify
the class of allowed perturbations. If we consider just two-dimensional perturbations
(i.e., perturbations which do not depend on the axial variable), then fairly complete
answers are known. Robinson and Saffman [13] computed perturbatively the eigenvalues
of the linearized operator at the Burgers vortex and proved its stability for sufficiently
small Reynolds numbers. Numerical computations of these eigenvalues were performed
by Prochazka and Pullin [10], and no instability was found up to Re = 104. A similar
conclusion was drawn for non-symmetric vortices [11]. The first mathematical work is [5],
where we proved that the axisymmetric Burgers vortex is globally stable with respect to
integrable, two-dimensional perturbations, for any value of the Reynolds number. Decay
rates in time of spatially localized perturbations were also computed, explaining partially
the numerical results of [10]. Building on this work the existence and local stability of
slightly asymmetric vortices with respect to two dimensional perturbations was proved in
[4] for arbitrary Reynolds numbers.

The stability issue is much more difficult if we allow for perturbations which depend
on the axial variable too, and very few results have been obtained so far in this truly
three-dimensional case. One early study by Leibovich and Holmes [7] concluded that
one could not prove global stability for any Reynolds number solely by means of energy
methods. Using a kind of Fourier expansion in the axial variable, Rossi and Le Dizès [14]
showed that the point spectrum of the linearized operator is associated with purely two-
dimensional perturbations. Crowdy [2] obtained a formal asymptotic expansion of the
eigenfunctions in the axial variable. In an important recent work, Schmid and Rossi [16]
rewrote the linearized equations in a form which allowed them to compute numerically
the evolution of various Fourier modes, from which they concluded that eventually all
perturbative modes will be damped out.

In this paper we address rigorously the existence of non-axisymmetric vortices and
the stability with respect to three-dimensional perturbations of both the symmetric and
non-symmetric vortex solutions. More precisely we will prove that, for all values of the
asymmetry parameter between zero and one, non-axisymmetric vortices exist at least for
small Reynolds numbers. In addition, we show that this family of vortex solutions is, in
the language of dynamical systems theory, asymptotically stable with shift. That is to say,
if we take initial conditions that are small perturbations of a vortex solution, the resulting
solution of the Navier-Stokes equation will converge toward a vortex solution, but not, in
general, the one which we initially perturbed. We also give a formula for computing the
limiting vortex toward which the solution converges.

We now state our results more precisely. The three-dimensional Navier-Stokes equa-
tions for an incompressible fluid with constant density ρ̄ and kinematic viscosity ν are the
partial differential equations:

∂tu + (u · ∇)u = ν∆u− 1

ρ̄
∇p , ∇ · u = 0 . (1)

Here u(x, t) is the velocity of the fluid and p(x, t) its pressure. Equation (1) will be
considered in the whole space R3. Burgers vortices are particular solutions of (1) which
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are perturbations of the background straining flow

us(x) =

 γ1x1

γ2x2

γ3x3

 , ps(x) = −1

2
ρ̄(γ2

1x
2
1 + γ2

2x
2
2 + γ2

3x
2
3) , (2)

where γ1, γ2, γ3 are real constants satisfying γ1 + γ2 + γ3 = 0. We restrict ourselves to the
case of an axial strain aligned with the vertical axis, namely we assume γ1, γ2 < 0 and
γ3 > 0. Setting u = us + U, we obtain the following evolution equation for the vorticity
Ω = ∇×U:

∂tΩ + (U · ∇)Ω− (Ω · ∇)U + (us · ∇)Ω− (Ω · ∇)us = ν∆Ω , ∇ ·Ω = 0 . (3)

Under reasonable assumptions which will be satisfied for the solutions we consider, the
rotational part U of the velocity can be recovered from the vorticity Ω by means of the
Biot-Savart law:

U(x) = − 1

4π

∫
R3

(x− y)×Ω(y)

|x− y|3
dy , x ∈ R3 . (4)

For notational simplicity we begin by discussing the axisymmetric case where γ1 =
γ2 = −γ3/2. In this situation, it is well-known [1] that (3) has a family of explicit
stationary solutions of the form Ω = ΓΩ̂B, where Γ ∈ R is a parameter and

Ω̂B(x⊥) =

 0
0

Ω̂B(x⊥)

 , Ω̂B(x⊥) =
γ

4πν
e−γ|x⊥|

2/(4ν) . (5)

Here x⊥ = (x1, x2), |x⊥|2 = x2
1 + x2

2, and γ ≡ γ3 > 0. The velocity field corresponding to
ΓΩ̂B is ΓÛB, where

ÛB(x⊥) =
1

2π

−x2

x1

0

 1

|x⊥|2
(

1− e−γ|x⊥|2/(4ν)
)
. (6)

These solutions are called the axisymmetric Burgers vortices. Observe that
∫

R2 Ω̂B dx⊥ =

1, so that the parameter Γ represents the circulation of the velocity field ΓÛB at infinity
(in the horizontal plane x3 = 0). Following [9], we define the Reynolds number associated
with the Burgers vortex ΓÛB as

R =
|Γ|
ν

. (7)

Our principal result concerns the evolution of solutions of (3) with initial conditions
that are close to a Burgers vortex. Unlike in much previous work the perturbations we
consider do not merely depend on the transverse variables x⊥, but also on x3. We prove
that any solution of (3) starting sufficiently close to the Burgers vortex with circulation Γ
converges as t→ +∞ toward a Burgers vortex with circulation Γ′ close to Γ, and we give
an explicit formula for computing the difference Γ′−Γ in terms of the initial perturbation.

We now introduce some function spaces to measure the size of our perturbations.
Roughly speaking, we require the perturbations to decay as inverse powers of x⊥ as
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|x⊥| → ∞, but need only boundedness in x3. To be specific, we use the following weight
function

b(x⊥) = (1 + γx2
1/ν)1/2(1 + γx2

2/ν)1/2 , x⊥ = (x1, x2) ∈ R2 . (8)

Given any m ≥ 0, we define L2(m) = {ω : R2 → R | ‖ω‖L2(m) <∞}, where

‖ω‖2
L2(m) =

1

γν

∫
R2

b(x⊥)2m|ω(x⊥)|2 dx⊥ . (9)

In other words, a function ω belongs to L2(m) if and only if ω, |x1|mω, |x2|mω, and
|x1x2|mω are square integrable over R2. For later use, we observe that L2(m) is contin-
uously embedded into L1(R2) if m > 1/2, i.e. there exists C > 0 such that ‖ω‖L1 ≤
C‖ω‖L2(m) for all ω ∈ L2(m).

Our main space X2(m) will be the set of all ω : R3 → R such that x⊥ 7→ ω(x⊥, x3) ∈
L2(m) for all x3 ∈ R, and such that the map x3 7→ ω(·, x3) is bounded and continuous
from R into L2(m). As is easily verified, X2(m) ' C0

b (R, L2(m)) is a Banach space
equipped with the norm

‖ω‖X2(m) = sup
x3∈R
‖ω(·, x3)‖L2(m) . (10)

Remark 1.1 If ω = (ω1, ω2, ω3) is a vector field whose components are elements of
X2(m), we shall often write ω ∈ X2(m) instead of ω ∈ X2(m)3, and ‖ω‖X2(m) instead of
‖(ω2

1 +ω2
2 +ω2

3)1/2‖X2(m). A similar abuse of notation will occur for other function spaces
too.

Consider initial conditions for the vorticity equation (3) which are a perturbation of
the Burgers vortex:

Ω0(x) = ΓΩ̂B(x⊥) + ω0(x) , (11)

with Γ ∈ R and ω0 ∈ X2(m)3. Define

δΓ =
( γ

2πν

)1/2
∫

R

∫
R2

e−γx
2
3/(2ν)ω0

3(x⊥, x3) dx⊥ dx3 . (12)

Just to make sure the notation is clear, in the integrand ω0
3 refers to the third component

of the initial perturbation ω0.

Theorem 1.2 Fix m > 3/2, and assume that (γ1, γ2, γ3) = γ(−1
2
,−1

2
, 1). For any µ ∈

(0, 1/2), there exist R0 > 0 and ε0 > 0 such that if |Γ| ≤ R0ν and ‖ω0‖X2(m) ≤ ε0,
then the solution Ω(x, t) of (3) with initial condition (11) converges as t tends to infinity
to the Burgers vortex with circulation number Γ′ = Γ + δΓ, where δΓ is given by (12).
Convergence is with respect to the L2(m) norm in x⊥ and uniformly on compact sets in
x3. More explicitly, if I ⊂ R is any compact interval we have

sup
x3∈I
‖Ω(·, x3, t)− Γ′Ω̂B(·)‖L2(m) = O(e−µγt) , t→ +∞ . (13)

Remark 1.3 Here and in the sequel, all constants are independent of the strain γ and
the viscosity ν. In fact, both parameters will shortly be eliminated by a rescaling.
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The proof of Theorem 1.2 uses ideas from our analysis of the stability of the two-
dimensional Oseen vortices in [5]. The main observation is that, if we linearize equation
(3) at the Burgers vortex ΓΩ̂B for small Γ, we obtain a small perturbation of a non-
constant coefficient differential operator for which we can explicitly compute an integral
representation of the associated semigroup. This semigroup decays exponentially when
acting on functions ω ∈ X2(m)3 provided ω3 ∈ X2

0 (m), where

X2
0 (m) =

{
ω ∈ X2(m)

∣∣∣ ∫
R2

ω(x⊥, x3) dx⊥ = 0 for all x3 ∈ R
}
. (14)

Thus an important step in the proof consists in decomposing the perturbation as ω(x, t) =
ϕ(x3, t)Ω̂

B(x⊥) + ω̃(x, t), where

ϕ(x3, t) =

∫
R2

ω3(x⊥, x3, t) dx⊥ , x3 ∈ R , t ≥ 0 .

By construction ω̃3 ∈ X2
0 (m), hence ω̃(x, t) will decay exponentially to zero by the remark

above. Now, the crucial point is that ϕ(x3, t) satisfies the amazingly simple equation

∂tϕ+ γx3∂3ϕ = ν∂2
3ϕ ,

which can be solved explicitly, see (51) below. From the solution formula we see that
ϕ(x3, t) converges uniformly on compact sets to the value δΓ as t→∞, and (13) follows.
In other words, ϕ is a “zero mode” which is responsible for the fact that the family of
Burgers vortices is only asymptotically stable with shift.

While the axisymmetric vortex solution has been extensively studied because of the
explicit formulas for its velocity and vorticity fields, numerical experiments on turbulent
flows seem to indicate that the vortex tubes that are prominent in these flows are not
symmetric, but rather elliptical in cross section. A natural way to obtain such vortices is
to assume that the straining flow is not axisymmetric, namely

γ1 = −γ
2

(1 + λ) , γ2 = −γ
2

(1− λ) , γ3 = γ , (15)

where γ > 0 and λ ∈ [0, 1) is an additional parameter which measures the asymmetry of
the strain. While no explicit formulas for the vortex are known when λ > 0, extensive
perturbative and numerical investigations indicate that there do exist stationary solutions
of (3) for 0 ≤ λ < 1, which for λ close to zero are small perturbations of the vorticity field
of the axisymmetric Burgers vortex [13], [9], [11]. As in the symmetric case, there is in
fact a family of vortices for each value of λ ∈ [0, 1) parametrized by the total circulation
Γ, but when λ > 0 these solutions are not just multiples of one another.

In Section 2 we give a simple but rigorous proof of the existence of these non-
axisymmetric vortex solutions for all values of λ ∈ [0, 1), provided the circulation Reynolds
number of the flow is sufficiently small (depending on λ). A complementary result is ob-
tained in [4] where we prove that, if λ > 0 is sufficiently small, non-axisymmetric vortex
solutions exist for all values of the Reynolds number.

The construction of these non-axisymmetric vortices requires some work, so as a first
step we rewrite the Navier-Stokes and associated vorticity equation in non-dimensional
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form. This simplifies the expressions for the solutions and also the equations themselves.
Fix λ ∈ [0, 1) and assume that the straining flow is given by (2), (15) for some γ > 0. We
replace the variables x, t and the functions u, p with the dimensionless quantities

x̃ =
(γ
ν

)1/2

x , t̃ = γt , ũ =
u

(γν)1/2
, p̃ =

p

ρ̄γν
, (16)

where ν > 0 is the kinematic viscosity. Dropping the tildes for simplicity, we see that the
new functions u, p satisfy the Navier-Stokes equation (1) with ν = ρ̄ = 1. Similarly the
new straining flow us is given by (2), (15) with γ = 1. Setting u = us + U, we obtain
that Ω = ∇×U satisfies (3) with ν = 1, namely

∂tΩ + (U · ∇)Ω− (Ω · ∇)U + (us · ∇)Ω− (Ω · ∇)us = ∆Ω , ∇ ·Ω = 0 . (17)

Thus the main effect of the change of variables (16) is to set γ = ν = 1 everywhere.
In particular, in the dimensionless variables the weight function (8) becomes b(x⊥) =
(1 + x2

1)1/2(1 + x2
2)1/2, and the norm (9) reduces to ‖ω‖L2(m) = ‖bmω‖L2 .

To formulate our result, we define

Gλ(x⊥) =

√
1− λ2

4π
e−

1
4

((1+λ)x2
1+(1−λ)x2

2) , x⊥ = (x1, x2) ∈ R2 . (18)

If λ = 0, Gλ(x⊥) is just the vorticity field (5) of the symmetric Burgers vortex written in
the new coordinates, and the family of these vortices is indexed by the non-dimensionalized
circulation number ρ = Γ/ν. As we show below, for any λ ∈ (0, 1), Gλ(x⊥) is still the
leading order approximation to the vorticity of the non-axisymmetric Burgers vortex, for
small Reynolds number |ρ|. Our precise result is:

Theorem 1.4 Fix m > 3/2, λ ∈ [0, 1), and assume that (γ1, γ2, γ3) is given by (15) with
γ = 1. There exist R1(λ) > 0 and K1(λ) > 0 such that, for |ρ| ≤ R1, the vorticity
equation (17) has a stationary solution ΩB(x⊥; ρ, λ) which satisfies

ΩB(x⊥; ρ, λ) =

 0
0

ΩB(x⊥; ρ, λ)

 ,

∫
R2

ΩB(x⊥; ρ, λ) dx⊥ = ρ , (19)

and
‖ΩB(·; ρ, λ)− ρGλ(·)‖L2(m) ≤ K1ρ

2 . (20)

Furthermore, ΩB(·; ρ, λ) is a smooth function of ρ and λ, and there is no other stationary
solution of (3) of the form (19) satisfying ‖ΩB − ρGλ‖L2(m) ≤ 2R1.

Remark 1.5 The proof shows that R1(λ)→ 0 and K1(λ)→∞ as λ→ 1. On the other
hand, R1(0) > 0 and K1(λ) = O(λ) as λ → 0. In particular, setting λ = 0 in (20), we
recover that ΩB(·; ρ, 0) = ρG0.

Remark 1.6 Theorem 2 shows that the asymmetric Burgers vortex ΩB(x⊥; ρ, λ) decays
rapidly as |x⊥| → ∞, since the parameter m > 3/2 is arbitrary (note, however, that the
constants R1, K1 depend on m). In fact, proceeding as in [4], it is possible to show that
ΩB has a Gaussian decay as |x⊥| → ∞. Moreover, ΩB is also a smooth function of x⊥,
see Remark 2.3 below.

6



Finally, we prove that these families of non-symmetric vortices are stable in the same
sense as the symmetric Burgers vortices are.

Theorem 1.7 Fix m > 3/2, λ ∈ [0, 1), and assume that (γ1, γ2, γ3) is given by (15) with
γ = 1. For any µ ∈ (0, 1

2
(1−λ)), there exist R2(λ) > 0 and ε2(λ) > 0 such that, if |ρ| ≤ R2

and if Ω0(x) = ΩB(x⊥; ρ, λ) + ω0(x) with ω0 ∈ X2(m)3 satisfying

‖ω0‖X2(m) + λ‖∂3ϕ
0‖2
L∞ ≤ ε2 , where ϕ0(x3) =

∫
R2

ω0
3(x⊥, x3) dx⊥ , (21)

then the solution Ω(x, t) of (17) with initial data Ω0 converges as t→ +∞ to the vortex
solution ΩB(x⊥; ρ′, λ), where ρ′ = ρ+ δρ and δρ = (2π)−1/2

∫
R
e−x

2
3/2ϕ0(x3) dx3, see (12).

More precisely, for any compact interval I ⊂ R, we have

sup
x3∈I
‖Ω(·, x3, t)−ΩB(·; ρ′, λ)‖L2(m) = O(e−µt) , t→ +∞ . (22)

The symmetric case λ = 0 is included in Theorem 1.7, which therefore subsumes
Theorem 1.2. Note however that the assumptions on the initial data are more restrictive
when λ > 0, because we then need a condition on ∂3ϕ

0. This is due to the fact that
non-axisymmetric Burgers vortices with different circulation numbers are not multiples
of one another.

The rest of the text is organized as follows. In Section 2, we prove the existence of
non-axisymmetric Burgers vortices for small Reynolds numbers. The core of the paper is
Section 3, where we show that these families of vortices are asymptotically stable with
shift. Section 4 is an appendix where we collect various estimates on the semigroup
associated to the linearized vorticity equation, together with a few remarks concerning
the Biot-Savart law.

2 Existence of non-axisymmetric Burgers vortices

The properties of non-axisymmetric Burgers vortices seem first to have been studied by
Robinson and Saffman [13] who used perturbative methods to investigate their existence
for small values of the Reynolds number. There were many further investigations in the
intervening years - we mention particularly the perturbative study of the large Reynolds
number limit of these vortices by Moffatt, Kida and Ohkitani [9], and the numerical work
of Prochazka and Pullin [11]. However, as far as we know there has been no rigorous
proof of the existence of these types of solutions and so in this section we present a
simple argument which proves the existence of non-symmetric vortices in the case of
small Reynolds number.

Fix λ ∈ [0, 1) and assume that γ1, γ2, γ3 are given by (15) with γ = 1. Motivated by
the perturbative calculations of [13] we look for stationary solutions of (17) of the form

ΩB(x⊥) =

 0
0

ΩB(x⊥)

 ,

∫
R2

ΩB(x⊥) dx⊥ = ρ ,
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for some ρ ∈ R (recall that |ρ| is the Reynolds number). Since ΩB depends only on
the horizontal variable x⊥ = (x1, x2) and has only the third component nonzero, the
associated velocity field UB depends only on x⊥ and has only the first two components
nonzero. Thus UB is naturally identified with a two-dimensional velocity field ŪB which
can be computed using the two-dimensional version of the Biot-Savart law:

ŪB(x⊥) =
1

2π

∫
R2

1

|x⊥ − y⊥|2

(
y2 − x2

x1 − y1

)
ΩB(y⊥) dy⊥ . (23)

Inserting these expressions into (17), we see that ΩB satisfies the scalar equation

ŪB · ∇⊥ΩB = (L⊥ + λM)ΩB , (24)

where L⊥ and M are the differential operators

L⊥ = ∆⊥ +
1

2
(x⊥ · ∇⊥) + 1 , M =

1

2
(x1∂1 − x2∂2) . (25)

Here we have used the natural notations ∇⊥ = (∂1, ∂2) and ∆⊥ = ∂2
1 + ∂2

2 .
We shall solve (24) in the weighted space L2(m) defined by (9) (with γ = ν = 1). Our

approach rests on the fact that the spectrum of the linear operator L⊥ + λM in L2(m)
can be explicitly computed, see Section 4.2. If m > 1/2, this operator turns out to be
invertible on the invariant subspace L2

0(m) defined by

L2
0(m) =

{
ω ∈ L2(m)

∣∣∣ ∫
R2

ω(x⊥) dx⊥ = 0
}
. (26)

This allows to rewrite (24) as a fixed point problem which is easily solved by a contraction
argument.

As a preliminary step, let V̄λ(x⊥) be the two-dimensional velocity field obtained from
Gλ(x⊥) by the Biot-Savart law (23). Using (18) and (25) one can easily verify that

(L⊥ + λM)Gλ = 0 , and

∫
R2

Gλ(x⊥) dx⊥ = 1 .

If we are given ΩB ∈ L2(m) with m > 1/2 and if ρ =
∫

R2 ΩB dx⊥, we can decompose

ΩB = ρGλ + ω , ŪB = ρV̄λ + ū , (27)

where ω ∈ L2
0(m) and ū is the velocity obtained from ω by the Biot-Savart law (23). With

these notations, finding a solution to (24) is equivalent to solving

(L⊥ + λM)ω = (ρV̄λ + ū) · ∇⊥(ρGλ + ω) , ω ∈ L2
0(m) . (28)

Note that (ρV̄λ + ū) · ∇⊥(ρGλ + ω) = ∇⊥ · ((ρV̄λ + ū)(ρGλ + ω)) since V̄λ and ū are
divergence-free. Thus the right-hand side of the (28) has zero mean as expected.

The next proposition ensures that the operator L⊥ + λM is invertible on L2
0(m) and

that (L⊥ + λM)−1∇⊥ defines a bounded operator from Lp(m) into L2
0(m), where Lp(m)

is the weighted space defined in (72).
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Proposition 2.1 Fix m > 3/2 and λ ∈ [0, 1). There exists C(m,λ) > 0 such that, for
all f ∈ L2

0(m),
‖(L⊥ + λM)−1f‖L2(m) ≤ C‖f‖L2(m) . (29)

Moreover, if p ∈ (1, 2], there exists C(m,λ, p) > 0 such that, for all g ∈ Lp(m),

‖(L⊥ + λM)−1∂ig‖L2(m) ≤ C‖g‖Lp(m) , i = 1, 2 . (30)

Proof: Let Tλ(t) denote the strongly continuous semigroup generated by L⊥ + λM, the
properties of which are studied in the Section 4.2. If f ∈ L2

0(m), we know from (73) that

‖Tλ(t)f‖L2(m) ≤ C e−
1
2

(1−λ)t‖f‖L2(m) , t ≥ 0 . (31)

Thus L⊥ + λM is invertible on L2
0(m) and we have the Laplace formula

(L⊥ + λM)−1f = −
∫ ∞

0

Tλ(t)f dt , f ∈ L2
0(m) . (32)

Combining (31), (32), we easily obtain (29). Assume now that f = ∂ig for some i ∈ {1, 2}
and some g ∈ Lp(m). Using (32) and (74) or (75), we obtain an estimate of the form

‖(L⊥ + λM)−1∂ig‖L2(m) ≤ C

∫ ∞
0

a(t)−
1
p e−

1
2

(1−λ)t‖g‖Lp(m) dt ,

where a(t) = 1 − e−t. Since p > 1, the singularity in the integral at t = 0 is integrable
and (30) follows. �

We can now rewrite (28) as ω = Fλ,ρ(ω), where Fλ,ρ : L2
0(m)→ L2

0(m) is defined by

Fλ,ρ(ω) = (L⊥ + λM)−1∇⊥ · ((ρV̄λ + ū) · (ρGλ + ω)) . (33)

For any r > 0, let Bm(0, r) denote the closed ball of radius r centered at the origin in
L2

0(m). The main result of this section is:

Proposition 2.2 Fix m > 3/2 and λ ∈ [0, 1). There exist R1(λ) > 0 and K1(λ) > 0
such that, if |ρ| ≤ R1, then Fλ,ρ has a unique fixed point ωλ,ρ in Bm(0, 2R1). Moreover
ωλ,ρ is contained in Bm(0, K1ρ

2) and ωλ,ρ is a smooth function of both λ and ρ.

Proof: Let Bλ : L2(m)× L2(m)→ L2
0(m) be the bilinear map defined by

Bλ(Ω1,Ω2) = (L⊥ + λM)−1∇⊥ · (Ū1Ω2) ,

where Ū1 is the velocity field obtained from Ω1 by the Biot-Savart law (23). If 1 < p < 2,
then ‖Ū1Ω2‖Lp(m) ≤ C‖Ω1‖L2(m)‖Ω2‖L2(m) by Corollary 4.5. Using in addition (30), we
see that there exists C1(λ) > 0 such that

‖Bλ(Ω1,Ω2)‖L2(m) ≤ C1(λ)‖Ω1‖L2(m)‖Ω2‖L2(m) , Ω1,Ω2 ∈ L2(m) .

Since Fλ,ρ(ω) = Bλ(ρGλ + ω, ρGλ + ω), we obtain, for all ω ∈ L2
0(m),

‖Fλ,ρ(ω)‖L2(m) ≤ C2(λ)ρ2 + C3(λ)(2|ρ|‖ω‖L2(m) + ‖ω‖2
L2(m)) , (34)
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where C2(λ) = ‖Bλ(Gλ,Gλ)‖L2(m) and C3(λ) = C1(λ) max(1, ‖Gλ‖L2(m)). Similarly, for all
ω1, ω2 ∈ L2

0(m),

‖Fλ,ρ(ω1)− Fλ,ρ(ω2)‖L2(m) ≤ C3(λ)‖ω1 − ω2‖L2(m)(2|ρ|+ ‖ω1‖L2(m) + ‖ω2‖L2(m)) . (35)

When λ = 0, Gλ is radially symmetric and V̄λ is azimuthal, hence V̄λ · ∇⊥Gλ = 0. Thus
C2(0) = 0, so that C2(λ) = O(λ) as λ→ 0.

Now, choose R1 > 0 sufficiently small so that

C2R1 ≤ 1 , and 8C3R1 ≤ 1 .

If |ρ| ≤ R1 and 2C2ρ
2 ≤ r ≤ 2R1, estimates (34) and (35) imply that Fλ,ρ maps the ball

Bm(0, r) into itself and is a strict contraction there. More precisely, if ω1, ω2 ∈ Bm(0, r),
then

‖Fλ,ρ(ω1)‖L2(m) ≤ r , and ‖Fλ,ρ(ω1)− Fλ,ρ(ω2)‖L2(m) ≤
3

4
‖ω1 − ω2‖L2(m) .

By the contraction mapping theorem, Fλ,ρ has a unique fixed point ωλ,ρ in Bm(0, r).
Choosing r = 2R1, we obtain the existence and uniqueness claim in Proposition 2.2. Then
setting r = K1ρ

2 with K1 = 2C2, we see that ωλ,ρ ∈ Bm(0, K1ρ
2). Finally, the smoothness

property is a immediate consequence of the implicit function theorem. Indeed, the map
(ω, λ, ρ) 7→ Fλ,ρ(ω) is obviously C∞ from L2

0(m)× [0, 1)×R into L2
0(m), and the partial

differential
DωFλ,ρ(ω) = ω̃ 7→ Bλ(ω̃, ρGλ + ω) + Bλ(ρGλ + ω, ω̃)

satisfies ‖DωFλ,ρ(ω)‖ ≤ 3/4 whenever |ρ| ≤ R1 and ω ∈ Bm(0, 2R1). Thus 1−DωFλ,ρ(ω)
is invertible at ω = ωλ,ρ, and the implicit function theorem implies that ωλ,ρ is a smooth
function of both λ and ρ. �

Theorem 1.4 is a direct consequence of Proposition 2.2. Indeed, if |ρ| ≤ R1(λ), we set
ΩB(x⊥; ρ, λ) = ρGλ(x⊥) + ωλ,ρ(x⊥), where ωλ,ρ is as in Proposition 2.2, and we denote by
ŪB(x⊥; ρ, λ) the two-dimensional velocity field obtained from ΩB by the Biot-Savart law
(23). Then

ΩB(x⊥; ρ, λ) =

 0
0

ΩB(x⊥; ρ, λ)

 , UB(x⊥; ρ, λ) =

 ŪB
1 (x⊥; ρ, λ)

ŪB
2 (x⊥; ρ, λ)

0

 (36)

is a stationary solution of (17) which has all the desired properties. In particular, since
ωλ,ρ ∈ L2

0(m), we have ∫
R2

ΩB(x⊥; ρ, λ) dx⊥ = ρ , (37)

while the fact that ωλ,ρ ∈ Bm(0, K1ρ
2) implies that (20) holds. For later use, we observe

that there exists C(λ,m) > 0 such that, for |ρ| ≤ R1,

‖ΩB(·; ρ, λ)‖L2(m) ≤ C|ρ| , and ‖∂ρΩB(·; ρ, λ)‖L2(m) ≤ C . (38)

Moreover ‖∂2
ρΩ

B(·; ρ, λ)‖L2(m) ≤ Cλ, because in the symmetric case ΩB(·; ρ, 0) = ρG0 so
that ∂2

ρΩ
B(·; ρ, 0) = 0.
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Remark 2.3 We chose to solve (24) in L2(m) because this is basically the space we shall
use in Section 3 to study the stability of the vortices. But it is clear from the proof of
Proposition 2.2 that nothing important changes if we replace L2(m) with the corresponding
Sobolev space

Hk(m) =
{
f ∈ L2(m)

∣∣∣ ∂i1∂j2f ∈ L2(m) for all i, j ∈ N with i+ j ≤ k
}
,

for any k ∈ N. This shows that the asymmetric Burgers vortex ΩB(x⊥; ρ, λ) is a smooth
function of x⊥ too. In particular, by Sobolev embedding, bmΩB(·; ρ, λ) ∈ C0

b (R2) (the space
of all continuous and bounded functions on R2) and we have the analogue of (38):

sup
x⊥∈R2

b(x⊥)m|ΩB(x⊥; ρ, λ)| ≤ C|ρ| , sup
x⊥∈R2

b(x⊥)m|∂ρΩB(x⊥; ρ, λ)| ≤ C . (39)

Moreover, since ΩB(·; ρ, λ) ∈ Lp(R2) for all p ∈ [1,+∞], Proposition 4.4 implies that
U(·; ρ, λ) ∈ Lq(R2) ∩ C0

b (R2) for all q ∈ (2,∞], and there exists C(q,m, λ) > 0 such that

‖UB(·; ρ, λ)‖Lq(R2) ≤ C|ρ| , and ‖∂ρUB(·; ρ, λ)‖Lq(R2) ≤ C . (40)

3 Stability with respect to three-dimensional pertur-

bations

We now prove that the family of vortices constructed in the previous section is asymp-
totically stable with shift, provided the circulation Reynolds number is sufficiently small,
depending on the asymmetry parameter λ ∈ [0, 1). In particular, our result applies to the
classical family of symmetric Burgers vortices (λ = 0).

Throughout this section we fix some λ ∈ [0, 1). For |ρ| sufficiently small we denote
by ΩB(x⊥; ρ), UB(x⊥; ρ) the asymmetric vortex (36) with total circulation ρ (to simplify
the notation, we omit the dependence on λ). As we mentioned in the introduction, if we
slightly perturb the vortex ΩB(·; ρ) the solution of the vorticity equation will converge
toward another vortex with a possibly different circulation. This means that we must
allow the parameter ρ to depend on time. Also, since the perturbations we consider may
depend on the axial variable x3, it turns out to be convenient to approximate the solutions
by vortices with different circulation numbers in different x3 sections. In other words, we
will consider solutions of (17) of the form

Ω(x, t) =

 0
0

ΩB(x⊥; ρ+ ϕ(x3, t))

 +

ω1(x, t)
ω2(x, t)
ω3(x, t)

 , (41)

where ϕ(x3, t) is determined so that
∫

R2 ω3(x⊥, x3, t) dx⊥ = 0 for all x3 and t. In view
of (37), it is obvious that any pertubation of ΩB(·; ρ) that is integrable with respect to
the transverse variables x⊥ can be decomposed in a unique way as in (41). Similarly, we
write the rotational part of the velocity field as

U(x, t) =

 ŨB
1 (x, t; ρ, ϕ)

ŨB
2 (x, t; ρ, ϕ)

0

 +

u1(x, t)
u2(x, t)
u3(x, t)

 , (42)
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where ŨB(x, t; ρ, ϕ) is the velocity field obtained from the vorticity ΩB(x⊥; ρ + ϕ(x3, t))
by the Biot-Savart law (4). It will be shown in Proposition 4.11 that ŨB(x, t; ρ, ϕ) is a
small perturbation of UB(x⊥; ρ + ϕ(x3, t)) if ϕ varies slowly in the x3 direction, namely
there exists C(λ) > 0 such that

sup
x∈R3

|ŨB(x, t; ρ, ϕ)−UB(x⊥; ρ+ ϕ(x3, t))| ≤ C‖∂3ϕ(·, t)‖L∞ . (43)

Let ω = (ω1, ω2, ω3)T and u = (u1, u2, u3)T denote the remainder terms in (41) and
(42) respectively. By construction, u is the velocity field obtained from ω by the Biot-
Savart law (4). Remark that ∇ · u = 0, but ∇ ·ω = −(∂ρΩ

B)∂3ϕ 6= 0, hence ω 6= ∇× u.
In broadest terms, our strategy is to show that ω(x, t) and ∂3ϕ(x, t) converge to zero as
time tends to infinity, so that the vorticity Ω(x, t) approaches one of the vortices ΩB(·; ρ′)
constructed in Section 2. With that in mind, we now write out the evolution equations
for ω and ϕ.

Inserting (41), (42) into (17) and using the identity (U·∇)Ω−(Ω·∇)U = ∇×(Ω×U),
we obtain after straightforward calculations:

∂tω = Lω + Pϕω + N(ω) +H(ϕ) , (44)

where the various terms in the right-hand side are defined as follows.

• The linear operator L is the leading order part of the equation, which takes into account
the diffusion and the effects of the background strain:

Lω = ∆ω + (ω · ∇)us − (us · ∇)ω =

 (L+ γ1)ω1

(L+ γ2)ω2

(L+ γ3)ω3

 .

Here γ1, γ2, γ3 are given by (15) with γ = 1, and

L = ∆− (us · ∇) = ∆ +
1

2
(x⊥ · ∇⊥) +

λ

2
(x1∂1 − x2∂2)− x3∂3 . (45)

• The term Pϕω = ∇× (ŨB ×ω + u×ΩB) describes the linear interaction between the
perturbation and the modulated vortex, namely:

Pϕω =

 ∂2(ŨB
1 ω2 − ŨB

2 ω1) + ∂3(ŨB
1 ω3 + u1ΩB)

∂1(ŨB
2 ω1 − ŨB

1 ω2) + ∂3(ŨB
2 ω3 + u2ΩB)

−∂1(ŨB
1 ω3 + u1ΩB)− ∂2(ŨB

2 ω3 + u2ΩB)

 . (46)

Here and in the sequel, to simplify the notation, we write ΩB instead of ΩB(·; ρ+ϕ) and
ŨB instead of ŨB(·; ρ, ϕ).

• The term N(ω) = ∇× (u×ω) collects all the nonlinear contributions in ω, specifically:

N(ω) =

 ∂2(u1ω2 − u2ω1) + ∂3(u1ω3 − u3ω1)
∂1(u2ω1 − u1ω2) + ∂3(u2ω3 − u3ω2)
∂1(u3ω1 − u1ω3) + ∂2(u3ω2 − u2ω3)

 . (47)

• Finally, H(ϕ) = LΩB +∇× (ŨB ×ΩB)− ∂tΩB is an inhomogeneous term which is due
to the fact that ΩB(·; ρ+ ϕ) fails to be a solution of (17) if ϕ is not identically constant.
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A simple calculation shows that Hi(ϕ) = ∂3(ŨB
i ΩB) for i = 1, 2. The third component of

H(ϕ) has a more complicated expression:

H3(ϕ) = (L⊥ + λM)ΩB −∇⊥ · (ŨBΩB) + (∂2
ρΩ

B)(∂3ϕ)2

−(∂ρΩ
B)(∂tϕ+ x3∂3ϕ− ∂2

3ϕ) , (48)

where L⊥ and M are defined in (25).
Equation (44) governs the evolution of both ϕ and ω. To separate out the evolution

equation for ϕ, we recall that ω satisfies the constraint
∫

R2 ω3(x⊥, x3, t) dx⊥ = 0. If we
integrate the third component of the vectorial equation (44) with respect to the transverse
variables x⊥, the first three terms in the right-hand side give no contribution, as can be
seen from the formulas (45), (46), (47). So we must impose∫

R2

H3(ϕ) dx⊥ = 0 , for all x3 and t . (49)

As is clear from (24), the first term in the right-hand side of (48) has zero mean with re-
spect to x⊥, and so does the second term because it is explicitly in divergence form. On the
other hand, differentiating (37) with respect to ρ, we obtain the identities

∫
R2 ∂ρΩ

B dx⊥ =
1 and

∫
R2 ∂

2
ρΩ

B dx⊥ = 0. Thus (49) gives the evolution equation for ϕ:

∂tϕ+ x3∂3ϕ = ∂2
3ϕ . (50)

Remarkably, this equation is linear and completely decoupled from the rest of the
system. As is easily verified, the solution of (50) with initial data ϕ(x3, 0) = ϕ0(x3) is
given by the explicit formula

ϕ(x3, t) = (Gt ∗ ϕ0)(x3e
−t) , x3 ∈ R , t > 0 , (51)

where

Gt(x3) =

√
1

2π(1−e−2t)
exp
(
− x2

3

2(1−e−2t)

)
, x3 ∈ R , t > 0 . (52)

The following simple estimates will be useful:

Proposition 3.1 If ϕ0 ∈ C0
b (R), the solution of (50) with initial data ϕ0 satisfies

‖ϕ(·, t)‖L∞ ≤ ‖ϕ0‖L∞ , ‖∂3ϕ(·, t)‖L∞ ≤
e−t√

1− e−2t
‖ϕ0‖L∞ , t > 0 . (53)

If moreover ∂3ϕ
0 ∈ L∞(R), we also have

‖∂3ϕ(·, t)‖L∞ ≤ e−t‖∂3ϕ
0‖L∞ , t ≥ 0 . (54)

Proof: Since ‖Gt‖L1 = 1, it follows immediately from (51) that ‖ϕ(·, t)‖L∞ ≤ ‖ϕ0‖L∞ . If
∂3ϕ

0 ∈ L∞(R), the same argument gives (54), because

∂3ϕ(x3, t) = e−t(Gt ∗ ∂3ϕ
0)(x3e

−t) = e−t(∂3Gt ∗ ϕ0)(x3e
−t) , t > 0 . (55)

To prove the second estimate in (53), we use the last expression in (55) and observe that
‖∂3Gt‖L1 = C/

√
1− e−2t, where C =

√
2/π < 1. �
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Remark 3.2 Proposition 3.1 shows in particular that (51) defines a semigroup of bounded
linear operators on C0

b (R), the space of all bounded and continuous functions on R
equipped with the L∞ norm. It is easy to verify that this semigroup is not strongly con-
tinuous in time, due to the dilation factor e−t in (51) which in turn originates in the
unbounded advection term x3∂3 in (50). However, if we equip C0

b (R) with the (weaker)
topology of uniform convergence on compact sets, then (51) defines a continuous function
of time.

We now return to the evolution equation for ω. Using (48), equation (50) for ϕ, and
equation (24) satisfied by the asymmetric vortex ΩB, we obtain for the inhomogeneous
term H(ϕ) the simpler expression

H(ϕ) =

 ∂3(ŨB
1 ΩB)

∂3(ŨB
2 ΩB)

∇⊥ · ((UB−ŨB)ΩB) + (∂2
ρΩ

B)(∂3ϕ)2

 , (56)

where as usual UB = UB(·; ρ + ϕ). Before starting the rigorous analysis, let us briefly
comment here on why we expect solutions of (44) to go to zero as t goes to infinity.
Given m > 3/2, we assume that ωi ∈ X2(m) for i = 1, 2, 3, where X2(m) is the space
defined in (10). By construction, ω3 then belongs to the subspace X2

0 (m) given by (14).
As we show in Section 4.3, the linear operator L has spectrum that lies in the half-plane
{z ∈ C | Re z ≤ −1

2
(1−λ)} when acting on X2(m)×X2(m)×X2

0 (m). Thus, the semigroup
generated by this operator can be expected to decay like exp(−1

2
(1−λ)t). The remaining

linear terms in the equation, namely Pϕ(ω), contain a factor of the vortex solution which
is proportional to ρ+ϕ (see (39) and (100)) and hence, for small Reynolds number, they
will be a small perturbation of L and will not destroy the exponential decay. The same
is true for the nonlinear terms N(ω) provided we restrict ourselves to sufficiently small
perturbations. Finally, the inhomogeneous term H(ϕ) decays at least like e−t by (43) and
Proposition 3.1, so we expect the solution ω(x, t) of (44) to converge exponentially to
zero if the initial data are sufficiently small.

We now put these heuristic arguments into a rigorous form. Let X(m) be the Banach
spaceX2(m)×X2(m)×X2

0 (m) equipped with the norm ‖ω‖X(m) = ‖ω1‖X2(m)+‖ω2‖X2(m)+
‖ω3‖X2(m). As is shown in Proposition 4.6, the linear operator L is the generator of a
semigroup etL of bounded operators on X2(m), hence the same is true for the operator L
acting on X(m). A natural idea is then to use Duhamel’s formula to rewrite (44) as an
integral equation:

ω(t) = etLω0 +

∫ t

0

e(t−s)L
(
Pϕω(s) + N(ω(s)) +H(ϕ(s))

)
ds , t ≥ 0 , (57)

which can then be solved by a fixed point argument. A problem with this approach is
that the semigroup etL fails to be strongly continuous on X2(m), essentially for the reason
mentioned in Remark 3.2. To restore continuity, it is thus necessary to equip X2(m) with
a weaker topology. For any n ∈ N∗ we define the seminorm

|ω|X2
n(m) = sup

|x3|≤n
‖ω(·, x3)‖L2(m) , (58)
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and we denote by X2
loc(m) the space X2(m) equipped with the topology defined by the

family of seminorms (58) for n ∈ N∗, i.e. the topology of the Fréchet space C0(R, L2(m)).
In other words, a sequence ωk converges to zero in X2

loc(m) if and only if |ωk|X2
n(m) → 0 as

k →∞ for all n ∈ N∗, namely if ωk(x3) converges to zero in L2(m) uniformly on compact
sets in x3. We define the product space Xloc(m) in a similar way. Then Proposition 4.6
shows that the semigroup etL is strongly continuous on Xloc(m), and the integrals in (57)
can be defined as Xloc(m)-valued Riemann integrals, see Corollary 4.7 and Remark 4.8.

Since we expect ω(t) to converge exponentially to zero as t→∞, we shall solve (57)
in the Banach space

Yµ(m) = {ω ∈ C0([0,+∞),Xloc(m)) | ‖ω‖Yµ(m) <∞} ,

for some µ > 0, where
‖ω‖Yµ(m) = sup

t≥0
eµt‖ω(t)‖X(m) .

Given initial data ϕ0 ∈ C0
b (R) and ω0 ∈ X(m), we first define ϕ(x3, t) by (51), and then

use the integral equation (57) to determine ω(t) for all t ≥ 0. Our main result is:

Proposition 3.3 Fix λ ∈ [0, 1), m > 3/2, and 0 < µ < 1
2
(1−λ). There exist positive

constants ρ2 > 0, ε2 > 0, and K2 > 0 such that, if |ρ| ≤ ρ2, ε ≤ ε2, and if ϕ0 ∈ C0
b (R)

satisfies ‖ϕ0‖L∞ + λ‖∂3ϕ
0‖2
L∞ ≤ ε, then for all ω0 ∈ X(m) with ‖ω0‖X(m) ≤ ε equation

(57) has a unique solution ω ∈ Yµ(m) with ‖ω‖Yµ(m) ≤ K2ε.

Proof: Fix λ ∈ [0, 1), m > 3/2, and 0 < µ < 1
2
(1−λ). To simplify the notations, we

shall write X instead of X(m) and Y instead of Yµ(m). For any r > 0, we denote by
BX(0, r) (respectively, BY (0, r)) the closed ball of radius r > 0 centered at the origin in
X (respectively, Y). Let ϕ0 ∈ C0

b (R) and denote by ϕ(x3, t) the solution of (50) with
initial data ϕ0. Given ρ ∈ R, ω0 ∈ X, and ω ∈ Y, we estimate the various terms in the
right-hand side of (57).

We begin with the linear term etLω0. From Proposition 4.6 we know that the linear
operator L+1 ≡ L̂1+λ,1−λ generates a semigroup St = et(L+1) which is strongly continuous

on X2
loc(m), uniformly bounded on X2(m), and which decays like e−

1
2

(1−λ)t on X2
0 (m).

Since

etLω0 =
(
et(L+γ1)ω0

1 , e
t(L+γ2)ω0

2 , e
t(L+γ3)ω0

3

)T
,

where γ1, γ2, γ3 are given by (15) with γ = 1, we deduce that t 7→ etLω0 is continuous in
Xloc and satisfies

‖etLω0‖X ≤ C
(
e−

3+λ
2
t‖ω0

1‖X2(m) + e−
3−λ

2
t‖ω0

2‖X2(m) + e−
1−λ

2
t‖ω0

3‖X2(m)

)
≤ C1e

− 1−λ
2
t‖ω0‖X . (59)

Note that it is crucial here that ω0
3 ∈ X2

0 (m), otherwise we do not get any decay at all.
We next consider the linear term

∫ t
0
e(t−s)L

Pϕω(s) ds. For s ≥ 0 and i ∈ {1, 2}, we

know from Proposition 4.11 that ŨB
i (s) ≡ ŨB

i (·, s; ρ, ϕ(s)) ∈ C0
b (R3) and ‖ŨB

i (s)‖L∞ ≤
C(|ρ| + ‖ϕ(s)‖L∞) ≤ C(|ρ| + ‖ϕ0‖L∞) by Proposition 3.1. Since ωj(s) ∈ X2(m) for
j ∈ {1, 2, 3}, it follows that ŨB

i (s)ωj(s) ∈ X2(m) and

‖ŨB
i (s)ωj(s)‖X2(m) ≤ ‖ŨB

i (s)‖L∞(R3)‖ωj(s)‖X2(m) ≤ Cρ′‖ωj(s)‖X2(m) ,
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where ρ′ = |ρ| + ‖ϕ0‖L∞ . Moreover, it is not difficult to verify that s 7→ ŨB
i (s)ωj(s) is

continuous in X2
loc(m). Similarly, ui(s) ∈ Xq(0) for q ∈ (2,+∞) by Proposition 4.9 and

ΩB(s) ≡ ΩB(·; ρ + ϕ(s)) ∈ Xp(m) for p ∈ [1,+∞] by Remark 2.3, hence ui(s)Ω
B(s) ∈

X2(m) by Hölder’s inequality and

‖ui(s)ΩB(s)‖X2(m) ≤ ‖ui(s)‖X4(0)‖ΩB(s)‖X4(m) ≤ Cρ′‖ωi(s)‖X2(m) .

Again s 7→ ui(s)Ω
B(s) is continuous in X2

loc(m). Thus Corollary 4.7 and Remark 4.8 show

that the three components of the vector
∫ t

0
e(t−s)L

Pϕω(s) ds are well defined and contin-
uous in X2

loc(m) for t ≥ 0. Using Proposition 4.6, we can estimate the first component as
follows: ∥∥∥∫ t

0

e(t−s)(L+γ1)
(
∂2(ŨB

1 ω2 − ŨB
2 ω1) + ∂3(ŨB

1 ω3 + u1ΩB)
)

(s) ds
∥∥∥
X2(m)

≤ C

∫ t

0

e−2(t−s)

a(t−s)1/2

(
‖ŨB

1 (s)ω2(s)‖X2(m) + ‖ŨB
2 (s)ω1(s)‖X2(m)

)
ds

+ C

∫ t

0

e−
3+λ

2
(t−s)

a(t−s)1/2

(
‖ŨB

1 (s)ω3(s)‖X2(m) + ‖u1(s)ΩB(s)‖X2(m)

)
ds ,

where a(t) = 1−e−t. (This estimate could be sharpened somewhat by using the functions
a1(t), a2(t), and 1 − e−2t which appear in Proposition 4.6, but they would lead to no
qualitative improvement in the final result and so we use this somewhat simpler form.)
The other two components can be estimated in exactly the same way except for a slower
exponential decay of the linear semigroup, see (59). Summarizing, we obtain:∥∥∥∫ t

0

e(t−s)L
Pϕω(s) ds

∥∥∥
X

≤ Cρ′
∫ t

0

e−
1−λ

2
(t−s)

a(t−s)1/2
‖ω(s)‖X ds ≤ C2ρ

′e−µt‖ω‖Y . (60)

We now consider the nonlinear term
∫ t

0
e(t−s)L

N(ω(s)) ds. Let 1 < p < 2. For s ≥ 0
and i, j ∈ {1, 2, 3}, we know from Corollary 4.10 that ui(s)ωj(s) ∈ Xp(m) with

‖ui(s)ωj(s)‖Xp(m) ≤ C‖ωi(s)‖X2(m)‖ωj(s)‖X2(m) .

Moreover s 7→ ui(s)ωj(s) is continuous in Xp
loc(m). Thus, by Remark 4.8, the integral∫ t

0
e(t−s)L

N(ω(s)) ds is well defined and continuous in Xloc for t ≥ 0. Proceeding as above
we can estimate the first component as follows:∥∥∥∫ t

0

e(t−s)(L+γ1)
(
∂2(u1ω2 − u2ω1) + ∂3(u1ω3 − u3ω1)

)
(s) ds

∥∥∥
X2(m)

≤ C

∫ t

0

e−2(t−s)

a(t−s)1/p

(
‖u1(s)ω2(s)‖Xp(m) + ‖u2(s)ω1(s)‖Xp(m)

)
ds

+ C

∫ t

0

e−
3+λ

2
(t−s)

a(t−s)1/p

(
‖u1(s)ω3(s)‖Xp(m) + ‖u3(s)ω1(s)‖Xp(m)

)
ds .

Repeating the same arguments for the other two components, we thus find∥∥∥∫ t

0

e(t−s)L
N(ω(s)) ds

∥∥∥
X

≤ C

∫ t

0

e−
1−λ

2
(t−s)

a(t−s)1/p
‖ω(s)‖2

X
ds ≤ C3e

−µt‖ω‖2
Y
. (61)
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Finally, we turn our attention to the inhomogeneous term
∫ t

0
e(t−s)L

H(ϕ(s)) ds. To

bound the first two components, we observe that ∂3(ŨB
i (s)ΩB(s)) ∈ X2(m) with

‖∂3(ŨB
i (s)ΩB(s))‖X2(m) ≤ Cρ′‖∂3ϕ(s)‖L∞ , i = 1, 2. (62)

Indeed, ∂3(ŨB
i ΩB) = ŨB

i ∂3ΩB + ΩB∂3Ũ
B
i . Since ΩB = ΩB(x⊥; ρ + ϕ(x3, t)), one has

∂3ΩB = (∂ρΩ
B)(∂3ϕ), hence by (38), (100)

‖ŨB
i ∂3ΩB‖X2(m) ≤ ‖ŨB

i ‖L∞‖∂3ΩB‖X2(m) ≤ Cρ′‖∂3ϕ‖L∞ .

Moreover, as ∂3Ũ
B is the velocity field obtained from ∂3Ω

B = (∂ρΩ
B)(∂3ϕ) by the Biot-

Savart law, the proof of Proposition 4.11 shows that ‖∂3Ũ
B
i ‖L∞ ≤ C‖∂3ϕ‖L∞ , hence

‖ΩB∂3Ũ
B
i ‖X2(m) ≤ ‖ΩB‖X2(m)‖∂3Ũ

B
i ‖L∞ ≤ Cρ′‖∂3ϕ‖L∞ ,

which proves (62). As usual, one checks that s 7→ ∂3(ŨB
i (s)ΩB(s)) is continuous in

X2
loc(m) for s > 0. Using (53), (62), the first component of the inhomogeneous term can

be estimated as follows:∥∥∥∫ t

0

e(t−s)(L+γ1)∂3(ŨB
1 ΩB)(s) ds

∥∥∥
X2(m)

≤ Cρ′
∫ t

0

e−
3+λ

2
(t−s) e−s

a(s)1/2
‖ϕ0‖L∞ ds

≤ Ce−µtρ′‖ϕ0‖L∞ ,

and the second one is bounded in exactly the same way. To bound the third component,
we first remark that (UB

i (s) − ŨB
i (s))ΩB(s) belongs to X2(m) for i = 1, 2 and depends

continuously on s > 0 in X2
loc(m). By (38), (43), (53),

‖(UB
i − ŨB

i )ΩB‖X2(m) ≤ ‖UB
i − ŨB

i ‖L∞‖ΩB‖X2(m) ≤ Cρ′‖∂3ϕ‖L∞ ,

hence using (53) we find∥∥∥∫ t

0

e(t−s)(L+γ3)∇⊥ · (UB(s)− ŨB(s))ΩB(s) ds
∥∥∥
X2(m)

≤ Cρ′
∫ t

0

e−
1−λ

2
(t−s)

a(t− s)1/2

e−s

a(s)1/2
‖ϕ0‖L∞ ds ≤ Ce−µtρ′‖ϕ0‖L∞ .

On the other hand, ∂2
ρΩ

B(s)(∂3ϕ(s))2 lies in X2(m) and depends continuously on s > 0
in X2

loc(m). As was mentioned before Remark 2.3, ‖∂2
ρΩ

B(s)‖X2(m) ≤ Cλ. If λ > 0, we
assume that ∂3ϕ

0 ∈ L∞(R) and using (54) we obtain∥∥∥∫ t

0

e(t−s)(L+γ3)(∂2
ρΩ

B(s))(∂3ϕ(s))2 ds
∥∥∥
X2(m)

≤ Cλ

∫ t

0

e−
1−λ

2
(t−s)e−2s‖∂3ϕ

0‖2
L∞ ds

≤ Cλe−µt‖∂3ϕ
0‖2
L∞ .

Thus we have shown that
∫ t

0
e(t−s)L

H(ϕ(s)) ds is well defined and continuous in Xloc for
t ≥ 0. Moreover,∥∥∥∫ t

0

e(t−s)L
H(ϕ(s)) ds

∥∥∥
X

≤ C4e
−µtρ′‖ϕ0‖L∞ + C5λe

−µt‖∂3ϕ
0‖2
L∞ . (63)
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Given ω ∈ Y, we denote by (Fω)(t) the right-hand side of (57). Estimates (59), (60),
(61), (63) show that t 7→ (Fω)(t) ∈ Y. Thus F maps Y into itself and

‖Fω‖Y ≤ C1‖ω0‖X + C2ρ
′‖ω‖Y + C3‖ω‖2

Y
+ C4ρ

′‖ϕ0‖L∞ + C5λ‖∂3ϕ
0‖2
L∞ , (64)

where ρ′ = |ρ|+ ‖ϕ0‖L∞ . Moreover, if ω1,ω2 ∈ Y, the same estimates show that

‖Fω1 − Fω2‖Y ≤ ‖ω1 − ω2‖Y
(
C2ρ

′ + C3(‖ω1‖Y + ‖ω2‖Y)
)
, (65)

because the linear term etLω0 and the inhomogeneous term depending on H(ϕ) drop out
when we consider the difference Fω1−Fω2. Now, choose ρ2 > 0 and ε2 > 0 small enough
so that

ρ2 + ε2 ≤ min
(

1, R1,
1

2C2

)
, and ε2 ≤

1

32C3(C1 + C4 + C5)
,

where R1 is as in Proposition 2.2. Assume that |ρ| ≤ ρ2, ε ≤ ε2, ‖ϕ0‖L∞+λ‖∂3ϕ
0‖2
L∞ ≤ ε,

and ‖ω0‖X ≤ ε. If 4(C1 + C4 + C5)ε ≤ r ≤ 1/(8C3), then (64) shows that F maps the
ball BY (0, r) into itself. Indeed, under the assumptions above we have C2ρ

′ ≤ 1/2 and
C3r ≤ 1/4, hence if ω ∈ BY (0, r) then (64) implies

‖Fω‖Y ≤ C1ε+
r

2
+
r

4
+ C4ε+ C5ε = (C1 + C4 + C5)ε+

3r

4
≤ r .

Similarly, ‖Fω1−Fω2‖Y ≤ 3
4
‖ω1−ω2‖Y if ω1,ω2 ∈ BY (0, r). By the contraction mapping

theorem, F has thus a unique fixed point ω in BY (0, r). Choosing r = K2ε with K2 =
4(C1 + C4 + C5), we see that ω is the unique solution of (57) such that ‖ω‖Y ≤ K2ε. �

Theorem 1.7 is a direct consequence of Proposition 3.3. Indeed, suppose that the initial
condition for the vorticity is Ω0(x) = ΩB(x⊥; ρ) + ω0(x), where ω0 ∈ X2(m)3 satisfies
(21). Then we can decompose Ω0(x) = ΩB(x⊥; ρ+ϕ0(x3))+ ω̃0(x), where ϕ0 is as in (21)
and ω̃0 belongs to X(m), namely ω̃0

3 ∈ X2
0 (m). Moreover, there exists C(m,λ) > 0 such

that
‖ω̃0‖X + ‖ϕ0‖L∞ + λ‖∂3ϕ

0‖2
L∞ ≤ Cε2 ,

and so the smallness conditions on the perturbation in Theorem 1.7 imply those in
Proposition 3.3. We deduce that the solution of (17) with initial data Ω0 satisfies
Ω(x, t) = ΩB(x⊥; ρ + ϕ(x3, t)) + ω̃(x, t) for some ω̃ ∈ Yµ(m), hence Ω(x, t) converges
exponentially in X2(m)3 toward the modulated vortex ΩB(x⊥; ρ+ϕ(x3, t)). On the other
hand, from (51), (52), we see that, for any x3 ∈ R, ϕ(x3, t) converges toward the limiting
value

lim
t→∞

ϕ(x3, t) =
1√
2π

∫
R

e−
1
2
y2

ϕ0(y) dy ≡ δρ ,

and that supx3∈I |ϕ(x3, t) − δρ| = O(e−t) for any compact interval I ⊂ R. Thus the
difference ‖ΩB(·; ρ+ϕ(x3, t))−ΩB(·; ρ+ δρ)‖L2(m) will converge exponentially to zero as
t→∞, uniformly for x3 in any compact interval. Combining these estimates, we obtain
(22).
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4 Appendix

In this appendix we collect a number of technical estimates used in the main body of the
paper. They relate mostly to the behavior of the semigroup generated by the linearization
of the vorticity equation around the Burgers vortex. We also prove some estimates relating
the vorticity field to the corresponding velocity field defined by the Biot-Savart law.

4.1 The one-dimensional Fokker-Planck operator

Fix α > 0, and consider the one-dimensional linear equation

∂tω = Lαω ≡ ∂2
xω +

α

2
x∂xω +

α

2
ω , (66)

where x ∈ R and t ≥ 0. If ω(x, t) = ω̃(
√
αx, αt), then ∂tω̃ = L1ω̃ hence we could assume

without loss of generality that α = 1. However for our purposes it is more convenient to
keep α > 0 arbitrary.

The linear operator Lα is formally conjugated to the Hamiltonian of the harmonic
operator in quantum mechanics:

e
αx2

8 Lα e−
αx2

8 = Lα ≡ ∂2
x −

α2x2

16
+
α

4
.

As is well-known, the spectrum of Lα in L2(R) is a sequence of simple eigenvalues:

σ(Lα) =
{
−nα

2

∣∣∣n = 0, 1, 2, . . .
}
,

and the associated eigenfunctions are the Hermite functions hn(x) = eαx
2/8∂nxe

−αx2/4. This
observation, however, is not sufficient to determine the whole spectrum of Lα because we
want to consider this operator acting on a space of functions with algebraic (rather than
Gaussian) decay at infinity.

For any m ≥ 0 and p ≥ 1 we define the space Lp(m) = {f ∈ Lp(R) |wmf ∈ Lp(R)},
where w(x) = (1 + x2)1/2. This Banach space is equipped with the natural norm

‖f‖Lp(m) = ‖wmf‖Lp =
(∫

R

|w(x)mf(x)|p dx
)1/p

.

The parameter m determines the decay rate at infinity of functions in Lp(m). For instance,
it is easy to verify that L2(m) ↪→ L1(R) if (and only if) m > 1/2, because in that case
w−m ∈ L2(R) so that any f ∈ L2(m) satisfies∫

R

|f(x)| dx =

∫
R

w(x)m|f(x)|w(x)−m dx ≤ ‖wmf‖L2‖w−m‖L2 = C‖f‖L2(m) , (67)

by Hölder’s inequality. If m > 1/2, we thus define

L2
0(m) =

{
f ∈ L2(m)

∣∣∣ ∫
R

f(x) dx = 0
}
.

This closed subspace of L2(m) is clearly invariant under the evolution defined by (66).
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In ([3], Appendix A) it is shown that the spectrum of Lα in L2(m) is

σm(Lα) =
{
−nα

2

∣∣∣n = 0, 1, 2, . . .
}
∪
{
z ∈ C

∣∣∣Re (z) ≤ α
(1

4
− m

2

)}
. (68)

Thus, in addition to the discrete spectrum of the harmonic oscillator, the operator Lα also
has essential spectrum due to the slow spatial decay of functions in L2(m). Note however
that this essential spectrum can be pushed far away from the imaginary axis by taking
m ≥ 0 sufficiently large. Therefore, if m is large, the relevant part of the spectrum of Lα
is still given by the first few eigenvalues of Lα. In particular zero is an isolated eigenvalue
of Lα if m > 1/2, and the rest of the spectrum is strictly contained in the left-half plane.
If we restrict ourselves to the invariant subspace L2

0(m), the spectrum of Lα is unchanged
except for the zero eigenvalue (which is absent).

Equation (66) can be explicitly solved as ω(t) = etLαω(0), where(
etLαf

)
(x) =

eαt/2

(4πa(t))1/2

∫
R

e−
(x−y)2

4a(t) f(yeαt/2) dy , x ∈ R , t > 0 ,

and a(t) = (1 − e−αt)/α. Using this expression, it is straightforward to verify that etLα

defines a strongly continuous semigroup in L2(m) for any m ≥ 0. Moreover, etLα maps
L2

0(m) into L2
0(m) if m > 1/2, and the following estimates hold (see [3], Appendix A):

Proposition 4.1 If m > 1/2, the semigroup etLα is uniformly bounded in L2(m) for all
t ≥ 0. Moreover, if m > 3/2, there exists C(m,α) > 0 such that, for all f ∈ L2

0(m),

‖etLαf‖L2(m) ≤ C e−αt/2‖f‖L2(m) , t ≥ 0 . (69)

Finally, if 1 ≤ p ≤ 2 and m > 3/2, then etLα∂x defines a bounded operator from Lp(m)
into L2

0(m) and there exists C(m,α, p) > 0 such that, for all f ∈ Lp(m),

‖etLα∂xf‖L2(m) ≤ C
e−αt/2

a(t)
1
2p

+ 1
4

‖f‖Lp(m) , t > 0 , (70)

where a(t) = (1− e−αt)/α.

4.2 Two-dimensional estimates

We next consider the two-dimensional equation

∂tω = Lα1,α2ω ≡ ∆ω +
α1

2
x1∂1ω +

α2

2
x2∂2ω +

α1 + α2

2
ω , (71)

where x ∈ R2, t ≥ 0, and α1 ≥ α2 > 0. In the particular case where α1 = 1 + λ and
α2 = 1−λ for some λ ∈ [0, 1), we see that Lα1,α2 = L⊥+λM, where L⊥,M are defined in
(25). Note that the parameters α1, α2 cannot be eliminated by a rescaling, unless α1 = α2.

We study the operator Lα1,α2 in the weighted space

Lp(m) = {f ∈ Lp(R2) | bmf ∈ Lp(R2)} , ‖f‖Lp(m) = ‖bmf‖Lp , (72)
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where p ≥ 1, m ≥ 0, and b(x1, x2) = w(x1)w(x2) = (1 + x2
1)1/2(1 + x2

2)1/2. It is clear that
L2(m) = L2(m)⊗L2(m), where L2(m) is the one-dimensional space defined in the previous
paragraph and ⊗ denotes the tensor product of Hilbert spaces, see [12]. Comparing the
definitions (66), (71), we see that our operator can be decomposed as Lα1,α2 = Lα1 ⊗ 1 +
1⊗Lα2 , where 1 denotes the identity operator. It follows that the spectrum of Lα1,α2 in
L2(m) is just the sum

σm(Lα1,α2) = σm(Lα1) + σm(Lα2) ,

where σm(Lαi) is given by (68) for i = 1, 2. In particular, zero is an isolated eigenvalue of
Lα1,α2 if m > 1/2, and if m > 3/2 there exists µ > α2/2 such that

σm(Lα1,α2) ⊂
{

0 , −α2

2

}
∪
{
z ∈ C

∣∣∣Re (z) ≤ −µ
}
.

(Recall that we assumed α1 ≥ α2.) Moreover, if m > 1/2, the subspace L2
0(m) defined

by (26) is invariant under the action of Lα1,α2 , and the restriction of Lα1,α2 to L2
0(m) has

spectrum σm(Lα1,α2) \ {0}. Thus Lα1,α2 is invertible in L2
0(m) if m > 1/2, with bounded

inverse.
The semigroup generated by Lα1,α2 satisfies etLα1,α2 = etLα1 ⊗ etLα2 . Thus, using

Proposition 4.1, we immediately obtain the following estimates:

Proposition 4.2 If m > 1/2, the semigroup etLα1,α2 is uniformly bounded in L2(m) for all
t ≥ 0. Moreover, if m > 3/2, there exists C(m,α1, α2) > 0 such that, for all f ∈ L2

0(m),

‖etLα1,α2f‖L2(m) ≤ C e−α2t/2‖f‖L2(m) , t ≥ 0 . (73)

Finally, if 1 ≤ p ≤ 2 and m > 3/2, then etLα1,α2∂k defines a bounded operator from Lp(m)
into L2

0(m) for k = 1, 2, and there exists C(m,α1, α2, p) > 0 such that, for all f ∈ Lp(m),

‖etLα1,α2∂1f‖L2(m) ≤ C
e−α1t/2

a1(t)
1
2p

+ 1
4a2(t)

1
2p
− 1

4

‖f‖Lp(m) , t > 0 , (74)

‖etLα1,α2∂2f‖L2(m) ≤ C
e−α2t/2

a1(t)
1
2p
− 1

4a2(t)
1
2p

+ 1
4

‖f‖Lp(m) , t > 0 , (75)

where

ai(t) =
1− e−αit

αi
=

∫ t

0

e−αis ds , i = 1, 2 .

Remark 4.3 For p ∈ [1, 2] and m > 1/2, we also have the following bound:

‖etLα1,α2f‖L2(m) ≤
C

a1(t)
1
2p
− 1

4a2(t)
1
2p
− 1

4

‖f‖Lp(m) , t > 0 .

We conclude this paragraph with a short discussion of the two-dimensional Biot-Savart
law:

u(x) =
1

2π

∫
R2

1

|x− y|2

(
y2 − x2

x1 − y1

)
ω(y) dy , x ∈ R2 . (76)
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Proposition 4.4 Let u be the velocity field defined from ω via the Biot-Savart law (76).

i) If ω ∈ Lp(R2) for some p ∈ (1, 2), then u ∈ Lq(R2) where 1
q

= 1
p
− 1

2
, and there exists

C(p) > 0 such that ‖u‖Lq ≤ C‖ω‖Lp.
ii) If ω ∈ Lp(R2) ∩ Lq(R2) for some p ∈ [1, 2) and some q ∈ (2,+∞] then u ∈ C0

b (R2)
and there exists C(p, q) > 0 such that

‖u‖L∞ ≤ C‖ω‖αLp‖ω‖1−α
Lq , where

1

2
=

α

p
+

1− α
q

.

Proof: Assertion i) is a direct consequence of the Hardy-Littlewood-Sobolev inequality
[8]. For a proof of ii), see for instance ([3], Lemma 2.1). �

We deduce from Proposition 4.4 the following useful bound on the product uω:

Corollary 4.5 Assume that ω1, ω2 ∈ L2(m) for some m > 1/2, and let u1 be the velocity
field obtained from ω1 via the Biot-Savart law (76). Then u1ω2 ∈ Lp(m) for all p ∈ (1, 2),
and there exists C(m, p) > 0 such that

‖u1ω2‖Lp(m) ≤ C‖ω1‖L2(m)‖ω2‖L2(m) .

Proof: Assume that 1 < p < 2. By Hölder’s inequality

‖u1ω2‖Lp(m) = ‖bmu1ω2‖Lp ≤ ‖u1‖Lq‖bmω2‖L2 , where
1

q
=

1

p
− 1

2
.

Now ‖u1‖Lq ≤ C‖ω1‖Lp by Proposition 4.4, and ‖ω1‖Lp ≤ C‖ω1‖L2(m) because L2(m) ↪→
Lp(R2) for p ∈ [1, 2] if m > 1/2. This gives the desired result. �

4.3 The three-dimensional semigroup

This section is devoted to the three-dimensional equation

∂tω = L̂α1,α2ω ≡ ∆ω +
α1

2
x1∂1ω +

α2

2
x2∂2ω − x3∂3ω +

α1 + α2

2
ω , (77)

where x ∈ R3, t ≥ 0, and α1 ≥ α2 > 0. In the particular case where α1 = 1 + λ and
α2 = 1− λ, we have L̂α1,α2 = L+ 1 where L is defined in (45).

It is important to realize that the evolution defined by (77) is essentially contracting
in the transverse variables x⊥ = (x1, x2) and expanding in the axial variable x3. This
is due to the signs of the advection terms, which in turn originate in our choice of the
straining flow (2). For this reason we can assume that the solutions of (77) decay to zero
as |x⊥| → ∞, but we cannot impose any decay in the x3 variable (otherwise the solutions
will not stay uniformly bounded for all times in the corresponding norm). This motivates
the following choice of our function space. For p ≥ 1 and m ≥ 0, we introduce the Banach
space

Xp(m) ≡ C0
b (R, Lp(m)) = {ω : R→ Lp(m) |ω is bounded and continuous} (78)

equipped with the norm

‖ω‖Xp(m) = sup
x3∈R
‖ω(x3)‖Lp(m) .
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For any n ∈ N∗ we also define the seminorm

|ω|Xp
n(m) = sup

|x3|≤n
‖ω(x3)‖Lp(m) , (79)

and we denote by Xp
loc(m) the space Xp(m) equipped with the topology defined by the

family of seminorms (79) for n ∈ N∗. For later use, we observe that the ball {ω ∈
Xp(m) | ‖ω‖Xp(m) ≤ R} is closed in Xp

loc(m) for any R > 0.
At least formally, the space X2(m) can be thought of as the tensor product C0

b (R)⊗
L2(m), i.e. the space generated by linear combinations of elements of the form ω(x⊥, x3) =
f(x3)g(x⊥), with f ∈ C0

b (R) and g ∈ L2(m). In this picture, the linear operator defined
by (77) can be decomposed as L̂α1,α2 = L̂3⊗1+1⊗Lα1,α2 , where Lα1,α2 is defined in (71)

and L̂3 is the one-dimensional operator L̂3f = ∂2
3f − x3∂3f . It is readily verified that L̂3

generates a semigroup in C0
b (R) given by the explicit formula

(etL̂3f)(x3) = (Gt ∗ f)(x3e
−t) , x3 ∈ R , t > 0 , (80)

where Gt is defined in (52), and we know from Section 4.2 that Lα1,α2 generates a strongly

continuous semigroup in L2(m). Thus we expect that L̂α1,α2 will generate a semigroup

{St}t≥0 in X2(m) given by St = etL̂3 ⊗ etLα1,α2 , or explicitly

(Stω)(x3) =

∫
R

Gt(x3e
−t − y3)

(
etLα1,α2ω(y3)

)
dy3 , x3 ∈ R , t > 0 . (81)

We shall prove that these heuristic considerations are indeed correct in the sense that (81)
defines a semigroup of bounded operators in X2(m) with the property that ω(t) = Stω
is the solution of (77) with initial data ω ∈ X2(m). However, the map t 7→ Stω is not
continuous in the topology of X2(m), but only in the (weaker) topology of X2

loc(m). This
is due to the fact that equation (77) has “infinite speed of propagation” in the sense that
the advection term in the vertical variable is unbounded, see Remark 3.2.

Proposition 4.6 For any m ≥ 0, the family {St}t≥0 defined by (81) and S0 = 1 is a
semigroup of bounded linear operators on X2(m). If ω0 ∈ X2(m) and ω(t) = Stω0, then
ω : [0,+∞) → X2

loc(m) is continuous, and ω(t) solves (77) for t > 0. For any R > 0,
if BR = {f ∈ X2(m) | ‖f‖X2(m) ≤ R} is equipped with the topology of X2

loc(m), then
St : BR → X2

loc(m) is continuous, uniformly in time on compact intervals. Moreover:

i) If m > 1/2 then St is uniformly bounded on X2(m) for all t ≥ 0.

ii) If m > 3/2 there exists C(m,α1, α2) > 0 such that, for all ω in the subspace X2
0 (m)

defined in (14),

‖Stω‖X2(m) ≤ C e−
α2
2
t‖ω‖X2(m) , t ≥ 0 . (82)

iii) If p ∈ [1, 2] and m > 3/2, St∂k defines a bounded operator from Xp(m) into X2(m)
for t > 0 and k = 1, 2, 3, and there exists C(m,α1, α2, p) > 0 such that

‖St∂1ω‖X2(m) ≤ C
e−α1t/2

a1(t)
1
2p

+ 1
4a2(t)

1
2p
− 1

4

‖ω‖Xp(m) , (83)

‖St∂2ω‖X2(m) ≤ C
e−α2t/2

a1(t)
1
2p
− 1

4a2(t)
1
2p

+ 1
4

‖ω‖Xp(m) , (84)

‖St∂3ω‖X2(m) ≤
C√

1− e−2t

1

a1(t)
1
2p
− 1

4a2(t)
1
2p
− 1

4

‖ω‖Xp(m) , (85)
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where a1(t), a2(t) are as in Proposition 4.2.

Proof: We first rewrite (81) in a slightly more convenient form. By (52) we have Gt(y) =
c(t)−1/2G(c(t)−1/2y), where c(t) = 1 − e−2t and G(z) = (2π)−1/2e−z

2/2. Thus setting
y3 = x3e

−t + c(t)1/2z3 in (81), we obtain the equivalent formula

(Stω)(x3) =

∫
R

G(z3)
(
etLα1,α2ω(x3e

−t + c(t)1/2z3)
)

dz3 , x3 ∈ R , t ≥ 0 . (86)

Fix m ≥ 0. If ω ∈ X2(m), then for any t ≥ 0 the map x3 7→ etLα1,α2ω(x3) also belongs
to X2(m), because etLα1,α2 is a bounded operator on L2(m) by Proposition 4.2. Thus it
follows immediately from (86) that Stω ∈ X2(m) and

‖Stω‖X2(m) ≤ sup
x3∈R
‖etLα1,α2ω(x3)‖L2(m) ≤ Nm(t)‖ω‖X2(m) , (87)

where Nm(t) = ‖etLα1,α2‖L2(m)→L2(m). The semigroup formula St1+t2 = St1St2 is easily
verified using (81), Fubini’s theorem, and the identity∫

R

Gt1(xe−t1 − y)Gt2(ye−t2 − z) dy = Gt1+t2(xe−(t1+t2) − z) .

Thus {St}t≥0 is a semigroup of bounded operators in X2(m).
On the other hand, by (86), we have for all k ∈ N:

‖Stω(x3)‖L2(m) ≤
∫ k

−k
G(z3)Nm(t)‖ω(x3e

−t + c(t)1/2z3)‖L2(m) dz3 +Nm(t)‖ω‖X2(m)εk ,

where εk =
∫
|z|≥kG(z) dz → 0 as k → ∞. Since |x3e

−t + c(t)1/2z3| ≤ n + k whenever

|x3| ≤ n and |z3| ≤ k, we deduce that for all n ∈ N∗:

|Stω|X2
n(m) ≤ Nm(t)

(
|ω|X2

n+k(m) + εk‖ω‖X2(m)

)
. (88)

This bound implies that St : BR → X2
loc(m) is continuous, uniformly in time on compact

intervals.
Furthermore, if ω ∈ X2(m) and t > 0, we have

(Stω − ω)(x3) =

∫
R

G(z3)etLα1,α2

(
ω(x3e

−t + c(t)1/2z3)− ω(x3)
)

dz3

+ etLα1,α2ω(x3)− ω(x3) ,

hence proceeding as above we find for all n, k ∈ N∗:

|Stω − ω|X2
n(m) ≤

∫ k

−k
G(z3)Nm(t) sup

|x3|≤n
‖ω(x3e

−t + c(t)1/2z3)− ω(x3)‖L2(m) dz3

+ 2Nm(t)εk‖ω‖X2(m) + sup
|x3|≤n

‖etLα1,α2ω(x3)− ω(x3)‖L2(m) .

The last term goes to zero as t→ 0+ because etLα1,α2 is a strongly continuous semigroup
on L2(m) and ω : [−n, n] → L2(m) is continuous (hence has compact range). Similarly,
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for each k ∈ N, the integral goes to zero as t→ 0+ by Lebesgue’s dominated convergence
theorem, because ω : [−n−k, n+k] → L2(m) is uniformly continuous. Since εk → 0 as
k → ∞, we conclude that Stω → ω in X2

loc(m) as t → 0+. Then, using the semigroup
property, we deduce that the map t 7→ Stω is continuous to the right at any t ≥ 0. Finally,
if t > ε > 0, we have Stω − St−εω = St−ε(Sεω − ω), hence by (88)

|Stω − St−εω|X2
n(m) ≤ Nm(t− ε)

(
|Sεω − ω|X2

n+k(m) + εk(1 +Nm(ε))‖ω‖X2(m)

)
.

Since |Sεω − ω|X2
n+k(m) → 0 as ε → 0+ for all k, n ∈ N∗, this shows that t 7→ Stω is also

continuous to the left at any t > 0.
Next, using (86), (80), and the explicit formula for etLα1,α2 , it is rather straightforward

to verify that, for any ω ∈ X2(m), the map (x⊥, x3, t) 7→ ω(x⊥, x3, t) = ((Stω)(x3))(x⊥)
is smooth and satisfies (77) for t > 0. Thus Stω is indeed the solution of (77) with initial
data ω.

It remains to establish the decay properties of St:

i) If m > 1/2, we know from Proposition 4.2 that Nm(t) ≤ C for all t ≥ 0, hence {St}t≥0

is uniformly bounded on X2(m) by (87).

ii) If m > 3/2 and ω ∈ X2
0 (m), then ω(x3) ∈ L2

0(m) for all x3 ∈ R and (82) follows
immediately from (87) and (73).

iii) If k = 1, 2, we define St∂k by

(St∂kω)(x3) =

∫
R

G(z3)
(
etLα1,α2∂kω(x3e

−t + c(t)1/2z3)
)

dz3 . (89)

If m > 3/2 and p ∈ [1, 2], we know from Proposition 4.2 that etLα1,α2∂k is a bounded
operator from Lp(m) into L2

0(m) satisfying (74) or (75). Thus the formula (89) defines a
bounded operator from Xp(m) into X2

0 (m) and

‖St∂kω‖X2(m) ≤ sup
x3∈R
‖etLα1,α2∂kω(x3)‖L2(m) .

Thus (83), (84) follow immediately from (74), (75). Finally we define St∂3 by

(St∂3ω)(x3) = − 1

c(t)1/2

∫
R

∂3G(z3)
(
etLα1,α2ω(x3e

−t + c(t)1/2z3)
)

dz3 . (90)

We know that etLα1,α2 is a bounded operator from Lp(m) into L2(m), see Remark 4.3.
Since ∂3G ∈ L1(R2), we thus find

‖St∂3ω‖X2(m) ≤
C

c(t)1/2
sup
x3∈R
‖etLα1,α2ω(x3)‖L2(m)

≤ C

c(t)1/2

1

a1(t)
1
2p
− 1

4a2(t)
1
2p
− 1

4

‖ω‖Xp(m) ,

which is (85). This concludes the proof. �
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Corollary 4.7 Let T > 0 and let f : [0, T ] → X2(m) be a bounded function satisfying
f ∈ C0([0, T ], X2

loc(m)). Then the map F : [0, T ]→ X2(m) defined by

F (t) =

∫ t

0

St−sf(s) ds , 0 ≤ t ≤ T ,

satisfies F ∈ C0([0, T ], X2
loc(m)), and ‖F (t)‖X2(m) ≤

∫ t
0
Nm(t − s)‖f(s)‖X2(m) ds, where

Nm is as in (87).

Proof: For any t ∈ [0, T ], we define ψt : [0, t] → X2(m) by ψt(s) = St−sf(s). Since
f ∈ C0([0, T ], X2

loc(m)) and since the semigroup St is continuous on X2
loc(m) as described

in Proposition 4.6, it is easy to verify that the map ψt : [0, t]→ X2
loc(m) is also continuous.

As X2
loc(m) is a subspace of the Fréchet space C0(R, L2(m)), the integral

∫ t
0
ψt(s) ds can

be defined as in ([15], Theorem 3.17). However, in the present case, we can also use the
following “pedestrian” construction (which agrees with the general one). For any n ∈ N∗,
we define

Fn(t) =

∫ t

0

χnψt(s) ds =

∫ t

0

χnSt−sf(s) ds ,

where χn denotes the map x3 7→ 1[−n,n](x3). Clearly χnψt(s) is a continuous func-
tion of s ∈ [0, t] with values in the Banach space C0([−n, n], L2(m)), hence Fn(t) ∈
C0([−n, n], L2(m)) can be defined for any t ∈ [0, T ] as a Banach-valued Riemann in-
tegral. Using again the continuity of the semigroup St one finds that Fn : [0, T ] →
C0([−n, n], L2(m)) is continuous and satisfies

|Fn(t)|X2
n(m) ≤

∫ t

0

Nm(t− s)‖f(s)‖X2(m) ds ≤ C(T )

∫ t

0

‖f(s)‖X2(m) ds .

(Note that t 7→ Nm(t) and t 7→ ‖f(t)‖X2(m) are lower semicontinuous, hence measurable.)
Now, for each t ∈ [0, T ], it is clear that (Fm(t))(x3) = (Fn(t))(x3) if |x3| ≤ n ≤ m, hence
there is a unique F (t) ∈ C0(R, L2(m)) such that (F (t))(x3) = (Fn(t))(x3) whenever
|x3| ≤ n. By construction, ‖F (t)‖X2(m) ≤

∫ t
0
Nm(t − s)‖f(s)‖X2(m) ds for all t ∈ [0, T ],

and F ∈ C0([0, T ], X2
loc(m)). �

Remark 4.8 Similarly, if p ∈ (1, 2] and k ∈ {1, 2, 3}, Proposition 4.6 implies that, if
f : [0, T ]→ Xp(m) is bounded in Xp(m) and continuous in Xp

loc(m), the map F : [0, T ]→
X2(m) defined by

F (t) =

∫ t

0

St−s∂kf(s) ds , 0 ≤ t ≤ T ,

is bounded in X2(m) and continuous in X2
loc(m). In that case, for each n ∈ N∗ and each

t ∈ (0, T ], Fn(t) ≡ χnF (t) is defined by a “generalized” Riemann integral, because the
integrand has a singularity at s = t.

4.4 The three-dimensional Biot-Savart law

In this final section, we discuss the three-dimensional Biot-Savart law, namely

u(x) = − 1

4π

∫
R3

(x− y)× ω(y)

|x− y|3
dy , x ∈ R3 . (91)

We first prove the analogue of Proposition 4.4 in the spaces Xp(m) defined by (78).
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Proposition 4.9 Fix m > 1/2. If ω ∈ X2(m), the velocity field given by (91) satis-
fies u ∈ Xq(0) for all q ∈ (2,∞), and there exists C(m, q) > 0 such that ‖u‖Xq(0) ≤
C‖ω‖X2(m).

Proof: Assume that ω ∈ X2(m) for some m > 1/2. For all x = (x⊥, x3) ∈ R3, we have
by Fubini’s theorem

|u(x⊥, x3)| ≤ C

∫
R3

|ω(y⊥, y3)|
|x⊥ − y⊥|2 + (x3 − y3)2

dy⊥ dy3 = C

∫
R

F (x⊥;x3, y3) dy3 ,

where

F (x⊥;x3, y3) =

∫
R2

|ω(y⊥, y3)|
|x⊥ − y⊥|2 + (x3 − y3)2

dy⊥ .

By Minkowski’s inequality, it follows that

‖u(·, x3)‖Lq(R2) ≤ C

∫
R

‖F (·;x3, y3)‖Lq(R2) dy3 . (92)

If 2 < q <∞, we shall show that there exists Hq ∈ L1(R) and C > 0 such that

‖F (·;x3, y3)‖Lq(R2) ≤ C‖ω(·, y3)‖L2(m)Hq(x3 − y3) , x3, y3 ∈ R . (93)

Together with (92), this gives ‖u(·, x3)‖Lq(R2) ≤ C‖ω‖X2(m) for all x3 ∈ R, which is the
desired bound. Since the Biot-Savart law is invariant under spatial translations, the same
arguments show that, for all x3 ∈ R,

‖u(·, x3 + ε)− u(·, x3)‖Lq(R2) ≤ C

∫
R

‖ω(·, y3 + ε)− ω(·, y3)‖L2(m)Hq(x3 − y3) dy3 .

As ε → 0 the right-hand side converges to zero by Lebesgue’s dominated convergence
theorem, thus u ∈ C0

b (R, Lq(R2)) ≡ Xq(0).
To prove (93), for any a ∈ R we define fa(y⊥) = (|y⊥|2 + a2)−1. If a 6= 0, then

fa ∈ Lr(R2) for all r > 1, and there exists Cr > 0 such that

‖fa‖Lr(R2) ≤
Cr

|a|2− 2
r

.

Since F (·;x3, y3) = |ω(·, y3)| ∗ fx3−y3 , Young’s inequality implies

‖F (·;x3, y3)‖Lq(R2) ≤ C‖ω(·, y3)‖L2(R2)‖fx3−y3‖Lp(R2) ≤
C‖ω(·, y3)‖L2(R2)

|x3 − y3|2−
2
p

, (94)

where 1 + 1
q

= 1
2

+ 1
p
, hence 2− 2

p
= 1− 2

q
< 1. On the other hand, by Hölder’s inequality,

F (x⊥;x3, y3) =

∫
R2

bm(y⊥)|ω(y⊥, y3)| 1

bm(y⊥)(|x⊥−y⊥|2 + (x3−y3)2)
dy⊥

≤ ‖bmω(·, y3)‖L2(R2)

( 1

b2m
∗ f 2

x3−y3

)1/2

(x⊥) .
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Using Young’s inequality again, we obtain

‖F (·;x3, y3)‖Lq(R2) ≤ C‖ω(·, y3)‖L2(m)‖b−m‖L2(R2)‖fx3−y3‖Lq(R2)

≤
C‖ω(·, y3)‖L2(m)

|x3 − y3|2−
2
q

, (95)

where 2− 2
q
> 1. Combining (94), (95), we obtain (93). �

An easy consequence is the analogue of Corollary 4.5:

Corollary 4.10 Assume that ω1,ω2 ∈ X2(m) for some m > 1/2, and let u1 be the
velocity field obtained from ω1 via the Biot-Savart law (91). Then u1ω2 ∈ Xp(m) for all
p ∈ (1, 2), and there exists C(m, p) > 0 such that

‖u1ω2‖Xp(m) ≤ C‖ω1‖X2(m)‖ω2‖X2(m) . (96)

Proof: Assume that 1 < p < 2 and 1
q

= 1
p
− 1

2
. By Hölder’s inequality, we have for all

x3 ∈ R

‖b(·)mu1(·, x3)ω2(·, x3)‖Lp(R2) ≤ ‖u1(·, x3)‖Lq(R2)‖b(·)mω2(·, x3)‖L2(R2) .

Taking the supremum over x3 and using Proposition 4.9, we obtain (96). Moreover, since
u1 ∈ Xq(0) and ω2 ∈ X2(m), it is clear that x3 7→ u1(·, x3)ω2(·, x3) is continuous from R
into Lp(m). �

In the rest of this section, we fix some λ ∈ [0, 1). Given ρ ∈ R and ϕ ∈ C1
b (R), our goal

is to compare the velocity field UB(x⊥; ρ+ ϕ(x3)) defined by (36) with the velocity field
ŨB(x; ρ, ϕ) obtained from ΩB(x⊥; ρ + ϕ(x3)) via the Biot-Savart law. (As in Section 3
we omit the dependence on λ for simplicity.) Since ΩB has only the third component
nonzero, (91) implies that ŨB has only the first two components nonzero:(

ŨB
1 (x; ρ, ϕ)

ŨB
2 (x; ρ, ϕ)

)
=

1

4π

∫
R3

1

|x− y|3

(
y2 − x2

x1 − y1

)
ΩB(y⊥; ρ+ ϕ(y3)) dy⊥ dy3 . (97)

On the other hand, for any x3 ∈ R, UB(x⊥; ρ+ϕ(x3)) is obtained from ΩB(x⊥; ρ+ϕ(x3))
via the two-dimensional Biot-Savart law (76), which can be written in the form(

UB
1 (x⊥; ρ+ ϕ(x3))

UB
2 (x⊥; ρ+ ϕ(x3))

)
=

1

4π

∫
R3

1

|x− y|3

(
y2 − x2

x1 − y1

)
ΩB(y⊥; ρ+ ϕ(x3)) dy⊥ dy3 , (98)

because ∫
R

1

|x− y|3
dy3 ≡

∫
R

1

(|x⊥ − y⊥|2 + (x3 − y3)2)3/2
dy3 =

2

|x⊥ − y⊥|2
. (99)

Using these representation formulas, it is easy to show that the velocity fields ŨB, UB

are close if the function ϕ varies sufficiently slowly.
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Proposition 4.11 Fix λ ∈ [0, 1), and assume that ρ ∈ R and ϕ ∈ C1
b (R) satisfy |ρ| +

‖ϕ‖L∞ ≤ R1(λ), where R1 is defined in Proposition 2.2. Then ŨB(·; ρ, ϕ) ∈ C0
b (R3), and

there exists C(λ) > 0 such that

sup
x∈R3

|ŨB(x; ρ, ϕ)| ≤ C(|ρ|+ ‖ϕ‖L∞) , (100)

sup
x∈R3

|ŨB(x; ρ, ϕ)−UB(x⊥; ρ+ ϕ(x3))| ≤ C‖ϕ′‖L∞ . (101)

Proof: Since ΩB(x⊥; ρ) is a continuous function of x⊥ ∈ R2 which decays rapidly as
|x⊥| → ∞, uniformly in ρ ∈ [−R1, R1], it is not difficult to verify that the velocity field
ŨB(x; ρ, ϕ) defined by (97) depends continuously on x ∈ R3. Next using (99) and (39)
with m = 1, we find

|ŨB(x; ρ, ϕ)| ≤ 1

2π

∫
R2

1

|x⊥ − y⊥|
C(|ρ|+ ‖ϕ‖L∞)

b(y⊥)
dy⊥ .

Since b−1 ∈ Lp(R2) for all p ∈ (1,∞], the above integral is uniformly bounded for all
x⊥ ∈ R2 (see Proposition 4.4), and we obtain (100).

Finally, taking the difference of (97) and (98), we see that |ŨB −UB| ≤ C(D1 +D2),
where

Di(x) =

∫
R3

|xi − yi|
|x− y|3

∣∣∣ΩB(y⊥; ρ+ ϕ(y3))− ΩB(y⊥; ρ+ ϕ(x3))
∣∣∣ dy⊥ dy3 , i = 1, 2 .

But∣∣∣ΩB(y⊥; ρ+ ϕ(y3))− ΩB(y⊥; ρ+ ϕ(x3))
∣∣∣ ≤ ∣∣∣ ∫ y3

x3

∂ρΩ
B(y⊥; ρ+ ϕ(z))ϕ′(z) dz

∣∣∣
≤ |x3 − y3|‖ϕ′‖L∞ sup

|ρ|≤R1

|∂ρΩB(y⊥; ρ)| .

Since ∫
R

|x3 − y3|
|x− y|3

dy3 =
2

|x⊥ − y⊥|
, and

|xi − yi|
|x⊥ − y⊥|

≤ 1 ,

we thus find

‖Di‖L∞ ≤ 2‖ϕ′‖L∞
∫

R2

sup
|ρ|≤R1

|∂ρΩB(y⊥; ρ)| dy⊥ , i = 1, 2 . (102)

Using now (39) with m = 2, we see that the integrand is bounded by C/b(y⊥)2, hence the
integral in (102) is finite. This gives (101). �
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