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Abstract

We show how for a quasilinear water wave model the NLS approximation can be-
justified. The model presents several new difficulties due to the quadratic terms which
have to be eliminated by a normal-form transformation. Due to the quasilinearity of
the problem there is some loss of regularity associated with the normal-form transfor-
mation and there is a nontrivial resonance present in the problem. The loss of regularity
is dealt with by using a Cauchy–Kowalevskaya-like method to treat the initial value
problem and the nontrivial resonance is dealt with via a rescaling argument.
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1 Introduction

The so-called 2D water wave problem in case of finite depth and no surface tension consists
in finding the irrotational flow of an incompressible inviscid fluid in a canal of infinite length
and fixed depth subject to gravitational force. Under these conditions the evolution of the
system is completely determined by the elevation of the top surface η = η(x, t) and the
horizontal velocity w = w(x, t) at the top surface, where x ∈ R denotes the spatial variable
along the canal. By making the ansatz(

η
w

)
= εΨNLS +O(ε2)

with
εΨNLS = εA

(
ε(x+ cgt), ε2t

)
ei(k0x+ω0t)ϕ(k0) + c.c., (1)
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in 1968 V.E. Zakharov [Zak68] derived the Nonlinear Schrödinger (NLS) equation

∂TA = iν1∂
2
XA+ iν2A|A|2, (2)

with coefficients νj = νj(k0) ∈ R, in order to describe slow modulations in time and in
space of the underlying temporally and spatially oscillating wave train ei(k0x+ω0t). Here,
0 < ε� 1 is a small perturbation parameter, A(X,T ) ∈ C the complex-valued amplitude,
and ϕ(k0) ∈ C2 an eigenvector for the linearized equation, specified in more detail below.
T = ε2t ∈ R is the slow time scale and X = ε(x + cgt) ∈ R is the slow spatial scale. The
basic spatial wave number k = k0 and the basic temporal wave number ω = ω0 are related
via the linear dispersion relation of the water wave problem, namely

L(ω, k) = ω2 − k tanh k = 0. (3)

The group velocity cg of the wave packet is given by cg = ∂kω|k=k0,ω=ω0 .
It is the purpose of this paper to present a method which we expect will allow us in

the future to prove the validity of the NLS approximation for the water wave problem in
the case of finite depth and no surface tension.

Our model problem is given by the equation

∂2
t u = −ω2u− ρ2u2, (4)

where ω = ω(−i∂x) and ρ = ρ(−i∂x) are pseudo differential operators defined by their
symbols in Fourier space. We choose

ω(k)2 = k tanh k

such that (4) and the water wave problem have the same linear dispersion relation. We
define ω uniquely through ω(k) > 0 for k > 0 and ω(k) < 0 for k < 0.

By the choice ρ2 = ω2 the water wave problem in case of finite depth and no surface
tension and (4) share the same principal difficulties which have to be overcome for a validity
proof of the NLS approximation, namely:

• a quadratic nonlinearity,

• the quasilinearity,

• the trivial resonance at the wave number k = 0,

• and the nontrivial resonance at the wave number k = k0 which is implied by the
existence of the trivial resonance at k = 0.

However, the Lagrangian formulation of the water wave problem whose analysis is the
future goal of the subsequent analysis is much more involved. Both the linear terms and
nonlinear terms are more complicated than those of our model problem and in particular,
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Figure 1: The curves k 7→ ±ω(k).

involve the Dirichlet–Neumann operator. Moreover, there is an additional, “artificial”
eigenvalue curve in the Lagrangian formulation which produces a large number of further
resonances. In order to illustrate the normal-form analysis which underlies our proof of
the NLS approximation in a simple context we will first show that solutions of the model
equation (4), which retains essential features of the water wave problem in case of finite
depth and no surface tension , can be approximated by the Nonlinear Schrödinger equation.

Writing (4) as a first order system

∂tu = −ωv, (5)
∂tv = ωu+ ωu2 (6)

we show that its solutions (u, v) can be approximated via the ansatz (1) by those of the
NLS equation (2).

Notation. We denote Fourier transform by (Fu)(k) = û(k) = 1
2π

∫
u(x)e−ikx dx. The

Sobolev spaceHr is equipped with the norm ‖u‖Hr = (
∫
|û(k)|2(1+|k|2)r dk)1/2. Moreover,

let ‖u‖Cn
b

=
∑n

j=0 ‖∂
j
xu‖C0

b
, where ‖u‖C0

b
= supx∈R |u(x)|.

Our result is

Theorem 1. For all k0 6= 0 and for all C1, T0 > 0 there exist T1 > 0, C2 > 0, ε0 > 0 such
that for all solutions A ∈ C([0, T0],H6(R,C)) of the NLS equation (2) with

sup
T∈[0,T0]

‖A(·, T )‖H6(R,C) ≤ C1
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the following holds. For all ε ∈ (0, ε0) there exists a solution of (5)–(6) which satisfies

sup
t∈[0,T1/ε2]

∥∥∥∥(uv
)

(·, t)− εΨNLS(·, t)
∥∥∥∥

(C0
b (R,R))2

≤ C2ε
3/2,

where ϕ(k0) in the definition of εΨNLS in (1) can be chosen either as
(

1
−i

)
or
(

1
i

)
.

The error of order O(ε3/2) is small compared with the solution (u, v) and the approx-
imation εΨNLS which are both of order O(ε) in L∞ such that the dynamics of the NLS
equation can be found also in (5)–(6). This fact should not be taken for granted. There
are modulation equations (for example see [Sch95, GS01]) which, although derived by rea-
sonable formal arguments, do not reflect the true dynamics of the original equations. One
respect in which our theorem is not optimal is that we cannot show that T0 = T1. Neverthe-
less our estimates are on an O(1/ε2) time scale and T1 ∼ 1/C1 is of reasonable size so our
theorem guarantees that we can observe typical NLS phenomena in our model equation.
Moreover, this result is the first validity result for the NLS approximation in systems with
quasilinear quadratic terms that we are aware of which holds for the qualitatively correct
time scale. In [Kal87], for example, quadratic quasilinear terms are explicitly excluded.

The plan of the paper is as follows. In Section 2 we outline the underlying ideas. In
Section 3 we introduce some notation and estimate the terms which remain after inserting
the approximation into (5)–(6). In Section 4 we perform the normal-form transformation
W = U + G(U) with G(U) = O(U2) and U = (u, v). Special attention is given to the
handling of the trivial resonance at the Fourier wavenumber k = 0 and of the nontrivial
resonance at k = k0. Due to the quasilinearity of the problem the normal-form transforma-
tion loses regularity, i.e., we have G : Hr+1/2 → Hr so that the normal-form transformation
cannot be inverted with the help of a Neumann series. Thus, Section 5 is devoted to the
inversion of the normal-form transformation. In order to do so, we will use energy es-
timates. In Section 6 by using energy estimates in a scale of Banach spaces of analytic
functions the error estimates are finally established for the transformed system. These
estimates require that the nonlinear terms in the transformed system “lose” no more than
one derivative, which coupled with the fact that our normal-form transformation loses half
a derivative means that the nonlinearity in our original quasi-linear system is allowed to
lose at most half a derivative. On the other hand, the Lagrangian formulation of the water
wave problem in case of no surface tension falls into this class.

While this paper was under review we received a paper ([TW11]) in which the problem
of approximating the motion of a wave packet on the surface of a fluid of infinite depth and
no surface tension was solved by using special properties of the problem. For more details
see the end of Section 2.

Notations: Throughout this paper many constants are denoted with the same symbol
C and we always assume 0 < ε� 1.
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2 The basic ideas

We consider an abstract evolutionary problem

∂tU = ΛU +N(U,U),

with Λ being a linear and N a symmetric bilinear operator. Suppose that U is formally
approximated by εΨNLS, i.e., that the residual

Res(U) = −∂tU + ΛU +N(U,U)

is small for U = εΨNLS. By modifying the formal approximation εΨNLS the residual can
be made arbitrarily small, i.e., for all γ > 0 there exists a formal approximation εΨ which
to leading order is equal to the NLS approximation, εΨNLS, such that

Res(εΨ) = O(εγ) and εΨ− εΨNLS = O(ε2). (7)

For the water wave problem the residual which contains complicated expansions of the
Dirichlet–Neumann operator has been estimated in [CSS92].

In order to prove Theorem 1 we have to estimate the error

εβR = U − εΨ

for all t ∈ [0, T1/ε
2] to be of order O(εβ) for some β > 1, i.e., we have to prove that R is

of order O(1) for all t ∈ [0, T1/ε
2]. The error R satisfies

∂tR = ΛR+ 2εN(Ψ, R) + εβN(R,R) + ε−β Res(εΨ). (8)

For our equation, the linear operator Λ generates a uniformly bounded semigroup.
The effects of the nonlinear term, εβN(R,R), can be controlled over the relevant time
interval if β > 2, which we assume henceforth. By choosing our approximation function
εΨ appropriately we can insure that ε−β Res(εΨ) = O(ε2) and then the effects of this term
on the evolution of R is also benign. Thus, the only remaining term is the linear term,
2εN(ψ,R). Unfortunately, this term can perturb the linear evolution in such a way that
the solutions begin to grow on time scales O(ε−1) and hence we would lose all control over
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the size of R on the desired time scale. Our approach to this problem is to eliminate this
term via a normal-form transformation.

The idea of eliminating this term with a normal-form transformation

W = R+ εM(Ψ, R),

with M being a bilinear mapping, goes back to Kalyakin (cf. [Kal87] – see also [Sch98b,
JMR00]). In order to eliminate 2εN(Ψ, R) by this near identity change of variables, a
non-resonance condition has to be satisfied. The eigenvalues λj = λj(k) of the linearized
problem (here j = 1, 2) as a function over the Fourier wave numbers k have to satisfy

|λp(k)− λ1(k0)− λq(k − k0)| > 0 (9)

for p, q = 1, 2 and all k ∈ R uniformly. It is easy to see that the eigenvalues λj = iωj of
(5)–(6) with ωj = ωj(k) given by the solutions of (3) do not satisfy (9) and in particular,
there is a resonance at the wave number k = 0. This resonance is “trivial” for both (5)–(6)
and the water wave problem, where we define a resonance to be trivial if the numerator
of the normal-form transformation vanishes at the resonant wave number – otherwise it is
called non-trivial. Trivial resonances ultimately cause no problems for the definition of the
normal-form transformation. However, the presence of a resonance at the wave number
k = 0 always implies another resonance for the wave number k = k0 and this one turns out
to be non-trivial. Therefore, the normal-form method of [Kal87] is no longer applicable
and an improved method related to that used in [Sch98a] has to be applied. The method
is based on a suitable wave number dependent rescaling of the error function R, followed
by a number of special normal-form transformations.

This discussion and the construction of the normal-form transformation below empha-
sizes the difference between the meaning and effects of resonances in finite dimensional
problems (or infinite dimensional problems with discrete spectrum) and those in infinite
dimensional problems with continuous spectrum. This distinction was previously discussed
in [McK97].

More recently the nature and effects of resonances in the water wave problem has also
been examined for the 2D water wave problem in [Wu09] and for the 3D water wave problem
in [GMS09] in establishing (almost) global existence results in case of infinite depth, i.e.
ω2 = |k|. However, due to the different goal in [GMS09] the normal-from transformation
does not have to be inverted and the loss of regularity occurs in such a way that the local
existence method of the untransformed system still can be used.

In case of infinite depth and no surface tension the elimination of all quadratic terms
is possible without loss of regularity as has been shown in [Wu09]. This has been used
very recently in [TW11] to prove the NLS approximation property for the 2D water wave
problem in the case of infinite depth and no surface tension. The differences between the
water wave problem in the cases of infinite vs. finite depth are such that a transfer of the
results from [TW11] to the case of finite depth does not seem obvious to us.

6



3 Notation and estimates for the residual

As noted in the introduction, the existence theory we use requires us to work in spaces of
analytic functions. Therefore, we introduce Ŷ p

σ,r equipped with the norm ‖·‖bY p
σ,r

given by

‖û‖bY p
σ,r

= ‖ûwσ,r‖Lp

where the weight function
wσ,r(k) = eσ|k|

(
1 + k2

)r/2
.

Moreover, let ‖u‖Y p
σ,r

= ‖û‖bY p
σ,r

. If û ∈ Ŷ p
σ,0, then u is analytic in the strip {z ∈ C | |Imz| <

σ}. If û has bounded support then the ‖ · ‖bY p
σ,r

norm is bounded by a constant times the
‖ · ‖Lp norm. We have Young’s inequality

‖û ∗ v̂‖bY p
σ,r
≤ C(‖v̂‖L1‖û‖bY p

σ,r
+ ‖û‖L1‖v̂‖bY p

σ,r
) ,

where ∗ denotes convolution. Due to Sobolev’s embedding theorem we have that Ŷ p
σ,r can

be embedded into L1 with
‖û‖L1 ≤ C‖û‖bY p

σ,r

for every σ > 0 or if rp/(p− 1) > 1 in case σ = 0.

Since our interest is the proof of an approximation result we only sketch the derivation
of the NLS equation, the construction of an improved approximation and the proof of
estimates for the residual which are quite standard. We refer to [Sch05, Sections 3.1 and
3.2] and the Appendix for more details.

Taking the Fourier transform of (5)–(6) we see that the linear part of the equation can
be diagonalized as:

∂tU = ΛU +N(U,U), (10)

with Λ being a linear, and N a bilinear mapping. In detail, in Fourier space we have

S =
1√
2

(
1 1
i −i

)
= S∗, Λ̂(k) =

(
iω1(k) 0

0 iω2(k)

)
,

N̂(Û , V̂ ) = S−1Ñ(SÛ, SV̂ ), Ñ(Û , V̂ )(k) = ω1(k)
(

0
((Û)1 ∗ (V̂ )1)(k)

)
,

where the eigenvalues iω1/2 are given by

ω1(k) = ω(k) =
√
k tanh(k) , ω2(k) = −ω(k) = −

√
k tanh(k) (11)

for k ≥ 0 and ωj(k) = −ωj(−k). We introduce now the coefficients α̂jmn(k, k − `, `) of the
bilinear mapping N by

(N̂(û, v̂)(k))j =
∫ ∑

m,n∈{1,2}

α̂jmn(k, k − `, `)ûm(k − `)v̂n(l) d`, (12)
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where the coefficient functions α̂jmn(k, k − `, `) are proportional to the eigenvalues ω1(k),
for example, α̂1

11(k, k − `, `) = ω1(k)/
√

2. Since for our special model the coefficients α̂jmn
only depend on the first variable, we write α̂jmn = α̂jmn(k) in the following. With this
notation (10) can be written as

∂tÛ1(k, t) = iω1(k)Û1(k, t) +
∫ ∑

m,n∈{1,2}

α̂1
mn(k)Ûm(k − `, t)Ûn(`, t) d`,

(13)

∂tÛ2(k, t) = iω2(k)Û2(k, t) +
∫ ∑

m,n∈{1,2}

α̂2
mn(k)Ûm(k − `, t)Ûn(`, t) d`.

Note that from the form of the coefficients α̂jmn(k), we see that the worst growth in
these coefficients is O(

√
|k|) as |k| → ∞. Thus, we expect the nonlinearity to “lose” half

a derivative. Using Young’s inequality for convolutions one can make this precise and we
find that in either the Sobolev spaces or the spaces of analytic functions defined above one
has estimates on the nonlinear term of the form

Lemma 2. If s ≥ 2 and σ ≥ 0 there exists constants Cs and Cσ,s such that the nonlinear
terms in (13) satisfy the estimates

‖N(U, V )‖Hs ≤ Cs(‖U‖Hs+1/2‖V ‖Hs−1/2 + ‖U‖Hs−1/2‖V ‖Hs+1/2), (14)

‖N(U, V )‖Y 2
σ,s
≤ Cσ,s(‖U‖Y 2

σ,s+1/2
‖V ‖Y 2

σ,s−1/2
+ ‖U‖Y 2

σ,s−1/2
‖V ‖Y 2

σ,s+1/2
). (15)

Remark 3. The important point about this lemma is that we lose the maximum number
of derivatives in only one of the two factors in the nonlinear term. This fact will play a
role in our energy estimates in Section 6. The proof follows immediately from Leibniz’s
rule which also shows that the s− 1/2 is not optimal and can be chosen smaller.

We describe our approximation for the solution in more detail. We focus on the NLS
approximation for the first component of (13) – the corresponding computation for the
second component is almost identical. The basic idea is to write U ≈ ε(ψ̃1 + ψ̃−1), where
ψ̃±1 are given by solutions of Nonlinear Schrödinger equation (NLS).

As remarked above, the residual

Res(U) = −∂tU + ΛU +N(U,U) (16)

is a measure how much U fails to be a solution of (10). If we were to use only the NLS
approximation to the solution the residual would be O(ε2). It turns out that the proof
of the approximation theorem is greatly simplified if we choose the residual to be smaller
than this. We make the residual smaller by approximating U not just with the NLS terms,
but rather by a more complicated approximation:

εψ̃j =
∑

j2;|j2|<5

∑
j1;βj(j2,j1)≤5

εβj(j2,j1)ψ̃j1j2j , j = 1, 2 , (17)
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where β1(j2, j1) = 1+||j2|−1|+j1, β1(j2, j1) = β2(j2, j1) except for β2(1, j1) = β1(1, j1)+2,
and the terms

ψ̃j1j2j = Aj1j2j(ε(x+ cgt), ε2t)eij2(k0x+ω0t) . (18)

The terms with j1 = 0, j2 = ±1, j = 1 will again be given by NLS equation, while
the higher order terms will be solutions of inhomogeneous linear PDE’s or of algebraic
equations. We describe in more detail the derivation of the equations for ψ̃j1j2j in the
Appendix, but at this point emphasize the following points:

• The lowest order terms in (17) are given by

(εψ̃0
1)1 = (εψ̃0

−1)1 = εA(ε(x+ cg)t, ε2t)ei(k0x+ω0t)

(εψ̃0
1)2 = (εψ̃0

−1)2 = 0 ,

where A(X,T ) is a solution of the NLS equation - we only modify the higher order
terms.

• The higher order terms can be chosen in such a way that the residual Res(εψ̃) =
O(ε6).

We mentioned in the introduction that our existence theory requires us to work in
spaces of analytic functions. However, so far we have only required that the solutions of
the NLS from which we construct our approximation lie in the Sobolev space H6. We now
prove that by a further small modification we can make our approximation an analytic
function. We do this by replacing the ψ̃j1j2j defined in (17) by functions that are “cut-off”
in Fourier space, cf. [Alt02, BL03] for a similar prozedure. More precisely we define:

ψj1j2j : ψ̂j1j2j(k) = ̂̃
ψ
j1

j2j(k) for {k ∈ R | |k − j2k0| ≤ δ} ; ψ̂j1j2j(k) = 0 otherwise, (19)

for some δ > 0 independent of 0 < ε� 1. Our final approximation is then given by

εΨj =
∑

j2;|j2|<5

∑
j1;β(j2,j1)≤5

εβ(j2,j1)ψj1j2j . (20)

We have the following estimates.

Lemma 4. There exists C1 > 0 and C2 > 0 such that

‖εΨ− εψ̃‖C0
b
≤ ‖εΨ̂− ε

̂̃
ψ‖L1 ≤ C1ε

6

and
‖Ψ‖Y 1

σ,r
≤ C2‖Ψ‖Y 1

0,0
.
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Proof. The first estimate follows by noting that∫ ∣∣χ|k−j2k0|<δ(k)− 1
∣∣ ∣∣∣∣1ε Â

(
k − j2k0

ε

)∣∣∣∣ dk

≤ sup
|k−j2k0|≥δ

∣∣∣∣∣ 1

(1 + |k−j2k0ε |2)5/2

∣∣∣∣∣ · ‖ε−1Â(ε−1·)‖bY 1
0,5
≤ Cε5‖A‖H6 .

The second follows since due to the compact support of Ψ̂ we have for all σ, r ≥ 0 a
C = C(σ, r) > 0 such that

‖Ψ‖Y 1
σ,r
≤ C‖Ψ‖Y 1

0,0
.

Because of the fact that we used the cut-off function for the approximation, we have
the analyticity of the residual in a strip in the complex plane although the solutions of the
NLS equation were only in the Sobolev space H6. Note that since the Fourier transform
of Ψ is non-zero only near k = mk0 for m = 0,±1, . . .± 5 we can extend the definition into
a strip of width σ = O(1) in the complex plane and still have an estimate on the residual
of O(ε6).

Thus, we finally find:

Lemma 5. For all CA, T0, σ, r > 0 there exist CRes, CΨ, ε1 > 0 such that the following
holds for all ε ∈ (0, ε1).

Let A ∈ C([0, T0],H6(R,C)) be a solution of the NLS equation (2) with

sup
T∈[0,T0]

‖A(T )‖H6 ≤ CA.

Then the approximation Ψ defined in (20) exists for all T ∈ [0, T0] and satisfies

sup
T∈[0,T0]

‖ψj1j2 (T )‖Y 1
σ,r

≤ CΨ,

sup
T∈[0,T0]

‖S(εΨ(T ))− εΨNLS(T )‖C0
b
≤ CΨε

2,

sup
T∈[0,T0]

‖Res(εΨ(T ))‖Y 2
σ,r

≤ CResε
11/2 .

Proof. The first two estimates in the proof were explained above. The factor of S in the
second estimate just accounts for the diagonalization of the linear part of the equation as
explained after equation (10). Note that ‖ψj1j2‖Y 2

σ,r
= O(ε−1/2) due to the way the L2 norm

scales with ε. This is the reason for the difference of −1/2 between the formal order and
the rigorous estimate. The estimate on the residual follows by a similar argument to the
second – namely one extends the estimate on the Fourier transform into the complex plane
(since the Fourier transform of Ψ is cut-off outside a neighborhood of mk0). For complete
details see the Appendix and [Sch05].
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Remark 6. The first estimate in Lemma 5 is used for instance for the estimate

‖N(Ψ, R)‖Y 2
σ,r
≤ C‖Ψ‖Y 1

σ,r+1
2

‖R‖Y 2

σ,r+1
2

.

4 The normal-form transformation

In order to show that the solutions of the error equations (8) remain small over the very
long time intervals (t ∼ O(1/ε2)) needed for our approximation theorem we eliminate
the term 2εN(Ψ, R) from (8) via a normal-form transformation. There are several non-
standard aspects of our normal-form transformations, but the one which causes the most
technical difficulty is that the eigenvalues are continuous functions, rather than a discrete
set of points, due to the continuous spectrum of the linearized problem. This makes it
much harder to avoid resonances – though as pointed out in [McK97], the effects of these
resonances may be less “deadly” than in the finite dimensional case.

Motivated by the form of the terms we want to eliminate from (25) we make a change
of dependent variable of the form

R̃j1 = Rj1 + εBj1(Ψ, R) , j1 = 1, 2 , (21)

where

B̂j1(Ψ, R) =
2∑

j2,j3=1

∫
b̂j1;j2,j3(k, k − `, `)Ψ̂j2(k − `)R̂j3(`)d`, (22)

and where Ψ̂j2 and R̂j3 refer to the j2 and j3 components of Ψ̂ and R̂ respectively. A
standard calculation which we explain in more detail below shows that the kernel function
b̂j1;j2,j3 can be written as a quotient whose denominator is:

ωj1(k)− ωj2(k − `)− ωj3(`) .

So long as the denominator remains away from zero our normal-form transformation is well
defined. However, spots where the denominator vanish are known as resonances and given
the formula (11) which defines ω1,2 it is obvious that there are at least two trouble spots:

(i) k = 0: Note that k = 0 is always a resonance if j2 = j3. However, note further
that the nonlinear term also vanishes linearly at k = 0 (due to ω1 that acts on the
nonlinearity). Hence with the linearly vanishing denominator also the numerator of
b̂j1;j2,j3 at k = 0 vanishes linearly and so B̂j1 in (22) can be well defined.

(ii) k = k0: Because the Fourier transform approximate solution Ψ̂(m) is concentrated
around m = ±k0 we can approximate the denominator of the normal-form transfor-
mation by

ωj1(k)± ωj2(k0)− ωj3(k ∓ k0) . (23)

11



(We will validate this approximation below.) Taking the “−” sign and assuming that
j1 = j2 we see that k = k0 is also a resonance. However, by scaling the dependent
variable R near k = 0 one order less w.r.t. to ε than at the other wave numbers we
can make the numerator of the kernel of the normal-form transformation to vanish
for k = k0, too. This allows the normal-form transformation to be well defined in
spite of the resonance. A similar resonance and cancellation occurs at k = −k0 for
other choices of the signs in (23).

We now make the preceding observations more precise. We begin by rescaling the
variable R to reflect the fact that the nonlinearity vanishes at k = 0. For a δ > 0 sufficiently
small, but independent of 0 < ε� 1, define a weight function ϑ by its Fourier transform:

ϑ̂(k) =
{

1 for |k| > δ,
ε+ (1− ε)|k|/δ for |k| ≤ δ.

We then rewrite a solution U of (10) as a sum of the approximation and an error, i.e.,

U = εΨ + εβϑR, (24)

with a β ∈ (3, 7/2) and where, in a slight abuse of notation, ϑR is defined by ϑ̂R = ϑ̂R̂, i.e.,
we avoid writing the convolution ϑ ∗R. Note that ϑ̂(k)R̂(k) is small at the wave numbers
close to zero reflecting the fact that the nonlinearity vanishes at k = 0.

If we now insert U into (10) we find that R satisfies

∂tR = ΛR+ 2εϑ−1N(Ψ, ϑR) + εβϑ−1N(ϑR, ϑR) + ε−βϑ−1 Res(εΨ). (25)

Since we need estimates for R on a time scale O(1/ε2) and since ϑ−1 is at most of order
O(1/ε) all terms on the right-hand side except for the linear ones are at least of order
O(ε2). In particular, if we can control the linear evolution all the remaining terms can be
easily handled with the help of Gronwall’s inequality. The evolution due to the term ΛR
can be explicitly computed and causes no growth in R. Hence we need only control or
eliminate the effects of the remaining linear terms.

We begin by examining the term 2εϑ−1N(Ψ, ϑR) in greater detail. Note that from
(12), we can write the j1-th component of this term as

εϑ−1N̂j1(Ψ, ϑR)(k) = εϑ−1(k)
2∑

j2,j3=1

∫
α̂j1j2j3(k)ϑ̂(m)Ψ̂j2(k −m)R̂j3(m)dm (26)

where the kernel function αj1j2j3(k) is proportional to ω1(k). Recall further that according
to (17), the approximating function Ψ can be written as

Ψ = Ψc + εΨs,

12



where both Ψc and Ψs have norm O(1) in any of the Y 1
σ,r spaces (due to their compact

support in Fourier space) but they have disjoint supports with supp(Ψ̂c) ⊂ {k ∈ R ||k −
k0| ≤ δ, |k + k0| ≤ δ}.

We find

Lemma 7. There exists CL > 0 such that

‖εϑ−1N(εΨs, ϑR)‖Y 2
σ,r−1/2

≤ CLε
2‖R‖Y 2

σ,r
(27)

Proof. Recalling that
|α̂j1j2j3(k)| ≤ Cmin(|k|1/2, |k|) . (28)

we see that there exists C > 0 such that∣∣∣∣∣ α̂
j1
j2j3

(k)
ϑ(k)

∣∣∣∣∣ ≤ C, (29)

and hence, applying Young’s inequality for convolutions as in Remark 6 gives the result.
Thus, this term does not cause undue growth in the error R over the time scales of

interest and we can ignore it. More precisely, if we rewrite (25) as

∂tR = ΛR+ 2εϑ−1N(Ψc, ϑR) + 2ε2ϑ−1N(Ψs, ϑR)
+εβϑ−1N(ϑR, ϑR) + ε−βϑ−1 Res(εΨ).

(30)

then it is only the term εϑ−1N(Ψc, ϑR) that needs to be removed by a normal-form trans-
formation.

Remark 8. In fact, we do not have to eliminate this term entirely, but rather eliminate
it up to remainders that are of O(ε2) which can as usual be controlled with the aid of
Gronwall’s inequality. This leads us, in the course of constructing the normal-form trans-
formation below, to introduce a sequence of terms which we will denote ε2Ej. We will show
in the course of the argument that these terms can be bounded by O(ε2) in the Y 2

σ,r−1 norm,
if R is in a bounded neighborhood of the origin in Y 2

σ,r, and thus they can be ignored for the
purpose of the normal-form transformation. The consequences of the loss of differentiabil-
ity will be discussed in Section 6, but for the moment we note that it will turn out that so
long as these remainder terms are of O(ε2) and lose no more than one derivative, they can
be ignored in the following discussion.

Before constructing the first of the normal-form transformations we prove a lemma
which will simplify the subsequent discussion and will allow us to extract the real ‘danger-
ous’ terms from εϑ−1N(Ψc, ϑR). This lemma (and the simplifications it brings about) take
advantage of the strong localization of Ψc near the wave numbers ±k0 in Fourier space.

Lemma 9. Fix p ∈ R. Assume that κ = κ(k, k −m,m) ∈ C(R3,C). Assume further that
ψ has a finitely supported Fourier transform and that R ∈ Y 2

σ,r.
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• If κ is Lipshitz with respect to its second argument for k −m in some neighborhood
of p ∈ R, then there exists Cψ,κ,p > 0 such that

‖
∫
κ(·, · −m,m)ψ̂(

· −m− p

ε
)R̂(m)dm−

∫
κ(·, p,m)ψ̂(

· −m− p

ε
)R̂(m)dm‖Y 2

σ,r

≤ Cψ,κ,pε‖R‖Y 2
σ,r

(31)

• If κ is globally Lipshitz with respect to its third argument, then there exists Dψ,κ > 0
such that

‖
∫
κ(·, · −m,m)ψ̂(

· −m− p

ε
)R̂(m)dm

−
∫
κ(·, · −m, · − p)ψ̂(

· −m− p

ε
)R̂(m)dm‖Y 2

σ,r
(32)

≤ Dψ,κε‖R‖Y 2
σ,r

Remark 10. Note that there are two important aspects of this lemma – the first is that
we fix the second argument of the kernel function κ to the value p (or the third to k − p)
and the second is that the error which we make by this procedure is O(ε).

Proof: We give the details of the proof for the first of the two cases in the Lemma.
The very similar second case is left to the reader.

‖
∫
κ(·, · −m,m)ψ̂(

· −m− p

ε
)R̂(m)dm−

∫
κ(·, p,m)ψ̂(

· −m− p

ε
)R̂(m)dm‖2

Y 2
σ,r

=
∫ (∫

(κ(k, k −m,m)− κ(k, p,m)ψ̂(
k −m− p

ε
)R̂(m)dm

)2

e2σ|k|(1 + k2)rdk

≤
∫ (

Cκ

∫
|(k −m)− p|ψ̂(

k −m− p

ε
)R̂(m)dm

)2

e2σ|k|(1 + k2)rdk

≤ C2
κ(
∫
eσ`(1 + `2)r/2|`||ψ̂(

`

ε
)|d`)2‖R‖2

Y 2
σ,r
≤ Cψ,κ,pε

2‖R‖2
Y 2

σ,r
,

where to the next to last inequality we applied Young’s inequality to bound the L2 norm
of the convolution and the last relied on the fact that ψ̂ has compact support.

Remark 11. The conclusions of Lemma 9 also hold if the integrals run only over a subset
of R.

The first normal-form transformation: An important property of the nonlinear term
in (4) is that due to the derivative acting on it the size of its Fourier transform depends on
whether k is close to zero or not. (This property is shared with the water wave problem
which is why we included it in our model equation.) In order to separate the behavior in

14



these two regions more clearly we define projection operators P0 and P1 by the Fourier
multipliers

P̂ 0(k) = χ|k|≤δ(k) and P̂ 1(k) = 1− P̂ 0(k) (33)

for a δ > 0 sufficiently small, but independent of 0 < ε� 1. (This is the same constant δ
that appears in the definition of ϑ.) When necessary we will write

R = R0 +R1 ,

with Rj = P jR, for j = 0, 1 and analogously with the other variables. Note that these
superscripts should not be confused with the subscripts which denote the components of R.

Reconsider the part of (30) that we need to simplify, namely

∂tR = ΛR+ 2εϑ−1N(Ψc, ϑR).

Applying the projection operators P 0,1 to this equation we see that it is equivalent to the
system of equations

∂tR
0 = ΛR0 + 2εϑ−1P 0N(Ψc, ϑR

0) + 2εϑ−1P 0N(Ψc, ϑR
1), (34)

∂tR
1 = ΛR1 + 2εϑ−1P 1N(Ψc, ϑR

0) + 2εϑ−1P 1N(Ψc, ϑR
1). (35)

Recall the form of the nonlinear term in (26). Since Ψ̂c(k−m) = 0 unless |(k−m)±k0| < δ
and since R̂0(m) = 0 for |m| > δ we see that P 0N(Ψc, ϑR

0) = 0 if δ > 0 is sufficiently
small, but independent of 0 < ε� 1. Thus, we can replace (34) by

∂tR
0 = ΛR0 + 2εϑ−1P 0N(Ψc, ϑR

1), (36)
∂tR

1 = ΛR1 + 2εϑ−1P 1N(Ψc, ϑR
1) + 2εϑ−1P 1N(Ψc, ϑR

0). (37)

and we changed the order of terms in (35). We will now attempt to construct normal-form
transformations to eliminate the O(ε) terms from (36) and (37). After constructing the
normal-form transformations we will then go back and examine their effect on the full
equation (25).

Given the form of the terms we wish to eliminate in (36) and (37) we look for a
transformation of the form

R̃0
j = R0

j + εB0,1
j (Ψc, R

1) , R̃1
j = R1

j + εB1,1
j (Ψc, R

1) + εB1,0
j (Ψc, R

0) (38)

where

B̂0,1
j1

(Ψc, R
1)(k) =

2∑
j2,j3=1

∫
b̂0,1j1;j2,j3

(k, k −m,m)Ψ̂+
c,j2

(k −m)R̂1
j3(m)dm (39)

+
2∑

j2,j3=1

∫
b̂0,1j1;j2,j3

(k, k −m,m)Ψ̂−
c,j2

(k −m)R̂1
j3(m)dm,
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with analogous formulas for B1,0 and B1,1. Note that we have used the fact that Ψ̂c,j(k) =
Ψ̂+
c,j(k) + Ψ̂−

c,j(k), where Ψ̂±
c,j(k) represent the parts of Ψ̂c,j(k) localized near ±k0 respec-

tively. In the following discussion we will focus on the terms containing Ψ̂+
c,j – those

containing Ψ̂−
c,j are treated in an almost identical fashion.

Construction of B0,1: If we differentiate the expression for R̃0 in (38) w.r.t t we
obtain

∂tR̃
0
j = ∂tR

0
j + εB0,1(∂tΨc, R

1) + εB0,1(Ψc, ∂tR
1) . (40)

Recall that ‖∂tΨc − ΛΨc‖Y 2
σ,r
≤ C(σ, r)ε2 from the definition of Ψc, while (30) implies

‖∂tR0
j − ΛR0

j − 2εϑ−1P 0N̂(Ψc, ϑR)‖Y 2

σ,r− 1
2

≤ Cε2(1 + ‖R‖Y 2
σ,r

) . (41)

Thus, provided the transformation B0,1 is well-defined and bounded we have

∂tR̃
0
j = Λ

(
R̃0
j − εB0,1(Ψc, R

1)
)

+ 2εϑ−1P 0N̂(Ψc, ϑR
1) + εB0,1(ΛΨc, R

1)

+εB0,1(Ψc,ΛR1) + 2εB0,1(Ψc, εϑ
−1P 1N̂(Ψc, ϑR

1)) + ε2E1 , (42)

where we recall that the notation ε2E1 means that the Y 2
σ,r−1 norm of this term can be

bounded by Cε2 if R is in some bounded neighborhood of the origin in Y 2
σ,r. Note that

the term εB0,1(Ψc, εϑ
−1N̂(Ψc, ϑR

1)) appears formally to be O(ε2), but we will see below
that the kernel of the transformation B will be O(ε−1) for certain wave numbers so that
this term is only O(ε) for those wave numbers and must therefore be retained. It will be
eliminated by a second normal-form transformation. The term is not O(1) since the terms
B and ϑ−1 are O(ε−1) at different wave numbers in this term as will be shown below,

Since we want to eliminate all terms which are formally O(ε), this suggests that we
choose B0,1 so that

−ΛB0,1(Ψc, R
1) +B0,1(ΛΨc, R

1) +B0,1(Ψc,ΛR1) = −2ϑ−1P 0N̂(Ψc, ϑR
1). (43)

We find that the kernel of B0,1 should be of the form:

b̂0,1j1;j2,j3
(k, k −m,m) =

−2P̂ 0(k)α̂j1j2,j3(k)
(iωj1(k)− iωj2(k −m)− iωj3(m))

ϑ̂(m)

ϑ̂(k)
. (44)

Due to the fact that the P̂ 0 and Ψ̂c have supports localized near k = 0 and (k−m) = ±k0

respectively this expression only has to be analyzed for |(k − m) ± k0| < δ and |k| < δ.
As a consequence for δ > 0 sufficiently small, but independent of 0 < ε � 1, we can also
restrict to wave numbers m bounded away from 0. Hence from the two possible resonances
discussed above only the resonance at k = 0 will play a role for B0,1. The kernel b̂0,1j1;j2,j3

16



can then be estimated as follows. First note that if we consider the denominator of this
expression near k = 0 then we have

iωj1(k)− iωj2(k −m)− iωj3(m)
= iω′j1(0)k − i(ωj2(−m) + ω′j2(−m)k)− iωj3(m) +O(k2)

If ωj3(m) 6= ωj2(m) this quantity is bounded below by some O(1) constant for all |k| < δ.
If, on the other hand, ωj3(m) = ωj2(m) there exists a positive constant C such that

|iωj1(k)− iωj2(k −m)− iωj3(m)| ≥ C|k| . (45)

Here, we have used the fact that m ≈ ±k0 because of the support of Ψ̂c and the fact the fact
that ω′j(±k0) is O(1) for all j (and is not equal to ω′k(0)). In either case, |α̂j1j2,j3(k)| ≤ C|k|,
and thus there exists C ≥ 0 such that

|ϑ̂(k)̂b0,1j1;j2,j3
(k, k −m,m)| ≤ C (46)

for all |k| ≤ δ.
Because of the factor of P̂ 0(k) which makes b̂0,1j1;j2,j3

(k) = 0 if |k| > δ, B0,1 is “smoothing”
in the sense that if R1 ∈ Y 2

σ,r for some r > 1, then given any σ′, r′, there exists Cσ′,r′ such
that

‖εB0,1(Ψc, R
1)‖Y 2

σ′,r′
≤ Cσ′,r′‖R1‖Y 2

σ,r
. (47)

In particular, this estimate holds when σ′ = σ and r′ = r. Note, however, that in spite of
the factor of ε in front of B0,1, we cannot assume that Cσ′,r′ ∼ O(ε) because of the factor
of ϑ−1(k) ∼ ε−1 for k ≈ 0, in the formula for the kernel of B0,1.

Construction of B1,0 and B1,1: If we differentiate the expression for R̃1 in (38) w.r.t
t we obtain

∂tR̃
1
j = ∂tR

1
j+εB

1,1(∂tΨc, R
1)+εB1,1(Ψc, ∂tR

1)+εB1,0(∂tΨc, R
0)+εB1,0(Ψc, ∂tR

0). (48)

Replacing ∂tΨc and ∂tRj as above we find

∂tR̃
1
j = Λ

(
R̃1
j − εB1,1(Ψc, R

1)− εB1,0(Ψc, R
0)
)

+2εϑ−1P 1N̂(Ψc, ϑR
1) + εB1,1(ΛΨc, R

1) + εB1,1(Ψc,ΛR1) (49)
+2εϑ−1P 1N̂(Ψc, ϑR

0) + εB1,0(ΛΨc, R
0) + εB1,0(Ψc,ΛR0) + ε2E2,

We recall that the notation ε2E2 means that the Y 2
σ,r−1 norm of this term can be bounded by

Cε2 ifR is in some bounded neighborhood of the origin in Y 2
σ,r. The terms εB1,j(Ψc, εϑ

−1N̂(Ψc, ϑR
j))

for j = 0, 1 are included in these error terms.
To avoid a resonance problem at ±k0 we will replace the terms 2εϑ−1P 1N̂(Ψc, ϑR

1)
and 2εϑ−1P 1N̂(Ψc, ϑR

1) in (49) by 2εϑ−1P 1N̂(Ψc, ϑ0R
1) and 2εϑ−1P 1N̂(Ψc, ϑ0R

1), where
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ϑ̂0(k) = ϑ̂(k)−ε. The key fact that we will use below is that ϑ̂0(0) = 0. Making this change
introduces additional error terms 2ε2ϑ−1P 1N̂(Ψc, R

1) and 2ε2ϑ−1P 1N̂(Ψc, R
1) into (49).

However, since ϑ̂−1(k) is O(1) on the support of P̂ 1, these terms can be included in the
error term of the form ε2E2.

Equation (49) can now be rewritten as

∂tR̃
1
j = Λ

(
R̃1
j − εB1,1(Ψc, R

1)− εB1,0(Ψc, R
0)
)

+2εϑ−1P 1N̂(Ψc, ϑ0R
1) + εB1,1(ΛΨc, R

1) + εB1,1(Ψc,ΛR1) (50)
+2εϑ−1P 1N̂(Ψc, ϑ0R

0) + εB1,0(ΛΨc, R
0) + εB1,0(Ψc,ΛR0) + ε2E2,

Since we want to eliminate all terms of O(ε), this suggests that we choose B1,j so that

−ΛB1,j(Ψc, R
j) +B1,j(ΛΨc, R

j) +B1,j(Ψc,ΛRj) = −2ϑ−1P 1N̂(Ψc, ϑ0R
j) (51)

for j = 0, 1. However, we use Lemma 9 to replace this with an equation for B1,j which will
result in a form for the normal-form transformation that is easier to bound, at the expense
of introducing additional “error” terms all of which are O(ε2) and will be included in ε2E2.
More specifically we apply Lemma 9 and make three changes in (51):

(A.1) We replace B1,j(ΛΨc, R
j) by B1,j(Λ0Ψc, R

j) where

B̂1,j
j1

(Λ0Ψc, R
j)(k)

=
2∑

j2,j3=1

∫
b̂1,j;+j1;j2,j3

(k)iωj2(k0)Ψ̂+
c,j2

(k −m)R̂jj3(m)dm

+
2∑

j2,j3=1

∫
b̂1,j;−j1;j2,j3

(k)iωj2(−k0)Ψ̂−
c,j2

(k −m)R̂jj3(m)dm.

(A.2) We replace B1,j(Ψc,ΛRj) by B1,j(Ψc,ΛcRj) where

B̂1,j
j1

(Ψc,ΛcRj)(k)

=
2∑

j2,j3=1

∫
b̂1,j;+j1;j2,j3

(k)Ψ̂+
c,j2

(k −m)iωj3(k − k0)R̂
j
j3

(m)dm

+
2∑

j2,j3=1

∫
b̂1,j;−j1;j2,j3

(k)Ψ̂−
c,j2

(k −m)iωj3(k + k0)R̂
j
j3

(m)dm.

(A.3) We replace ϑ−1P 1N̂(Ψc, ϑ0R
j) by ϑ−1P 1N̂+(Ψ+

c , ϑ0R
j)+ϑ−1P 1N̂−(Ψ−

c , ϑ0R
j) where

εϑ−1P 1N̂ j1,±(Ψ±
c , ϑ0R

j)

= −εϑ−1(k)P̂ 1(k)
2∑

j2,j3=1

∫
α̂j1j2,j3(k)ϑ̂0(k ∓ k0)Ψ̂±

c,j2
(k −m)R̂jj3(m)dm.
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Inserting these changes into (51) we find that the kernel of B1,j should be of the form:

b̂1,j;+j1;j2,j3
=

2P̂ 1(k)α̂j1j2,j3(k)
(iωj1(k)− iωj2(k0)− iωj3(k − k0))

ϑ̂0(k − k0)

ϑ̂(k)
(52)

with a similar expression for b̂1,j,−j1;j2,j3
.

Remark 12. The analysis of the kernel of B0,1 would be simplified by the changes (A1)–
(A3), too. However, we have not made these changes since B0,1 = O(ε−1) for certain
wave numbers which would complicate the analysis of the subsequent second normal-form
transformation.

Due to the support of Ψ̂c and of P̂ 1 the expression (52) only has to be analyzed for
|k−m− k0| < δ and |k| ≥ δ. We now consider the possible resonances in the denominator
of (52).

• k = 0: Since P̂ 1(k) = 0 for |k| ≤ δ, this resonance does not play a role in the analysis
of either B1,0 or B1,1.

• k = k0: There is a resonance at k = k0 whenever j1 = j2. However, since the
derivative of ωj at k0 is O(1), we have a bound on the denominator of the form

|iωj1(k)− iωj2(k0)− iωj3(k − k0)| ≥ C|k − k0| (53)

This singularity is offset, however, by the fact that the term |ϑ̂0(k− k0)| ≤ C|k− k0|
and hence the kernel b̂1,j;+j1;j2,j3

can be extended continuously at k = k0 with an O(1)
bound on its size.

There are no other resonances for this term in the normal form and hence the kernel can
be bounded for all values of k and m by an O(1) bound.

Applying Young’s inequality one easily establishes that if R1 ∈ Y 2
σ,r then there exists

C > 0 such that
‖εB1,1(Ψc, R

1)‖Y 2
σ,r−1/2

≤ Cε‖R1‖Y 2
σ,r

. (54)

Note that in this case there is a loss of “1/2 a derivative” – i.e. we get a bound of B1,1 in
the space Y 2

σ,r−1/2 rather than Y 2
σ,r. This is due to the growth of α̂j1j2,j3 ∼ |ω1(k)| ∼

√
k as

|k| → ∞. One the other hand, since we don’t have to deal with the large values of ϑ−1(k)
near k ≈ 0 we obtain a factor of ε on the right hand side of this estimate.

Due to the compact support of R̂0 this loss of regularity is not present in the estimate
for B1,0. We find analogously

‖εB1,0(Ψc, R
0)‖Y 2

σ,r
≤ Cε‖R0‖Y 2

σ,r
. (55)

We can sum up the results of this first normal-form transformation as follows:
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Proposition 13. Define

R̃0
j = R0

j + εB0,1
j (Ψc, R

1) , R̃1
j = R1

j + εB1,1
j (Ψc, R

1) + εB1,0
j (Ψc, R

0) (56)

for j = 1, 2. This transformation maps (R0
j , R

1
j ) ∈ Y 2

σ,r×Y 2
σ,r into (R̃0

j , R̃
1
j ) ∈ Y 2

σ,r×Y 2
σ,r−1/2

for all r > 1 and σ ≥ 0 and is invertible on its range. Furthermore, if we write the inverse
transformations as

R0
j = R̃0

j + B−1
0,j (R̃

0, R̃1), R1
j = R̃1

j + B−1
1,j (R̃

0, R̃1) ,

then there exist constants C0, C1 such that the inverse transformations satisfy the estimates

‖B−1
0,j (R̃

0, R̃1)‖Y 2
σ,r

≤ C0(‖R̃0‖Y 2
σ,r

+ ‖R̃1‖Y 2
σ,r

)

‖B−1
1,j (R̃

0, R̃1)‖Y 2
σ,r

≤ C1ε(‖R̃0‖Y 2
σ,r

+ ‖R̃1‖Y 2
σ,r

)

for j = 1, 2. Finally, if (R0
j , R

1
j ) satisfy the equations (36) and (37) then (R̃0

j , R̃
1
j ) satisfy

∂tR̃
0
j = ΛR̃0

j + εB0,1(Ψc, εϑ
−1P 1N(Ψc, ϑR̃

1)) + ε2E3

∂tR̃
1
j = ΛR̃1

j + ε2E4,
(57)

where we recall that the notation ε2Ej refers to terms whose Y 2
σ,r−1 norm is bounded by

Cjε
2 for (R̃0, R̃1) in some fixed ball in Y 2

σ,r.

Proof. The proof of invertibility of the transformation is deferred until the next section.
Assuming the invertibility for the moment the structure of the equations (57) follows im-
mediately using R1

j = R̃1
j +O(ε).

The second normal-form transformation: We now construct a second normal-form
transformation to remove the one remaining term of O(ε) from (57). Before doing so we
analyze the offending term in more detail. Recall that Ψc = Ψ+

c + Ψ−
c where the Fourier

transform of Ψ±
c is supported in a neighborhood of size δ of ±k0. Thus, we can write

εB0,1(Ψc, εϑ
−1P 1N(Ψc, ϑR̃

1)) = εB0,1(Ψ+
c , εϑ

−1P 1N(Ψ+
c , ϑR̃

1))
+εB0,1(Ψ−

c , εϑ
−1P 1N(Ψ−

c , ϑR̃
1)) + εB0,1(Ψ+

c , εϑ
−1P 1N(Ψ−

c , ϑR̃
1))

+εB0,1(Ψ−
c , εϑ

−1P 1N(Ψ+
c , ϑR̃

1)). (58)

Each of the four terms can be rewritten as

εB̂0,1
j (Ψl

c, εϑ
−1P 1N(Ψn

c , ϑR̃
1))(k) (59)

= ε2
∑

k1,k2=1,2

∫
b̂0,1j;k1,k2(k, k − `, `)Ψ̂l

c,k1(k − `)

×ϑ−1(`)P̂ 1(`)

 ∑
k3,k4=1,2

∫
α̂k2k3,k4(`−m)Ψ̂n

c,k3(`−m)ϑ̂(m) ̂̃R1

k4(m)dm

 d`,
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where the variable l, n ∈ {+,−} and where we recall that

b̂0,1j;k1,k2(k, k − `, `) =
2P̂ 0(k)α̂jk1,k2(k)

i(ωj(k)− ωk1(k − `)− ωk2(`))
ϑ̂(`)

ϑ̂(k)
.

We now apply Lemma 9 to simplify this expression as we did in B1,j (j = 0, 1). If we
do so we obtain the expression

εB̂0,1
j (Ψl

c, εϑ
−1(· − lk0)P 1N(Ψn

c , ϑ(· − nk0)R̃1))(k) (60)

= ε2
∑

k1,k2=1,2

∫
b̂0,1,l,nj;k1,k2

(k)Ψ̂l
c,k1(k − `)ϑ−1(k − lk0)P̂ 1(k − lk0)

×

 ∑
k3,k4=1,2

∫
α̂k2k3,k4(k − lk0)Ψ̂n

c,k3(`−m)ϑ̂(k + (l + n)k0)
̂̃
R

1

k4(m)dm

 d`+ ε2E3,

with l, n ∈ {+,−}. (We interpret expressions like l + n as if l and n were +1 and −1.)
We use the abbreviation:

b̂0,1,l,nj;k1,k2
(k) =

2P̂ 0(k)α̂jk1,k2(k)

i(ωj(k)− ωk1(lk0)− ωk2(k − lk0))
ϑ̂(k + (l + n)k0)

ϑ̂(k)
.

With these modifications we can now prove that the last two of the terms in (58) are
O(ε2) and hence can be included in the ε2E3 terms in (57):

Lemma 14. There exists C > 0 such that

‖εB0,1(Ψ+
c , εϑ

−1P 1N(Ψ−
c , ϑR̃

1))‖Y 2
σ,r

≤ Cε2‖R̃1‖Y 2
σ,r
,

‖εB0,1(Ψ−
c , εϑ

−1P 1N(Ψ+
c , ϑR̃

1))‖Y 2
σ,r

≤ Cε2‖R̃1‖Y 2
σ,r
.

Proof. Since B0,1 contains the factor P̂ 0(k) means that the integral over k which occurs in
the Y 2

σ,r norm runs only over the integral |k| < δ. Thus, we can bound the Y 2
σ,r norm by

bounding the maximum of the kernel. The first term in Lemma 14 has the modified kernel

ε2b̂0,1,+,−j;k1,k2
(k)ϑ̂−1(k − k0)P̂ 1(k − k0)α̂k2k3,k4(k − k0)ϑ̂(k). (61)

Since b̂0,1,+,−j;k1,k2
(k) = ̂̃b0,1,+,−j;k1,k2 (k)/ϑ̂(k) with ̂̃b0,1,+,−j;k1,k2 (k) being O(1) bounded, in the kernel (61)

the factor ϑ̂(k)−1 cancels with the factor ϑ̂(k). Since all other terms in (61) are O(1)
bounded for |k| < δ we have an O(ε2) bound for the kernel (61). The second term in
Lemma 14 can be estimated similarly.

Lemma 14 implies that the third and fourth terms in (58) need not be eliminated by
the normal form transformation. Thus we now turn to the first two terms in this equation.
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If we simplify the kernel of the first term in (58) with the aid of Lemma 9, we find its
kernel has the form:

ε2b̂0,1,+,+j;k1,k2
(k)ϑ̂−1(k − k0)P̂ 1(k − k0)α̂k2k3,k4(k − k0)ϑ̂(k + 2k0) (62)

plus errors that are of size O(ε2). We obtain a very similar expression for the kernel of
the second term in (58). Note that in contrast to the terms considered in Lemma 14
this expression does not contain a factor of ϑ̂(k) to offset the ϑ̂(k) in the denominator of
b̂0,1,+,+j;k1,k2

(k) and thus they must be eliminated by a second normal form transformation.
We look for a transformation of the form

R0
j = R̃0

j + εD0,1,+
j (Ψ+

c ,Ψ
+
c , R̃

1) + εD0,1,−
j (Ψ−

c ,Ψ
−
c , R̃

1)

R0
j = R̃1

j . (63)

Differentiating the expression for R0
j we find, just as in (40) and (51), that the terms of

O(ε) in (57) will be eliminated if D0,1,+
j satisfies{

−ΛD0,1,+(Ψ+
c ,Ψ

+
c , R̃

1) +D0,1,+(∂tΨ+
c ,Ψ

+
c , R̃

1) +D0,1,+(Ψ+
c , ∂tΨ

+
c , R̃

1)

+D0,1,+(Ψ+
c ,Ψ

+
c , ∂tR̃

1) + εϑ−1B0,1(Ψ+
c , εϑ

−1P 1N(Ψ+
c , ϑR̃

1))
}

= 0, (64)

or equivalently{
−ΛD0,1,+(Ψ+

c ,Ψ
+
c , R̃

1) +D0,1,+(ΛΨ+
c ,Ψ

+
c , R̃

1) +D0,1,+(Ψ+
c ,ΛΨ+

c , R̃
1)

+D0,1,+(Ψ+
c ,Ψ

+
c ,ΛR̃

1) + εϑ−1B0,1(Ψ+
c , εϑ

−1P 1N(Ψ+
c , ϑR̃

1))
}

= 0, (65)

with similar expressions for D0,1,−. We find that we have to choose

εD0,1,+
j (Ψ+

c ,Ψ
+
c , R̃

1) (66)

= ε2
∑

k1,k2=1,2

∫
b̂0,1,+,+j;k1,k2

(k)Ψ̂+
c,k1

(k − `)ϑ−1(k − k0)P̂ 1(k − k0)

×

 ∑
k3,k4=1,2

∫
α̂k2k3,k4(k − k0)Ψ̂+

c,k3
(`−m)ϑ̂(k + 2k0)

̂̃
R

1

k4(m)

−ωj(k) + ωk1(k0) + ωk3(k0) + ωk4(k + 2k0)
dm

 d`

where we used as above in the kernel that k − ` ≈ ` −m ≈ k0 due to the localization of
Ψ̂+
c so we have m ≈ −2k0 which is made rigorous with Lemma 9. According to Young’s

inequality we have to estimate the kernel w.r.t. the sup norm. We already know that the
numerator in this expression in O(ε). In order to estimate the denominator note that in
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this expression k ≈ 0 due to the factor of P̂ 0 in b̂0,1,+,+j;k1,k2
(k) and that k1 = k3 = 1 without

summing over k1 and k3 in (66) due to (17). Hence

(−ωj(k) + ωk1(k0) + ωk3(k0) + ωk4(k + 2k0)) ≈ 2ωk1(k0) + ωk4(2k0) 6= 0.

Regardless of the value of k1 and k4 this expression is bounded strictly away from zero.
Hence the mapping εD0,1,+ is O(ε)-bounded. We can construct and estimate the expres-
sion for D0,1,− in a very similar fashion. Therefore, the normal form is well defined and
invertible. We find

Lemma 15. If

R0 = R̃0 + εD0,1,+(Ψ+
c ,Ψ

+
c , R̃

1) + εD0,1,−(Ψ−
c ,Ψ

−
c , R̃

1)

with εD0,1,± defined as in (66), then for any σ ≥ 0 and r > 1 there exists C > 0 such that

‖εD0,1,±(Ψ+
c ,Ψ

+
c , R̃

1)‖Y 2
σ,r
≤ Cε‖R̃1‖Y 2

σ,r
.

Remark 16. Note that there is no loss of smoothness in this transformation due to the
factor of P̂ 0 in (66) via b̂0,1,l,nj;k1,k2

(k).

Now, just as in Proposition 13 we have:

Proposition 17. Fix σ ≥ 0 and r ≥ 1. Suppose (R̃0, R̃1) satisfy the equations (57).
Define (R0,R1) via the transformations (63). Then for any ρ > 0, there exists ερ such
that for all |ε| < ερ the transformation (63) is invertible on the ball of radius ρ in Y 2

σ,r.
Furthermore, (R0,R1) satisfy the equations

∂tR0 = ΛR0 + ε2E5 (67)
∂tR1 = ΛR1 + ε2E6

Proof. The invertibility of the transformation in this case results from a simple application
of the Neumann series since there is no loss of smoothness. The equation for R0 and R1

follow in the same way the equations for R̃0 and R̃1 were derived in the proof of Proposition
13.

Finally, we consider the composition of the two normal-form transformations, namely

R0 = R̃0 + εD0,1,+(Ψ+
c ,Ψ

+
c , R̃

1) + εD0,1,−(Ψ−
c ,Ψ

−
c , R̃

1)
= R0 + εB0,1(Ψ, R1) + εD0,1,+(Ψ+

c ,Ψ
+
c , R

1 + εB1,0(Ψ, R0) + εB1,1(Ψ, R1))
+εD0,1,−(Ψ−

c ,Ψ
−
c , R

1 + εB1,0(Ψ, R0) + εB1,1(Ψ, R1))
≡ R0 + εF 0(R) , (68)

with a similar expression for R1 ≡ R1 + εF 1(R). From Proposition 13 and Proposition 17
we see that
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1. F 0 and F 1 are linear functions of R, and

2. The (composite) normal-form transformation loses at most half a derivative, i.e. there
exists a constant CF such that

‖εF 1(R)‖Y 2
σ,r−1/2

≤ CF ε‖R‖Y 2
σ,r−1/2

.

There is no loss of regularity in F 0 due to its compact support in Fourier space.

If we now insert use the information we have derived on the equations satisfied by the
transformed variables we find the following proposition:

Proposition 18. There exists a (linear) change of variables,

R = R+ εF (R)

defined for R = (R1, R2) ∈ Y 2
σ,r × Y 2

σ,r and invertible on its range such that in terms of the
transformed variables the equation (25) for the evolution of the error in our approximation
takes the form

∂tR = ΛR+ ε2`(R) + εβG(R) + ε−βϑ−1Res(εΨ) . (69)

Furthermore the linear term ε2`(R) and the bilinear term εβG(R) satisfy the estimates

‖ε2`(R)‖Y 2
σ,r−1

≤ CLε
2‖R‖Y 2

σ,r
,

and
‖εβG(R)‖Y 2

σ,r−1
≤ CGε

β‖R‖Y 2
σ,r
‖R‖Y 2

σ,r−1
.

Proof. The proof follows immediately from the estimates in Proposition 13, Proposition 17
and Lemma 2.

5 Inverting the first normal-form transformation

To complete the derivation of the evolution equation for (R0,R1) in Proposition 17 we now
prove the invertibility of the first normal form transformation asserted in Proposition 13.

The difficulty in the inversion comes from the fact that B1,1
j loses half a derivative –

i.e. in order to estimate B1,1
j (Ψ, R1) in Y 2

σ,r we must know that R1 ∈ Y 2
σ,r+1/2. Therefore,

inverting the normal-form transformation with the help of Neumann’s series is not possible.
Nonetheless the normal-form transformation is invertible due to a sort of energy estimate.
We illustrate this inversion by looking first at a pair of model problems that exhibit this
phenomenon in a somewhat simpler setting.

i) As our first example consider the transformation u = F (v) = v+εa∂xv with 0 < ε�
1 a small parameter, and a some smooth function. As in our normal-form transformation,
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F exhibits a loss of smoothness. Namely, in order to estimate F (v) in the Sobolev space
Hs we need to know that v ∈ Hs+1, in which case we have the estimate

‖u‖Hs ≤ ‖v‖Hs + ε‖a‖Cs+1
b
‖v‖Hs+1 .

Nevertheless, F is 1–1 and hence invertible on its range and we can estimate v in terms of
u as follows: ∫

(∂sxu)(∂
s
xv) =

∫
(∂sxv)

2 + ε

∫
(∂sxv)∂

s
x(a∂xv)

=
∫

(∂sxv)
2 + ε

∫
a(∂sxv)(∂

s+1
x v) +O(ε‖v‖2

Hs)

= ‖∂sxv‖2
L2 +

ε

2

∫
a∂x((∂sxv)

2) +O(ε‖v‖2
Hs)

= ‖∂sxv‖2
L2 −

ε

2

∫
(∂xa)(∂sxv)

2 +O(ε‖v‖2
Hs) .

Summing up all estimates yields

‖v‖2
Hs ≤ ‖v‖Hs‖u‖Hs + Cε‖v‖2

Hs

and hence

‖v‖Hs ≤ ‖u‖Hs + Cε‖v‖Hs ,

which finally gives

‖v‖Hs ≤ 1
1− Cε

‖u‖Hs .

ii) The transformations we constructed in the previous section are expressed as con-
volutions of the Fourier transforms so our next example illustrates that the key property
necessary in this context is that the kernel function in the convolution is purely imaginary
and Lipschitz. Consider:

û(k) = v̂(k) +
∫
b̂(k)â(k −m)v̂(m) dm

We assume that:

• b̂(k) is pure imaginary.

• b̂(k) is Lipshitz as a function of k.

• b̂(k) ∼ ik for |k| → ∞
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As before, a is assumed to be smooth and real valued. We then find∫
v̂(k)û(k) + v̂(k)û(k)dk = 2

∫
v̂(k)v̂(k)dk +

∫
v̂(k)̂b(k)â(k −m)v̂(m) dmdk

+
∫
v̂(k)̂b(k) â(k −m) v̂(m) dmdk

= 2
∫
v̂(k)v̂(k)dk +

∫
v̂(k)̂b(k)â(k −m)v̂(m) dmdk

+
∫
v̂(m)̂b(m) â(m− k) v̂(k) dk dm

= 2
∫
v̂(k)v̂(k)dk +

∫
v̂(k)â(k −m)v̂(m)(̂b(k) + b̂(m)) dk dm

where we used â(`) = â(−`) due to the fact that a is real-valued. Hence

2‖v̂‖2
L2 ≤ 2‖v̂‖L2‖û‖L2 + s1

where with the Gagliardo–Nirenberg inequality

s1 =
∣∣∣∣∫ v̂(k)v̂(m)â(k −m)(̂b(k) + b̂(m)) dk dm

∣∣∣∣
≤

∫
|v̂(k)v̂(m)||â(k −m)|C|k −m|dmdk

≤ ‖v‖2
L2

∫
|â(`)|C|`|d`

since |̂b(k) + b̂(m)| = |̂b(k) − b̂(m)| ≤ C|k − m| if b̂ is Lipschitz-continuous and purely
imaginary.

Note that if instead of estimating the normal-form transformation in the Sobolev spaces
Hs we apply the above ideas in the spaces Y 2

σ,r, then using the estimate eσ|k| ≤ eσ|k−m|eσ|m|

for σ ≥ 0 one can conclude in a very similar fashion the estimates

‖u‖Y 2
σ,r
≤ C‖v‖Y 2

σ,r+1
and ‖v‖Y 2

σ,r
≤ C‖u‖Y 2

σ,r

for b sufficiently small.
iii) Finally, we turn to the first normal-form transformation constructed in the previous

section:

R̃0
j = R0

j + εB0,1
j (Ψ, R1) (70)

R̃1
j = R1

j + εB1,1
j (Ψ, R1) + εB1,0

j (Ψ, R0)

for j = 1, 2. Recall that only the terms B1,1
j lose smoothness. Both B0,1

j and B1,0
j are

bounded transformations from Y 2
σ,r to Y 2

σ,r . Thus, we first consider just

R̃1
j = R1

j + εB1,1
j (Ψ, R1) + εB1,0

j (Ψ, R0) . (71)
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From the previous section we know that

B̂1,1
j (Ψ, R1)(k) =

∑
k1,k2=1,2

∑
σ=±

∫
b̂1,1,σj;k1,k2

(k)Ψ̂σ
c,k1(k −m)R̂1

k2(m)dm

where from the explicit formula in (52) one can immediately verify that b̂1,1,σj;k1,k2
(k) satisfies

the conditions on the kernel that we required to establish the energy estimate in example
(ii). Thus, we multiply both sides of (71) by R1

j and take the Y 2
σ,r norm of both sides, and

add together the estimates for j = 1 and j = 2 then just as in example (ii) we find

‖R1‖2
Y 2

σ,r
≤ ‖R1‖Y 2

σ,r
‖R̃1‖Y 2

σ,r
+ C1ε‖R1‖2

Y 2
σ,r

+ C2ε(‖R1‖2
Y 2

σ,r
+ ‖R0‖2

Y 2
σ,r

) (72)

where ‖R1‖2
Y 2

σ,r
= ‖R1

1‖2
Y 2

σ,r
+ ‖R1

2‖2
Y 2

σ,r
and similarly for ‖R̃1‖Y 2

σ,r
and ‖R0‖Y 2

σ,r
.

This inequality implies that the transformation R1 → R̃1 is 1–1, hence invertible and
satisfies the estimate

‖R1‖2
Y 2

σ,r
≥
(

1
1− C3ε

)(
‖R̃1‖2

Y 2
σ,r

+ εC4‖R0‖2
Y 2

σ,r

)
(73)

so that we can write
R1
j = R̃1

j + εF (R̃1, R0). (74)

We now consider the transformation for R0
j , which with the help of (73). We can write

R̃0
j = R0

j + εB0,1
j (Ψ, R1) (75)

= R0
j + εB0,1

j (Ψ, R̃1) + ε2B0,1
j (Ψ, F (R̃1, R0)),

or
R0
j = (R̃0

j − εB0,1
j (Ψ, R̃1))− ε2B0,1(Ψ, F (R̃1, R0)) . (76)

Recall that B0,1 is smoothing as we remarked in (47) and the extra power of ε insures that
ε2B0,1(Ψ, F (R̃1, R0)) is also small. Thus (76) can be inverted by a Neumann series and
we see that the normal-form transformation (70) is invertible and satisfies the estimates
claimed in Proposition 13.

6 The error estimates

In order to solve (69), we use energy estimates in a scale of Banach spaces of analytic
functions. By making the width σ of the strip of analyticity smaller as time evolves we can
gain artificially some smoothing of the evolution. Since σ = O(1) in Lemma 5 and since
we have to solve (69) on a time scale of order O(1/ε2) the strip can be made smaller with
a velocity of order O(ε2). Hence define

R̂(k, t) = Ŝ(k, t)ŵ(k, t) = ŵ(k, t)e−|k|(a−bε
2t)
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with constants a, b > 0 chosen below. If w(t) ∈ L2, then R(t) is analytic in a strip of width
a− bε2t, i.e. t ∈ [0, a/(bε2)]. Computing the equation for w we find

∂tw = Λw − |k|bε2w + ε2 ˜̀(w) + εβG̃(w) + ε−βϑ−1R̃es(εΨ), (77)

where ˜̀(w) = S−1(t)`(S(t)w), G̃(w) = S−1(t)G(S(t)w), and R̃es(εΨ) = S−1(t)Res(εΨ).
If we use the estimates on ` and G from Proposition 18, along with the fact that the

support of Res(εΨ) is bounded in Fourier space, then we immediately obtain the following
estimates for the terms in (77).

Corollary 19. For any r ≥ 2, there exist constants C̃L, C̃G and C̃R such that

‖˜̀(w)‖Hr−1 ≤ C̃L‖w‖Hr ,

‖G̃(w)‖Hr−1 ≤ C̃G‖w‖Hr‖w‖Hr−1 ,

‖ε−βϑ−1R̃es(εΨ)‖Hr ≤ C̃Rε
2.

We control the solutions of equation (77) using energy estimates and Gronwall’s in-
equality. Fix some index s ≥ 6 and define

‖w‖2
Hs = ‖w‖2

L2 + ‖w‖2
H̊s (78)

where
‖w‖2

H̊s =
∫
|k|2s|ŵ(k)|2dk. (79)

We have

1
2
∂t‖w‖2

L2 = −bε2
∫
|k||ŵ(k)|2dk + ε2

∫
|ŵ(k)| ̂̃`(w)(k)|dk (80)

+εβ
∫
|ŵ(k)|̂̃G(w)(k)|dk +

∫
|ŵ(k)|ε−βϑ̂−1(k) ̂̃Res(w)(k)|dk.

Applying the Cauchy–Schwartz inequality and the estimates of Corollary 19, we find

1
2
∂t‖w‖2

L2 ≤ −bε2‖w‖2
H̊1/2 + ‖w‖L2(C̃Lε2‖w‖H3 + C̃Gε

β‖w‖H2‖w‖H3 + C̃Rε
2)

≤ −bε2‖w‖2
H̊1/2 + ε2(C̃L + C̃R)‖w‖2

H3 + C̃Gε
β‖w‖3

H3 + C̃Rε
2.

Now consider

1
2
∂t‖w‖2

H̊s = −bε2
∫
|k|2s+1|ŵ(k)|2dk + ε2

∫
|k|2s|ŵ(k)| ̂̃`(w)(k)|dk (81)

+εβ
∫
|k|2s|ŵ(k)|̂̃G(w)(k)|dk +

∫
|k|2s|ŵ(k)|ε−βϑ̂−1(k) ̂̃Res(w)(k)|dk.
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If we once again apply the Cauchy–Schwartz inequality and the estimates in Corollary 19
we can bound the last three integrals in (81) by

‖w‖H̊s+1/2

{
C̃Lε

2‖w‖Hs+1/2 + C̃Gε
β‖w‖Hs−1/2‖w‖Hs+1/2 + C̃Rε

2
}
. (82)

Combining (81) and (82) gives

1
2
∂t‖w‖2

H̊s ≤ −ε2(b− (C̃L + C̃R)− C̃Gε
β−2‖w‖Hs−1/2)‖w‖2

Hs+1/2 + C̃Rε
2. (83)

Combining this with the estimate on the L2 norm of w and using ‖w‖H3 ≤ 2‖w‖Hr for all
r ≥ 3 we obtain the inequality

1
2
∂t‖w‖2

Hs ≤ −ε2(b− 3(C̃L + C̃R)− 3C̃Gεβ−2‖w‖Hs−1/2)‖w‖2
Hs+1/2 + 2C̃Rε2. (84)

Applying Gronwall’s inequality to (84) we obtain:

Proposition 20. If b− 3(C̃L + C̃R)− 3C̃Gεβ−2 sup0≤t≤t0 ‖w(t)‖Hs−1/2 ≥ 0, then

sup
0≤t≤t0

‖w(t)‖2
Hs ≤ (‖w(0)‖2

Hs + 2C̃Rε2t0).

Take t0 = ε−2T̃0 and ‖w(0)‖2
Hs ≤ 2C̃RT̃0. Then choose b such that b − 3(C̃L + C̃R) −

24C̃GC̃RT̃0ε
β−2 ≥ 0. The Proposition 20 implies

Corollary 21. For all 0 ≤ ε2t ≤ T̃0,

‖w(t)‖2
Hs ≤ 4C̃RT̃0.

Finally we must check that the smoothing operator S(t) is well defined. We require
that the constants a and b in its definition be such that σ > a and a − bε2t > a/2 for all
0 ≤ ε2t ≤ T̂0. In this case S(t) is well defined. (Note that this means in particular that
T̂0 < σ/(2b).) Finally, we have

Corollary 22. Choose T1 = min(T̃0, T̂0). Then

sup
0≤ε2t≤T1

‖R(t)‖2
Y 2

a/2,s
≤ sup

0≤ε2t≤T1

‖R(t)‖2
Y 2

a−bε2t,s

= sup
0≤ε2t≤eT0

‖R(t)‖2
Y 2

a−bε2t,s

(85)

= sup
0≤ε2t≤eT0

‖S(t)w(t)‖2
Y 2

a−bε2t,s

= sup
0≤ε2t≤eT0

‖w(t)‖2
Hs ≤ 4C̃RT̃0.

Since the Y 2
a/2,s norm controls any Sobolev norm of R(t), we obtain

Corollary 23. Choose T1 = min(T̃0, T̂0). Then

sup
0≤ε2t≤T1

‖R(t)‖2
Hs ≤ 4C̃RT̃0.
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Combining this estimate with Proposition 13, Proposition 17, and Lemma 5 completes
the proof of Theorem 1.

Remark 24. The local existence and uniqueness of solutions combined with our error
estimates gives the long time existence of solutions for free.

7 Appendix

In this appendix we explain in more detail the higher order approximation introduced in
Section 3. As noted there we use an approximation of the form:

εψ̃j =
∑

j2;|j2|<5

∑
j1;βj(j2,j1)≤5

εβj(j2,j1)ψ̃j1j2j , (86)

where β1(j2, j1) = 1 + ||j2| − 1| + j1 and β1(j2, j1) = β2(j2, j1) except for β2(1, j1) =
β1(1, j1) + 2. We show below that the terms proportional to ε (i.e. ψ̃0

±1) are given by solu-
tions of the NLS equation, while the higher order terms are defined by algebraic relations
or inhomogeneous, linear PDE’s.

Recall as well that the term ψ̃j1j2 is assumed to have the form:

ψ̃j1j2j = Aj1j2j(ε(x+ cgt), ε2t)eij2(k0x+ω0t) . (87)

From this we see that the index j2 determines what multiple of the basic frequency and
wave number a given term represents, j1 represents what order we are studying in the
approximation (i.e., j1 = 0, corresponds to the lowest order approximation of a given wave
number/frequency, j1 = 1 to the next order approximation for that wave number, and so
on) and j just labels the first or second component of these two component vectors.

The form assumed in (87) is important because it makes it easy to approximate the
action of the Fourier multiplier operator with symbol ω̂(k) on such functions with the aid
of:

Lemma 25. Let ω be a Fourier multiplier operator with symbol ω̂(k). Assume that ψ̃j1j2j
has the form given in (87). Then

(ωψ̃j1j2j)(x, t) =
{
ω̂(j2k0)A

j1
j2j

(ε(x+ cgt), ε2t)− iε(∂kω̂(j2k0)∂XA
j1
j2j

(ε(x+ cgt), ε2t))

−1
2
ε2(∂2

kω̂(j2k0)∂2
XA

j1
j2j

(ε(x+ cgt), ε2t)) + . . .
}
eij2(k0x+ω0t) .

Proof. This results by computing of the inverse Fourier transform of (ω̂̂̃ψj1j2j)(k) in which
one expands the symbol ω(k) in a Taylor series around j2k0. Note that it is straightforward
to estimate rigorously the error terms in this expansion but we won’t need those estimates
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- we estimate directly the difference between our approximation (which is based on this
expansion) and the true solution of our equation in Section 6.

We now insert (87) into equation (10). We will focus on the case where the NLS
equation occurs for the first component of ψ̃j1j2 - namely (ψ̃j1j2 )1.

Substituting (87) into (10), the j-th component of the LHS of the equation yields:∑
j2;|j2|<5

∑
j1;βj(j2,j1)≤5

εβj(j2,j1)
{
ij2ω0A

j1
j2j

+ εcg∂XA
j1
j2j

+ ε2∂TA
j1
j2j

}
eij2(k0x+ω0t) , (88)

where we have suppressed the arguments of Aj1j2j to save space.
Making the same insertion of the RHS, we will then equate terms proportional to the

same power of ε and the same factor of exp(ij2(k0x + ω0t) to determine the amplitude
functions Aj1j2j .

The linear terms on the right hand side are easy to treat. Focussing on the first
component and utilizing the expansion from just above we have

i(ω1εψ̃1) =
∑

j2;|j2|<5

∑
j1;β1(j2,j1)≤5

εβ1(j2,j1)
{
iω̂(j2k0)A

j1
j21 (89)

+ε(∂kω̂)(j2k0)∂XA
j1
j21 − i

ε2

2
(∂2
kω̂)(j2k0)∂2

XA
j1
j21 + . . .

}
eij2(k0x+ω0t) .

(The expression for i(ω2εψ̃2) would just be the negative of this.)
Finally, we consider the nonlinear terms. Recall from Section 3 that the first component

of the nonlinear term is of the form:∑
m,n∈{1,2}

α̂1
m,n(k)Ûm(k − `)Ûn(`)d` . (90)

The exact form of α̂1
m,n is discussed in Section 3, but the important thing for the discussion

here is that it is proportional to ω̂1(k). If we insert our approximation (87) into the
nonlinear term we obtain a finite sum of terms of the form:

εβj(j2,j1)εβj̃(j̃2,j̃1)
∫
α̂1
j,j̃

(k)ψ̃j1j2j(k − `)ψ̃j̃1
j̃2j̃

(`)d` (91)

in Fourier space. Recall that in Fourier space

ψ̃j1j2j(k) =
1
ε
Â(
k − j2k0

ε
)eij2ω0teicg(k−j2k0)t (92)

Inserting this expression into (91) and integrating we find (after inverting the Fourier
transform) that this term has the form:

εβj(j2,j1)+βj̃(j̃2,j̃1)
{
α̂1
jj̃

((j2 + j̃2)k0)A
j1
j2j
Aj̃1
j̃2j̃

(93)

−iε(∂kα̂1
jj̃

((j2 + j̃2)k0))∂X
(
Aj1j2jA

j̃1
j̃2j̃

)
− ε2

2
(∂2
kα̂

1
jj̃

((j2 + j̃2)k0))∂2
X

(
Aj1j2jA

j̃1
j̃2j̃

)
+ . . .

}
e(j2+j̃2)(k0x+ω0t)eicg(k−(j2+j̃2)k0)t .
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We now consider terms of various orders that appear on both side of the equation. The
only terms of O(ε) arise from the case j1 = 0, j2 = ±1. They occur in the linear terms on
both sides of the equation and their coefficients are identical so they cancel automatically
and impose no constraints of the value of the amplitude functions Aj1j2j .

Next turn to the terms of O(ε2). In addition to the contributions coming from the
linear terms, the nonlinearity will generate contributions proportional to products of the
leading order, O(ε) terms. Thus, we expect to have to consider terms proportional to
exp(ij2(k0x+ ω0t)) for j2 = 0,±2, as well as the contributions coming from j2 = ±1. The
terms with j2 negative are just complex conjugates of those with j2 positive, so we will
focus on the non-negative values of j2.

Terms proportional to ε2eij2(k0x+ω0t) with:

• j2 = 0 (
−ω̂j(0)A0

0j − 2α̂j11(0)A0
11A

0
−11

)
(94)

• j2 = 1 (
iω0A

1
11 − iω̂(k0)A1

11 + cg∂XA
0
11 − (∂kω̂)(k0)∂XA0

11

)
(95)

• j2 = 2 (
2iω0A

0
2j − iω̂j(2k0)A0

2j − α̂j11(2k0)A0
11A

0
11

)
(96)

We want each of these expressions to equal zero. The expression in (94) vanishes
automatically since both ω̂j(0) = 0 and α̂j11(0) = 0. Thus, this imposes no conditions on
A0

0j . The expression in (95) also vanishes automatically since ω0 = ω̂(k0) cg = (∂kω̂)(k0)
by definition.

Finally, we can insure that (96) vanishes if we choose

A0
2j =

iα̂j11(2k0)
ω̂j(2k0)− 2ω0

A0
11A

0
11 . (97)

where A0
11 will be fixed at the next order. Note that from the expression for ω̂j(k), the

denominator ω̂j(2k0)− 2ω0 is non-zero such that this expression is well-defined.
Next we turn to the terms O(ε3). We proceed exactly as in the case of the terms above,

considering each of the values of j2 generated by the nonlinearity in turn.

Terms proportional to ε3eij2(k0x+ω0t) with:

• j2 = 0 (
cg∂XA

0
0j − (∂kω̂j)(0)∂XA0

0j + 2i(∂kα̂
j
11)(0)∂X

(
A0

11A
0
−11

))
(98)
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• j2 = 1 ∂TA0
11 +

i

2
(∂2
kω̂)(k0)∂2

XA
0
11 − 2

∑
j

α̂1
1j(k0)(A0

11A
0
0j +A0

−11A
0
2j)

 (99)

and i(ω0 + ω̂(k0))A0
12 − 2

∑
j

α̂2
1j(k0)(A0

11A
0
0j +A0

−11A
0
2j)

 (100)

• j2 = 2(
i(2ω0 − ω̂j(2k0))A1

2j + i(∂kα̂
j
11)(2k0)∂X

(
A0

11A
0
11

)
− 2α̂j11(2k0)A0

11A
1
11

)
(101)

• j2 = 3 i(3ω0 − ω̂j(3k0))A0
3j − 2

∑
j̃

α̂j
1j̃

(3k0)A0
11A

0
2j̃

 (102)

Remark 26. Note that we have omitted from these expressions terms like ω0A
2
1j−ω̂(k0)A2

1j

which vanish regardless of the choice of A2
1j.

We can make each of these expressions vanish by the following choices: Equating (100)
to zero determines A0

12 since ω0 + ω̂(k0) 6= 0, equating (101) to zero determines A1
2j since

2ω0 − ω̂j(2k0) 6= 0 where A1
11 will be fixed at the next order, and finally equating (102) to

zero determines A0
3j since 3ω0 − ω̂j(3k0) 6= 0, Next, set

A0
0j =

(
− 2i∂kα̂

j
11(0)

cg − ∂kω̂j(0)

)
A0

11A
0
−11 . (103)

Inserting (103) and (97) into (99) for j = 1 gives

∂TA
0
11 = − i

2
(∂2
kω̂)(k0)∂2

XA
0
11 − iν|A0

11|2A0
11 , (104)

where

ν = 2
∑
j

α̂1
1j(k0)

[
α̂j11(2k0)

ω̂j(2k0)− 2ω0
+

2∂kα̂
j
11(0)

cg − ∂kω̂j(0)

]
, (105)

so we see that, as claimed, A0
11 is given by a solution of the Nonlinear Schrödinger equation.

Finally, we consider the terms of O(ε4) – the terms of O(ε5) are handled in an entirely
analogous fashion. We proceed exactly as before by writing out the terms proportional

33



to ε4 exp(ij2(k0x + cgt)), though we must consider more choices of j2 to account for the
additional terms generated by the nonlinearity. We can make each of these new expressions
vanish with choices much like those made above - only the cases j2 = 0 and j2 = 1 really
need additional comment.

Terms proportional to ε4eij2(k0x+ω0t) with:

• j2 = 0(
cg∂XA

1
0j − ∂kω̂j(0)∂XA1

0j + ∂TA
0
0j + 2i(∂kα̂

j
11)∂X

(
A1

11A
0
−11 +A0

11A
1
−11

))
(106)

where the expression simplified due to ∂2
kω̂j(0) = ∂2

kα̂
j
11(0) = 0.

• j2 = 1 {
∂TA

1
11 +

i

2
(∂2
kω̂(k0))∂2

XA
1
11 +

1
3!

(∂3
kω(k0))∂3

XA
0
11

−2
∑
j

(α̂1
1j(k0)(A1

11A
0
0j +A1

−11A
0
2j +A0

11A
1
0j +A0

−11A
1
2j) (107)

+2i(∂kα̂1
1j)∂X(A0

11A
0
0j +A0

−11A
0
2j))
}

Equating (107) to zero completes the definition of the terms above and defines A1
11

to be the solution of the linear, but inhomogeneous, Schrödinger equation, where we note
that all the inhomogeneous terms of this equation have been defined at prior steps in this
process.

Finally, we address A1
0j . Equating (106) to zero determines A1

0j since cg−∂kω̂(k0) 6= 0.
All other quantities in (106) have been defined at previous steps in the interative procedure.
The resulting equation requires some integration w.r.t. X which would give an A1

0j which
in general no longer belongs to L2. In order to avoid this integration we have to show that
the only problematic term ∂TA

0
0j can be written as a derivative w.r.t X in order to insure

that A1
01 has the appropriate decay properties as X → ±∞.

Recall that from (103)

∂TA
0
0j =

(
− 2i∂kα̂

j
11(0)

cg − ∂kω̂j(0)

)
((∂TA0

11)A
0
−11 +A0

11(∂TA
0
−11)) . (108)

We know that A0
±11 both satisfy the nonlinear Schrödinger equation,

∂TA
0
±11 = ∓ i

2
(∂2
kω̂(k0))∂2

XA
0
±11 ∓ iν|A0

±11|2A0
±11. (109)

Inserting this expressions into (108) and recalling that A0
−11 = A0

11, we find that the
nonlinear terms cancel and we are left with

∂TA
0
0j =

(
− ∂kα̂

j
11(0)

cg − ∂kω̂j(0)

)
(∂2
kω̂(k0))∂X((∂XA0

11)A
0
−11 −A0

11(∂XA
0
−11)) . (110)
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Inserting this expression into (106), we see that we can choose A1
01 to be

A1
0j = (cg − ∂kω̂j(0))−1

{
2i(∂kα̂

j
11)(A

1
11A

0
−11 +A0

11A
1
−11) (111)

−(
∂kα̂

j
11(0)

cg − ∂kω̂j(0)
)(∂2

kω̂(k0))((∂XA0
11)A

0
−11 −A0

11(∂XA
0
−11))

}
.

As we remarked above, choosing the terms of O(ε5) in the expansion is handled in a very
similar fashion and we leave those calculations as an exercise. In order to close the system
at O(ε5) we have to compute the linear inhomogeneous Schrödinger equation for A3

11 at
O(ε6), too.
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