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Abstract

In 1968 V.E. Zakharov derived the Nonlinear Schrodinger equation for the 2D water
wave problem in the absence of surface tension, i.e., for the evolution of gravity driven
surface water waves, in order to describe slow temporal and spatial modulations of a
spatially and temporarily oscillating wave packet. In this paper we give a rigorous proof
that the wave packets in the two-dimensional water wave problem in a canal of finite depth
can be accurately approximated by solutions of the Nonlinear Schrédinger equation.
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1 Introduction
In 1968 V.E. Zakharov [Za68] derived the Nonlinear Schrodinger (NLS) equation
OrA = i 0% A + i A|A|]?, (1)

with ' € R, X € R, A(X,T) € €, and coefficients v; = vj(kg) € IR from the equations of
the 2D water wave problem in case of no surface tension in order to describe slow spatial and
temporal modulations of a spatially and temporarily oscillating wave packet ellkozr—wot) with
a basic spatial wave number kg # 0 and a basic temporal wave number wgy # 0.

Figure 1: The envelope (advancing with the group velocity ¢,) of the oscillating wave packet (ad-
vancing with the phase velocity ¢, = wo/ko) is described by the amplitude A which solves the NLS
equation (1).

The 2D water wave problem without surface tension consists in finding the irrotational
flow of an incompressible fluid in an infinitely long canal of finite or infinite depth with a
free surface under the influence of gravity. We will consider the case of finite depth. The
coordinates are denoted with 1 € IR in the horizontal and x5 > —1 in the vertical direction.
The fluid is contained in the unbounded domain (t) between the impermeable bottom
{(z1,—1)|z1 € IR} and the free unknown top surface I'(t) = {(z1,n(x1,t))| 1 € IR}. Under
these assumptions it turns out that the problem is completely determined by the evolution
of the free surface I'(t).

In detail, the velocity field u = (uy,uz) satisfies Euler’s equations in (¢). From the
assumption of the irrotationality of the flow, i.e., rot v = 0, which is preserved by Euler’s
equations, it follows that the velocity field can be written as a gradient of a potential ¢ :



Q(t) = IR, ie., u = V¢, which due to the incompressibility of the fluid, (i.e., div u = 0),
satisfies the equation
A¢ =0, in Q(¢). (2)

The impermeability of the bottom gives the lower boundary condition

Us|py=—1 = Opy Plzy=—1 = 0. (3)

On the free surface I'(t) we have the kinematic boundary condition and the balance of forces,

omn = amqu_(amn) (a-'ﬂlqb)? (4)
06 = (0,0 + (22s0)) — g1, )

with ¢ being the gravitational constant. Without loss of generality we will set ¢ = 1 and the
depth of the fluid at rest, i.e., n = 0, to one in the following.

Since equation (2) can be solved in €(t), under the boundary condition (3) and w1 |p) =
8x1<;5\p(t) given on the top surface, uniquely up to a constant, all terms on the right hand side
of (4) and (5) can be computed if 7 and w = ui|r() are known. Hence, the system will be
determined by the evolution of the two variables n = n(z1,t) and w = w(z1,t). Therefore,
we can restrict ourselves in the following considerations to these variables.

The equations (2)-(5) are called the Eulerian formulation of the water wave problem. We
use this relative simple formulation only in the introduction in order to formulate our results.
For the proof of the approximation result we will work with the Lagrangian formulation of
the water wave problem. For the Eulerian formulation local existence and uniqueness results
have been shown for instance in [Sh76, KN79, La05] and for the Lagrangian formulation local
existence and uniqueness results have been shown for instance in [Na74, Yo82, Yo83, Cr85,
Wu97, Wu99, SW00, Ig0l, SW02|. For a third formulation of the water wave problem in
which the top surface is parametrized by arc length a local existence and uniqueness theorem
has been shown in [Am03, AM05, AM09]. The existence and uniqueness theorems for the
water wave problem can be distinguished according to whether or not one considers the 2D or
3D problem, finite or infinite depth, with or without surface tension, regularity of the initial
conditions and the coordinates which have been chosen to formulate the problem. Some of
these coordinates have the disadvantage of showing secular growth of several variables.

We will derive the NLS equation with the help of the ansatz

(Z) = elyps + O(2)

where '
eUnLs = eA(e(xy — cgt), e2t)eFom1 =0 (ko) 4 c.c.. (6)

Here 0 < € < 1 is a small perturbation parameter, ¢(kg) € ?, ¢q being the group velocity of
the wave packet and —wy < 0 being the basic temporal wave number associated to the basic
spatial wave number kg > 0. (The minus sign in front on wy simply reflects the fact that we
consider right moving waves.) T = £2¢ is the slow time scale and X = e(x1 — ¢,t) is the slow
spatial scale, i.e., the time scale of the modulations is O(1/¢2) and the spatial scale of the
modulations is O(1/e). The complex-valued amplitude A = A(X,T) solves in lowest order
the NLS equation (1) from the beginning of the paper. By (6) we describe complex-valued
slow modulations in time and in space of the underlying temporarily and spatially oscillating
wave train ei(For1—wot) ~ See Figure 1. The basic spatial wave number k = ko and the basic



temporal wave number —w = —wy are related via the linear dispersion relation of the water
wave problem (2)-(5), namely

L(ws, k) = wi — ktanh(k) = 0, (7)
where we choose the branch of solutions

w(k) := sign(k)/ktanh(k) . (8)

Then the group velocity ¢4 of the wave packet is given by ¢, = Opw|k=k,. This ansatz leads
to waves moving to the right. To obtain waves moving to the left, —wy and ¢, have to be
replaced by wp and —c,.

It is the purpose of this paper to demonstrate how well the solutions of the 2D water
wave problem can be approximated via the formal ansatz (6). As a first step in [CSS92]
the so-called residual, i.e., the terms which do not cancel after inserting the ansatz (6) into
the equations of the water wave problem (2)-(5) has been estimated in some Sobolev norms.
Estimates for the residual in the 3D-case where the NLS equation is replaced by the Davey-
Stewartson system can be found in [CSS97]. The question, if there are solutions of the
water wave problem (2)-(5) which behave as predicted by the NLS equation remained open
in [CSS92, CSS97]. In [SW11] the NLS approximation has been rigorously justified for a
quasilinear reduced model equation for the 2-D water wave problem with finite depth and no
surface tension. This reduced model shares with the Lagrangian formulation of the 2-D water
wave problem some of the principal difficulties which have to be overcome for a validity proof
for the NLS approximation. More recently, Totz and Wu [TW12] have demonstrated the
validity of the NLS approximation for the 2-D water wave problem in a channel of infinite
depth, though as we explain later in this introduction, we feel that the finite and infinite
depth cases are quite different, and techniques applicable in one context do not necessarily
transfer to the other.

Notation. We denote the Fourier transform by

(Fu)(k) = a(k) = ! / u(zy)e” o dy .

T on

The Sobolev space H?® is equipped with the norm

fulla- = [ 1at P+ lkpyear "

Moreover, let [lullcp = > 7 H@%u”cg, where ||UHC,‘3 = sup,, e g [u(z1)].
Because of the loss of smoothness in normal-form transformations we make in a subsequent
section, we are forced to work in spaces of analytic functions. Hence, we define

1/2
You = {f € 2(R) | |l = ( Jo+ k?)SeM'rﬂk)Pdk) < o).

Functions in Y, ¢ are analytic in a strip of width 20 centered on the real axis.
Our result is

Theorem 1.1. Fix sq4 > s+ 5 > 11. Then for all ko > 0 and for all Cy,Ty > 0 there exist
Ty > 0, Cy > 0, g9 > 0 such that for all solutions A € C([0,To], HA(IR, C)) of the NLS
equation (1) with

sup [|AC, D)l gsa(r,e) < Ch
Te[0,T0]



the following holds. For all € € (0,e9) there exists a solution
(n,w) € C([0,T1 /%], (H* (IR, IR))?)

of the 2D water wave problem (2)-(5) which satisfies

sup || <n>(-,t) — E\I/NLS(-,t)H(Hs(RR))z < Oye’/?,
te[0,Ty /e2] \W

The error of order O(¢%/2) is small compared with the solution (1, w) and the approx-
imation W ypgs which are both of order O(¢) in L* such that the dynamics of the NLS
equation can be found in the water wave problem, too. We note that this fact should not be
taken for granted. There are modulation equations (for examples see [Schn95, GS01]) which
although derived by reasonable formal arguments do not reflect the true dynamics of the
original equations. However, our theorem is not optimal, since in general we cannot prove
Ty = Tp. Nevertheless our estimates are on an O(1/¢2) time scale and T} ~ 1/C; has a
reasonable size such that the approximation statement is not void.

The NLS equation is a completely integrable Hamiltonian system which can be solved
explicitly with the help of some inverse scattering scheme, cf. [AS81]. Our theorem guarantees
that for instance parts of the soliton dynamics present in the NLS equation for v (ky) and
va(ko) having the same sign can be found approximately in the water wave problem, too. For
a discussion of the values of the coefficients v;(kg) in (1) see also [AS81, Figure 4.15, p. 321].

The assumption s > 6 is due to our local existence and uniqueness theory of the water
wave problem. The solutions of the NLS equation have to be at least three times more regular
than the solutions of the water wave problem due to the fact that the linear dispersion relation
(7) has to be expanded at the spatial wave number ko up to third order. The additional loss
comes mainly from the fact that a higher order approximation is used and that the result
is proved for the Lagrangian formulation and then transfered to the Eulerian formulation of
the water wave problem.

In order to explain the main ideas of the proof of Theorem 1.1 we consider an abstract

evolutionary problem
O = Av + B(v,v),

with A a linear and B a symmetric bilinear operator. Suppose that v is formally approximated
by e¥nrg, i.e., that the residual

Res(v) = =0 + Av + B(v,v)

is small for v = eV yrg. By modifying the formal approximation eV rg the residual can
be made arbitrarily small, i.e., for all v > 0 there exists a formal approximation eV close to
eV s such that

Res(e¥) = O(£7) and €U —eWpnzs = O(?). 9)

This residual has been estimated in [CSS92]. The estimates contain complicated expansions
of the Dirichlet-Neumann operator which appears in the solution of (2).
In order to prove Theorem 1.1 we have to estimate the error

PR=0v—¢c¥



for all t € [0, Tp/e?] to be of order O(?) for a > 1, i.e., we have to prove that R is of order
O(1) for all t € [0,Ty/c?]. The error R satisfies

O R = AR+ 2:“B(¥, R) + e’ B(R, R) + ¢ PRes(e0) .

In our case A generates a uniformly bounded semigroup and so we were done beside possible
arbitrary complicated functional analytic details, if a) o > 2, b) 8 > 2 and c) e PRes(e¥) =
O(e?). The result then would follow by a rescaling of time, T = £2¢, and an application of
Gronwall’s inequality (e.g. [KSM92]). In our case, however, we have a = 1. We can still
make 7 in (9) arbitrary large by picking our approximate solution as described below, and in
particular, strictly bigger than 4. As a consequence, we can choose § > 2 and so the points
b) and c) are satisfied easily. The difficulty is to control the term 2¢B(W, R) in the linear
evolution.
The idea of eliminating this term with a normal-form transform

R=w+eM(¥,w)

with M a bilinear mapping goes back to Kalyakin (cf. [Kal88]). See also [Schn98b]. In order
to eliminate 2e B(¥, R) by this near identity change of variables a so called non-resonance
condition has to be satisfied. The eigenvalues \; = \;(k) of the linearized problem (in our
problem below, j = 1, 2,3, corresponding to the fact that we write the water wave problem
as a system of three equations) as a function over the Fourier wave numbers k have to satisfy

IAp(k) = Aa(ko) — Ag(k — k)| > cpp > 0 . (10)

for p,g = 1,2,3 and all k € IR. It is easy to see that the eigenvalues \; = iw; of the
water wave problem with w; = 0 and w; = (—1)"lw(k) for j = 2,3, where w(k) is given
by (8), do not satisfy (10) and do possess at least one resonance at the wave number k = 0.
This resonance is trivial for the water wave problem but a resonance at the wave number
k = 0 always implies another resonance for the wave number k = kg which is non-trivial for
the water wave problem. A resonance is called trivial if the quadratic terms vanish for the
resonant wave number, too. Otherwise it is called non-trivial. For more details, see Section
3. Therefore, [Kal88] is no longer applicable and an improved method developed in [Schn98a]
has to be applied. According to an error made in [Schn98a] in the handling of the trivial
resonance, the method of [Schn98a] has to be modified slightly, similar to [DS06] and [SW11].
In principle, the method is mainly based on a suitable scaling of the error function R which
depends on the wave numbers followed by a number of special normal-form transforms.
After making the normal-form transformation to eliminate the low-order terms in the
equation for the remainder, we must control the evolution of the remaining terms. Because the
normal-form transformation results in a loss of regularity, the local existence and uniqueness
theorems for the water wave problem mentioned above are no longer applicable. Therefore,
we proceed as follows. We choose the Lagrangian formulation of the water wave problem and
use a Cauchy-Kowalevskaya like method, like [KN79] did for the Eulerian formulation of the
water wave problem. We cannot work with the Eulerian formulation since this formulation
already loses a derivative on the right hand side which is the maximal allowance for the
Cauchy-Kowalevskaya like method. In the Lagrangian formulation the right hand side only
loses half a derivative, plus half a derivative from the normal-form transform makes one
derivative after the normal-form transform such that the Cauchy-Kowalevskaya method still
applies. While this method might seem to require that we consider only analytic solutions of



the NLS equation, we can, in fact, consider less smooth solutions, by mollifying them during
the approximation process.

Recently, the nature and effects of resonances in the water wave problem has also been
examined for the 2D water wave problem by Wu [Wu09] and for the 3D water wave problem
in by Germain, Masmoudi and Shatah [GMS12] and with an alternative method by Wu
[Wull] in establishing (almost) global existence results in case of infinite depth, i.e., w? = |k|.
However, due to the different goal in [GMS12] the normal-from transformation does not have
to be inverted and the loss of regularity occurs in such a way that the local existence method
of the untransformed system still can be used.

In case of infinite depth and no surface tension the elimination of all quadratic terms is
possible without loss of regularity as has been shown in [Wu09], [Wull] by using the special
structure of this problem. This has been used very recently by Totz and Wu [TW12] to prove
the NLS approximation property for the 2D water wave problem in the case of infinite depth
and no surface tension. This is the first result establishing the approximation property for
the full water wave problem and the NLS equation over the appropriate, NLS, time-scale.
However, the methods used in that work are very different from those used in this paper and
the differences between the water wave problem in the cases of infinite vs. finite depth are
such that a transfer of the results from [TW12] to the case of finite depth does not seem
obvious to us.

The justification of the NLS equation in case of positive surface tension will be the sub-
ject of further research. For large surface tension or large basic wave number kg there are no
additional non-trivial resonances. In case of small surface tension additional non-trivial reso-
nances occur and the proof of a possible approximation property will be much more involved.
See [Schn05] and [DS06] for the handling of model problems.

The plan of the paper is as follows. In Section 2 we present the Lagrangian formulation
of the water wave problem and write it as a first order dynamical system. In a next step the
linear part of the Fourier transformed dynamical system is diagonalized. For the diagonalized
system we derive the associated NLS equation and construct a modified approximation which
makes the residual small. After that we formulate our approximation result for the Lagrangian
formulation. In Section 3 we perform the normal-form transform. In this context, special
attention is given to the handling of the trivial resonance at the Fourier wavenumber k = 0
and of the nontrivial resonance at k = ky. Since the normal-form transform loses regularity
it cannot be inverted with the help of a Neumann series. Thus, Section 4 is devoted to
the inversion of the normal-form transform. For this purpose we use appropriate energy
estimates. In Section 5 we verify that the difference between the true solution of the water
wave problem and the (improved) nonlinear Schrédinger approximation remains small over
the relevant time scale. We establish the error estimates for the transformed system with
the help of the Cauchy-Kowalevskaya like method by proving energy estimates in a scale of
Banach spaces of analytic functions.

Further notation and basic facts: We introduce the scaling operator (S.u)[xi] =
u(exy) and the translation operator (r,u)[z1] = u(z1+y). We have ||S. Al gm < Ce /2| Al gm,
but [|ScAllcp < C[[Allepr

In addition to the spaces of analytic functions we introduced earlier we will also sometimes
need to use Sobolev spaces with spatial weights, namely the Sobolev space H*(m) equipped
with the norm [[ul| sy = [[up™|lgs where p(z1) = (1 + 23)1/2. We also use the notation
L*(m) = H°(m). We define the space L!(m) with u € L'(m) < up € L. Tt is well known
that Fourier transform F is an isomorphism from the space H"(m)(IR, C') into the space
H™(n)(IR, €). 1t is a continuous mapping from L'(m) into CJ", but not vice versa. We also



define weighted analogues of the analytic function spaces defined above by Y, ;(m) = {f €
L*(R) | p™f € Y, 5}

Throughout this paper many constants are denoted with C' - the constant may change
without comment in successive inequalities if it can be chosen independently of the spatial

perturbation parameter 0 < ¢ < 1. The commutator of two operators L and M is defined as
[L,M]= LM — ML.
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2 Preparations

2.1 The Lagrangian formulation of the water wave problem

As we mentioned in the introduction the Eulerian formulation (2)-(5) of the 2D water wave
problem is not adequate for our purposes. Thus, this subsection is devoted to presenting the
Lagrangian formulation of the water wave problem and rewriting this formulation as a first
order system of partial differential equations.

For fixed time ¢ the free surface of the fluid can be written as

I(t) = {(X1(a,t), Xo(a, 1)) = (o + X1 (a, 1), Xo(a,t))|o € R} .

It is a Jordan-curve which has no intersection with the bottom {(c, —1)|a € IR}. Under the
assumptions on the flow which we made in the introduction the dynamics of the 2D water
wave problem is completely determined by the evolution of the free surface I'(¢) which is
governed by (for a careful derivation of the following system of equations see [Yo82])

anl(l+8aX1)+8aX2(1+8t2X2) = 0, (11)
0Xy = K(X)oXi. (12)

The operator (X)) depends linearly on Uy = 9; X7, but nonlinearly on X. It is related to the
Dirichlet-Neumann operator and its existence is a consequence of the incompressibility and
irrotationality of the flow. It is defined by K(X)U1 = 0x,¢|rq), where ¢ : Q(t) — IR solves
for fixed t the boundary value problem

Ap=0, in Q(t),
O, =0, for x9=-1,
Op, 0 =Ur, on I'(t).

The operator K(X) is of the form K(X) = Ko + Si1(X), where Ky is the linear part of the
operator K(X), and has the Fourier symbol Kq(k) = —itanh(k). The nonlinear part Sy (X)-
has certain smoothing properties which are summarized in Appendix A.1. In particular, we
prove that I(X) (and as a consequence, S;(X)) depends analytically on 0, X1, Xo € Y, for
any o > 0,s > 1.

As explained in [SWO00], due to the behavior of the system at the wave number k& = 0 the
variable X is unbounded in space and grows rapidly in time for the approximation which



makes the resulting solutions difficult to control over the long time scales which we need to
work with. However, as we also discussed in that reference, the derivatives of X; do not
suffer from this secular growth, and thus it is advantageous to work with the variable Z; =
KoX1 (which for “long-wavelength” initial conditions behaves like Z; ~ —0,X;.) Somewhat
surprisingly the system of equations for the water wave problem can be rewritten entirely in
terms of the variables W = (71, X2, Uj ), namely

IW = Fyw(W) (13)
with
ICQUl
Py(W) = ( KoUs + S1(X)Us ) ;
—(1 = MaZi + (9aX2)Ko + (00X2)S1 (X)) [(9aX2) (1 + [0, S1(X)|U1)]
where

My = —aa(’C(])_l -

From the estimates on K(X) proved in Appendix A.1 we see that Fjy is an analytic
mapping from Y, ¢ x Y ¢ X Yms_% into Yms_% X Yms_% X Yy o1

Moreover we define the vector V = (X3, X2, U;). We also abuse notation slightly and do
not distinguish between operators which depend on V or W, i.e., for instance we will write
K(X) as either (V) or (W), depending on the circumstances.

Remark 2.1. Note that from (11)-(12) to (13) information is lost. In order to compute the
physical solution the point X7(0, ) has to be computed a posteriori from X (0,0) and Uy (0, t)
which is contained in (13). However, (13) is independent of X;(0,¢). This corresponds to
the fact that the bottom of the canal can be shifted without having any influence on the
dynamics in Q(¢).

Remark 2.2. The choice of variables (77, X5, U;) has the additional advantage that all vari-
ables will scale the same in terms of the small perturbation parameter for e — 0. (X1, X2,U7)
scale differently at the wave number k£ = 0.

For completeness we close this section with some remarks about the existence and unique-
ness of solutions of system (13) which is obtained indirectly. System (13) is embedded in a
larger quasilinear system of PDE’s for which standard local existence and uniqueness tech-
niques apply.

From [SWO00] we have the following local and uniqueness theorem.

Theorem 2.3. Define the space H® = H® x H® X Hs /2 For all s > 6 there exists a Cp > 0
such that for all Cy € (0,C1] we have a ty > 0 such that the following is true. For each initial
condition Wy € H* with |Wol|ns < Co there exists a unique solution W € C([0,t0], H®) of
(13) with W|i=o = Wp.

However, as explained in the introduction, due to a loss of smoothness in the normal-form
transformations this existence theory is insufficient to prove the accuracy of the approximation
by the NLS equation and hence in Section 5 we prove a new existence theorem in the analytic
function spaces introduced above.



2.2 The diagonalization

In order to construct the normal-form transformations it is useful to diagonalize the linear
part of (13). In Fourier space the linearization is given by

A 0 0 —itanh(k) 7
815 X2 = 0 0 —1 tanh(k:) X2
U, 0 —ik 0 U,

The eigenvalues of the matrix on the right hand side are given by \; = iw; for j = 1, 2,3 with
wl(k) =0, w2(k) = _w(k)v (,U3(k?) = w(k)7

where
w(k) = sign(k)y/ktanh(k).

We write the original coordinates as sum of the associated eigenvectors, i.e.,

7z 1 3 -3
XQ = ¢ ( 0 + C2 s +C3 -5
U, 0 1 1
1 8 -3 & 1
= 0 8 —3 e | =Dk)| & |,
01 1 é3 es

with § = §(k) = y/k~! tanh(k). The adjoint eigenvectors are given

1 0 0
-1, 1/(28) |, —1/(25)
0 1/2 1/2

Due to the asymptotic behavior of § it is easy to see that from (Z, X2,U;) € Y, X Y50 X

Ym -1 it follows (c1,c2,¢3) € Yo s X Ym -1 X Ym -1 and vice versa. The variables ¢ =

(c1,c2,c3)T satisfy
dic = F,(c) = D~ Fy(Dc) (14)

For the same reason, F. is a smooth mapping from H? x Hs Y2 x H571/2 into H5 Y2 x
Hs—l % Hs—l'

According to the fact that the quadratic terms play the major role in the following we
expand (13) up to terms of quadratic order and find with [SW00, Lemma 3.8] and [SWO00,
Remark 3.9] based on [Cr85, Lemma 3.7: page 827] that

0Zy = KoUy,
Xy = KoUi+ Mi(Z1,0,U1) — (X2 + Ko(X2K0))0uUr + O(|WIP), (15)
QUL = —0aX2— (M2Z1)0aX2 + (0aX2)Ko0a X2 + O(IW]?),

where My (Z1,-) = [X1,Ko]-. Here, |W| = [|Z1]ly,., + [ X2y, + \|U1||yo’57%. The notation

O(|W||?) means that the terms omitted from the equation can be bounded by C|W|3, an
estimate which follows from the analyticity of the nonlinearity in (13).

10



The system for ¢y, co, c3 is then given by

Ocr = —Miy(c1 + sca — ses, 0q(c2 + ¢3))
+((sca — se3) + Ko((sca — s¢3)K0))0a(co + ¢3) + (9(||c||3),
1
Oica = —iwey + 2—8(./\/11(61 + sco — 5C3,0n(Co + ¢3))
—((scq — se3) + Ko((sca — s¢3)K0))n(c2 + ¢3))
1
—5(./\/(2(01 + scy — $¢3))0q(sco — sc3) (16)
1
+§(3a(302 — 5¢3))K00a(sc2 — sc3) + O(||c|?),
1
Oic3 = iwes — %(Ml(cl + sco — scg, Ou(c2 + ¢3))
—((scq — se3) + Ko((sca — sc3)K0))0un(c2 + ¢3))
1
—5(./\/(2(01 + sco — 5¢3))0n(sCo — sC3)
1
+§(8a(302 — 5¢3)) K0 (sc2 — sc3) + O(HCH?’),
where ||c|| = [le1]ly, . + ||C2||Ya,sf% + ||C3||Ya,57%'

2.3 Derivation of the NLS equation

In order to derive the NLS equation we make the ansatz

C1
Co =eU; +e¥_g + 62\110 + 62\1’2 + 62\11_2 (17)
3
with
0 0
eV = ey | 1 = cAii(e(a—cht), ) EF| 1 ],
621[)01 €2A01 (6(0& — Cgt), €2t)
2, = %102 = e2Apa(e(a — cgt), e%t) |,
2103 2 Aps(e(a — cgt), %)
e2(12)1 2 Aoy (e(a — ¢gt), %) E*
EViy = | XPaop = | PAgapele(a—cpt),2HEZ ||
E2¢(:|:2)3 €2A(:|:2)3(E(a — Cgt), Ezt) :E:l:2

where E = ei(koo—wol) -0 — ()(kq), Aj = A_j and Aj; = A_j;. Here, and throughout the
remainder of the paper, we will use upper case ¥ to denote vector valued functions and lower
case 1 to denote scalar functions.

Remark 2.4. Our ansatz leads to waves moving to the right. For waves moving to the left
one has to replace in the above ansatz the vector (0,1, O)T by (0,0, l)T as well as —wgy by wo
and cg by —cq.
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We equate the coefficients of the e™EJ to zero and find that the coefficients of eE! and
e2E! vanish identically due to the definition of w = w(k) and ¢, = ¢4(k). For e3E! we obtain

Ooré; =—

-/ k
w 2( 0) 3% A1 + nonlinear terms.

The nonlinear terms are a sum of multiples of Aj|A;|?, A A, and A_1Ay. In the next steps
we obtain algebraic relations such that the Ay can be expressed in terms of A? and the Ay,
in terms of |A;|?, respectively.

For £2E? we obtain

—2woda1 = Y A]
(—20.)() + w(2/<;0))A22 = ’YQQA%, (18)
(—20.)0 — w(2k0))A23 = ’yggA%

with coefficients v9; € €. Since 2wy # 0, —2wy + w(2kp) # 0 and —2wy — w(2ky) # 0, which
follows from the explicit form of w(k), the Ay are well-defined in terms of A2

All terms vanish identically for e2EY. This is obvious for the linear terms. For the
quadratic terms the calculations are analogous to those of Appendix A of [SW11] (see specif-
ically equation (94)). The nonlinear terms in e3E° must be proportional to dx since no other

combination of terms in the approximation (17) leads to terms proportional to e>E°?. So we
find

0 = —cgOxAor +7010x(A1A_1),
—c,0xApe = —w'(0)0x Aoz +7020x (A1 4_1),
—c,0x Aoz = w'(0)0x Aoz + 7030x (A14_1),

where now 7y € IR according to the fact that we consider a real-valued problem. Since
cg & {0,—w'(0),w'(0)} we can divide the equations for e3E? by dx and can express the Ay
in terms of |A;[%.

As mentioned above the nonlinear terms in the equation for e3E! include A;|A;|? as well
as terms consisting of combinations of A; with the Ag; and of A_y with the Ag;. Eliminating
Ag and Ag; by the algebraic relations obtained for e*E° and £?E? gives finally the NLS
equation
) w//(ko)

aTAl = —ZTag(Al + iVQ(kio)A1|A1|2

with a Vg(ko) € IR.

2.4 The modified approximation

After the derivation of the NLS equation in the last section, this section is devoted to the
construction of the improved approximation eW. We proceed in two steps. First, the above
approximation is extended by higher order terms. Secondly, the support of the modified
approximation in Fourier space is restricted to small neighborhoods of integer multiples of
the basic wave number kg > 0 by introducing some cut-off functions. Since the approximation
in Fourier space is strongly concentrated around these wave numbers the approximation is
only changed slightly by this modification, but this second step will give us a much simpler
control on the resonances and makes e¥ an analytic function.
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As explained in the introduction the approximation (17) is modified in order to make the
so called residual
Res(c) = —0ic + Fi(c)

small. The residual will contain all terms which do not cancel after inserting the approxi-
mation into the equations. Hence, Res(c) = 0 if and only if ¢ solves (14). In a first step the
above approximation is extended by higher order terms. Therefore, we define

3A1 1(e(a = cyt), et)E
3, = Z 3A1 o(e(a — cyt), e*t)E
j=—11 3A]13(6(0z cgt), ) EJ

Aja( );€7t)

+ Y 2(6(04 — ¢yt), £2t)

j=—33 3A]3(€(04 —cgt), e2t)EJ
et Al (e(a — cyt), €%t)
+ | etAly(e(a — cht), %)
et Al (e(a — cqt), €%t)

E4A]1-1(€(a —cgt), e%t)E
+ Z et Ajy(e(a — ¢gt), %) E
i==22 \ e'Ajs(e(a — ¢cot), %) E
et Aj1(e(a — cgt), e2t)E
+ Z et Ajo(e(a — cgt), et EJ
j=—44 \ e*Ajs(e(a — cyt),e%t)EI
Inserting
eV =ecU; +e¥_1 + 52\I'q
with
E2¢ql
62\Ifq = 621[)(]2 = 62\If0 + 62\1’2 + 62\If_2 + 63\Ifh
527;Z)q3

into the equations of the water wave problem will show that the residual is formally at least
of order O(£) if the Aj, A}l are chosen in a suitable way. Again we equate the coefficients
of the e™EJ to zero. The resulting equations

—jwoAj1 = mnonlinear terms,
(—jwo +w(jko))Aj2 = nonlinear terms, (19)
(—jwo —w(jko))Ajz = nonlinear terms,
for j € {3,4} and
—2wpAY, = nonlinear terms,
(—2wo + w(2ko))Ady = nonlinear terms, (20)
(—2wo — w(2ko))Ad; = nonlinear terms,

for j = 2 can be resolved with respect to the Aj;, A}, since we have the validity of the non-
resonance conditions jwg # 0, —jwo +w(jko) # 0, and —jwy — w(jko) # 0 for all j € {2,3,4}.

13



For j = 1 we obtain

—woA}l, = nonlinear terms,
1 iw” (ko) oo 41 :
Oordy, = -— 5 0% Ajy + nonlinear terms, (21)
(—wo — w(ko))Al; = nonlinear terms,

where the nonlinear terms in the second equation depend linearly on Al,. The first and the
third equation can be resolved with respect to A}; and Al; since wy # 0 and —wy—w(kg) # 0,
respectively.

For 7 = 0 we obtain

0 = —cy0xA}, + nonlinear terms,
—c,0xAly = —w'(0)0xAly + nonlinear terms, (22)
—c,0x Ay = Ww'(0)dxAfz + nonlinear terms.

The equations can be solved for A(l)l since all nonlinear terms are of the form of some previously
determined expression, differentiated with respect to X. Since w'(0) # %c¢4, we can determine
A(l)l by a straightforward integration.

We have the following scheme (I = 1,2,3, d = 1,3). The first group of equations is given
by

!
W (ki )
orar = iR A (o) Al (25)
Ay = ly(Ai1Ar), (24)
Ag = Llo(A1A_y), (25)

where v5(ko) € IR and the /s are linear maps in their arguments, which can be computed as
discussed above. The second group of equations is given by

,w”(k‘o)

OrAy, = —i 5 0% Als (26)
1o (AjAr, Ay Ay, AgAly, Ay AL 15, Al At A1, AT AL AL 1) + fly,

A%d = f11d7 (27)

Az = fa, (28)

where the /s are linear maps in their arguments and the fs functions of the variables of the
first group. The third group of equations is given by

Ay = (Al A) + fa, (29)
A(l)l = 5(1)1(14%214—17 A1A1—12) + f(}la (30)
Ay = fau, (31)

where the /s are linear maps in their arguments and the fs functions of the variables of the
first and second group. Moreover, we have the relations

Ay = A, (32)

A—jl = Zjl7 (33)
—1

AL, = 4 (34)

The NLS equation is the only nonlinear equation. All other equations are linear partial
differential equations, or linear algebraic equations. Therefore, we have
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Theorem 2.5. Fix sy > s+5>11. Let Ay € C([0,Tp], H54) be a solution of the Nonlinear
Schrodinger equation (23). Then the Aj, Aj; and A}l defined through (24)-(34) exist for all
t € [0,To] and satisfy Aj, Aji, A}l € C([0,Tp], H®4).

From the form of the Ansatz for e¥ and the discussion above we see that formally the
residual is now of order O(¢”). Furthermore, the nonlinear terms in the water wave problem
all contain a derivative (or a factor of Ky, or a commutator, both of which behave like a
derivative for wavenumbers near k& = 0.) If we consider the behavior of the residual near
k = 0, we see that the contribution comes from terms in which all factors of E*J have
cancelled. Thus, the derivative must act on a factor of A{M, and because of the long-wave
character of these terms, the derivative creates an additional power of ¢ - i.e. the residual
is actually of O(e%) near k = 0. Alternatively, one could extend the approximation e¥ by
terms of even higher order, as was done in [SW11], resulting in a residual of order O(™)
with m > 6.

For the subsequent analysis it is advantageous to modify W further. With the help of the

characteristic function
1, kel-0,0],

X[, (k) = { 0, k¢[-6,0

we introduce the operator (Esu)(a) = F*(x[_s5Fu)(a). It allows us to extract the Fourier
modes belonging to intervals of wave numbers. According to the existing literature the
operators Ej are called mode filters. Such mode filters work as follows:

[EsSeu — Seullps < Cll(X[=5 — 1)6_151/57@”}10(3)/
(X_sg — DO +EH*2
< SUpPgep | (1 + ]k/8]2)(5+5)/2 | || prs+s (35)
< CES+9/2HUHH5+5.

Thus, we set § = ky/16 and modify our approximation by replacing all terms of the form
SeTegtAj, SeTe,tAj and SETcgtA?l in the approximation ¥ by

SaTcgtAj = E6SaTcgtAja (36)
SeTegiAji = EsSeteAj, (37)
SsTcgtlejl'[ = EéssTcgtA}l- (38)

(We note that heretofore, we have written terms like Sc7.,+A; as eA;(e(a — ¢4t), €%1)).
Then, for the residual the following estimates hold.

Lemma 2.6. Let s4 > s+ 5 > 11 and Ay € C([0,Tp], H*A(IR, €)) be a solution of the
NLS equation (23). Assume that the A;, Aj, Ajl-l satisfy (36)-(38), where the Aj, Aj, A}l
solve (23)-(34). Then there exist Cres,c0 > 0 such that for all € € (0,e0) the corresponding

approximation eV satisfies

sup  |Res(e®)||gs < Crese”?,
t€[0,Tp /2]

sup  ||EsRes(e®)||gs < Crese™/?,
te[0,Tp /2]

sup  [eW — eWnpsllms < Crese™?.
t€[0,Tp /2]
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Moreover, we have

sup  ([e@srllpi(ssr) + €8l i) = O(1).
te[0,To /2]

Proof. Due to our ”cut-off”-procedure the residual can be written as

4
Res(¥) = Z a; with suppFa; C [jko — ko/4, jko + ko/4].
j=—4

By construction the above results hold since we have additionally the estimate (35). There-

fore, we are done. U

Remark 2.7. The bound on Crese?/? rather than Ce® on the residual is simply a result of the
way the L?-norms scale, i.e., if A € L?, and (S.A)(z) = A(ex), then ||S.A|| 2 = e /2| Al 12,
cf. (35). In contrast we have ”UHCQ = ”SEUHCQ and since F(S.A) = ¢718;/.(FA) we have
@l 12 = e Sy et 1. The last estimates are used for instance to estimate

IR < CI1¥lley | Rl s < Ol IRl

without loss of powers in ¢.

2.5 The approximation result in Lagrangian coordinates

Our result for the water wave problem in Lagrangian coordinates is as follows

Theorem 2.8. Fiz sy > s+5> 11, let 5 =7/2, and let H®* = H® x H® X Hs=1Y2. For all
Ca, Co, Ty > 0 there exist Cr, €9, T1 > 0 such that for all € € (0,e9) the following is true.
Let A € C([0,Ty], H*4) be a solution of (1) with

sup [ Aflgea < Ca
T€[0,To)]

and let W)i—o = e¥|i—g +° R|i—o € H® with ||R|i=o||s < Co. Then there is a unique solution
W =eU + PR e C([0,Ty /%], H?) of (13) which satisfies

sup ||R(t)||lus < Ckg.
t€[0,Ty /2]
Before we start to prove this approximation result, we show how it relates to the formu-
lation in the introduction.
Proof of Theorem 1.1: Theorem 1.1 is a consequence of Theorem 2.8. The estimates
for the Eulerian variables w = w(z,t) and n = n(z,t) defined by

w(Xi(a,t),t) = 9, X1 (a,t) and n(Xi(a,t),t) = Xa(a,t)

follow in a fashion very similar to that of [SWO03]. Let A € C([0,Ty], H*#) be a solution of (1)
and construct e¥ as in Subsection 2.4. Let W = eWUyy+e” Ry with Uy = (U, Uy, Uy, ) =
DV and Ry = (Rz,, Rx,, Ru,) = DR be the solution of (13) constructed in Theorem 2.8.
Note that X;(a,t) = X1(c,0) —Ff(;t Ui(a, 7)dr. Theorem 2.8 implies that U; = eV, +e° Ry,
with g = 7/2. We find with functions A7 € C([0,Tp], H%4) such that

t 3 t t
/ Ui(a, m)dr = Z Ej|_1|+1(—iw0)/ Al(e(a — cym), 2B dT + c.c. +/ U (o, 7)dT
0 - 0 0
j=-3
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where || fg Upem™ (-, 7)dr||gs < Cte™/2. Turning our attention to the integral involving A' we
see that

t t
/ Al (E(a _ ch)7 E2T)ei(koa—wo7’)d7. - _ / Al (E(a _ ch)7 €2T)'L8T(ei(koa—wor))d7_
0 0 w0

= —,iAl(E(a —CgT), E2T)ei(k00‘_wm)lé (39)
Zo.)()
+—€ / or Al (e (el —¢g7), € 2r)e ikoa—wor) g
w0

—I-—e/ Ix Al(e(a — ¢,7), e27)elkoa—wor) g
1w

= —.—Al(e(a —¢qgT), 62T)e’(k00‘_wm)|6
Zu)o

+—€ / orAt(e(a — CgT), € 2r)e i(koa—wor) g
w0

1

(zwo) EaxAl( (o — ch),E27')eZ(k°°‘_“’OT)]6

_|_

/ dxOp AL (e(a—cg7),e 7—) i(koa—woT) 1.

Al 2 i(k‘oa—on)d :
lwo / 8X —cyT),E°T)e T

The integrals involving the other A7s can be treated analogously. Hence, we get
t
||5/ W (e(- = eyr), 27V Bdr|| e < C(VE + t72) .
0

(The “loss” of half a power of € is again just a reflection of the way in which the Sobolev
norms scale when evaluated on long-wavelength functions.)

Combining this with the estimates above, we see that for 0 < ¢ < T} /&2, we have || X1 (-, t)—
Xl(WO)qu*Q < Cy/e. Thus, by the inverse function theorem the function X;(a,t) = a +

Xi (e, t) has an inverse Xl_l(az,t) = x + E(x,t) with
sup HE(-,t)Hcgfz < Cyfe.

t€[0,Ty /2]

Thus, if we note that £(1; +1_1) is equal to the order ¢ term in eVx, we have

sup Hn(vt) - E(wl('at) + 1/1—1('7’5))”(;;*2

te[0,Ty /2]
< sup ([|X2(5 1) —e(r () + a5 8) g2 + 1 X2 (5 1) = 0( D)l ge-2)
te[0,11 /2]
= sup ([[Xa2(t) —e(@i( 1) + 1))l gs—2 + 1X2( ) = Xo (X7 (1), 6) ] os2)
te[0,11 /2]

< % 4 02 .

The estimate on w is similar and Theorem 1.1 follows. O

The rest of this paper is devoted to the proof of Theorem 2.8. The proof consists of an
estimate showing that the error function R stays O(1) bounded on the long time interval of
length O(1/€%). In order to do so, in the equations for the error the terms of O(g) have to
be eliminated by a normal-form transform.
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3 The normal-form transform

As described in the introduction, in order to control the solutions of the equation for the
very long time intervals needed to justify the NLS approximation we must make normal-form
transforms to simplify the equations of motion. There is a resonance at the wave number
k = 0 in this problem which, in a sense that we explain below, is “trivial”. However, this
resonance implies the existence of a “nontrivial” resonance at the wave number & = kg which
we treat using a slight correction of the method in [Schn98a]. An additional complication in
the present situation is due to the “artificial” variable Z; which results in one component of
the diagonalized system of equations (16) having a linear frequency that is identically zero.
As a result we get additional resonances which necessitate rescaling the correction to the NLS
equation differently for different wave numbers. This in turn leads to further complications,
but in the end, we obtain, as described in the outline of the method, a normal-form transform
which results in a linear system whose evolution remains bounded over the time scale of
interest.

3.1 The ansatz for the error function

We consider first the diagonalized system

Oic1 = Bi(ci,c2) + Ba(er,e3) + Bs(ca, c3)
+Biy(c2, ¢2) + Bs(cs, c3) + O(|el),

Oycy = —iweg + Bg(cr, ) + Br(er, c3) + Bs(co, c3) (40)
+By(c2, ¢2) + Buo(cs, z) + O([|e[l”),

Oics = iwes + Bii(er, e2) + Bia(er, c3) + Bis(ca, c3)

+Bi4(c2, c2) + Bis(cs, c3) + O(”C”?’)v

associated to (13), where here and in the following the B; stand for bilinear mappings which
do not depend explicitly on a. Notice that we do not have B(cy, ¢1)-terms, cf. (16).

The explicit form of these bilinear terms can be computed with the aid of the expansion
of the operator K (X) found in [Cr85] and [SWO00] and they are listed in Appendix A.3. In
Sections 2.3 and 2.4, we computed the formal approximation to the solutions of this system
of equations and found:

[S—— €2¢q17
2
ca = e+ e+ Yy,
2
Cc3 = ¢ 1/1,13.

If we now write the true solution as the sum of this approximation, plus a correction term,
i.e., if we write ¢; = 291 + PRy, c0 = e+ +&%h0 +ePRy and ¢3 = e24y3 + PR3, for
a 3 > 1 sufficiently large, then we find that the equations of motion for the R;’s contain not
only the diagonal terms 0, —iw and iw but also terms linear in R; and of O(e) of the form
eB1 (Y1, Ry), eB1(¥—_1, Ry), etc. Our basic goal is to remove these terms by making normal-
form transformations of the form w; = R; + €Nj+ (11, R)+ eN; (¢_1, R) and choosing NjlL to
eliminate the terms of O(e) in the equations for R;. Unfortunately, certain terms are impos-
sible to eliminate by this procedure. For instance, consider the term Bg (11, Re)+ Bg(Ra, 11).
If we write the Fourier transform of this term as [ Bo(k,k — €,0)1 (k — £)Ry(£)dl, and if we

write the (Fourier transform of) the corresponding term in the normal-form transformation
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rescaling

trivial resonance
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Figure 2: The curves k — w;(k) and the curves k — w3 (ko) +wn,(k—ko) for j,m € {1,2,3} and
ko = 2. Intersection points correspond to quadratic resonances. There are the resonances
at £k = 0 and k = £kg already mentioned in the introduction. The resonance at k£ = 0 turns
out to trivial, i.e., also the nonlinear terms vanish at this wavenumber. The resonances at
k = £kg can only be resolved by scaling c;, co and c3 one order smaller close to k£ = 0. Beside
these resonances there are additional resonances at +£2kg coming from the artificial variable
c1 in the Lagrangian formulation. In the resonances at 4+2kg there is some cancellation of

terms.

as [ Ng’ (k, k—0, 01y (k—0)w(£)dl, we find that the kernel in the normal-form transformation
must satisfy

—i(w(k) — w(ko) — w(k — ko)) Ny (k,k — £,£) = Bo(k, k — £,¢) .

Unfortunately, the resonance at k = kg prevents us from solving this equation (or at least, if
we solve this equation the expression for ]\73’ will have a zero in the denominator.) Note that
this problem arises from the behavior of Re near wave number zero and to circumvent this
problem we rescale the error function by an additional power of ¢ for wave numbers close to
zero. Postponing the details of the estimates until later, the problem is solved by making the
final ansatz

a = g +e*IRy,
co = e +eP_q+ e+ IRy, (41)
Cy3 = E2¢q3 + 6319R3,

where Y R; is defined by 79/\Rj = 19]%] with

Y 1 for |k| >,
ﬁ<k)_{z—:—|—(1—s)|kz|/6 for |kl <6

with 0 chosen as above. By this choice é(k)}?](k‘) is small at the wavenumbers close to
zero reflecting the fact that the nonlinearity vanishes at k = 0. Moreover, we define R =
(Rb R27 R3)
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If we ignore the inhomogeneous and nonlinear terms which we have already explained
how to handle, we obtain the following system of equations:

O Ry

Ot R

Oy R3

19—1(631,1,1(¢1, UR1) +eB1—1,1(¢_1,9R1) +eB112(¢1,9Rs)
+eB1,—12(¢—1,9R2) + eB113(¢1,9R3) + By _13(¢—1,R3)

+e?B121 (U2, 9R) + 2By 22(Va, VRs) + &° By 2.3(V2, 9 R3)
+&2B1,—91(V_9,9R1) + 2By, _22(V_o,9Ry) + By _23(V_2,9R3)
+e2B1,0.1(¥o,9R1) + 2 B10.2(Vo, 9 Rs) + €2 B1,0.3(¥o, U R3)
+e2 T 111 (W1, Y1, 9R1) + €2 T11,1.2(1, 91, 9 R2) + €2 T11.1,3(81, 91, 9 R3)
+e2 T —1,—11 (-1, -1, 9Ry) + €2 Th 1 1,2 (-1, ¥_1, 9 Ro)
+e¥T1,—1,-13(—1,¥_1,9Rs) + & Ti 1,11 (¥1, 1,9 R1)

+e¥ T 121,201, -1, 9R2) + 2 Ti1,—1,3(¢1, -1, 9R3) + O(?)),

—iwRy + 9 (B21,1 (1, 9R1) + eBa, 1,1 (Y—_1,9R1) + eBa 1 2(¢1, 9 R2)
+eBa _12(1—1,9R2) + B2 1 3(¢1,9R3) + By 1 3(¢—1,VR3)

+€2Bg21(Va, 9Ry) + €2 B 29(Va, URy) + €2 B2 3(W¥a, Y R3)

+e2By, 21(V_2,9R1) + €?Ba,_22(¥_5,9Rs) + B2, 2 3(¥_5,9R3)
+€2B2,0.1(Vo, 9Ry) + €2 B 2(¥o, 9Ry) + €2 B 3(¥o, Y R3) (42)
+e2 o111 (W1, 1, 9R1) + €2 Ta1,12(P1, Y1, 9 R2) + €2 T211,3(¢1, 1, I R3)
+e*To,—1,-11(Y—1,%-1,9R1) + T2, —1,—1,2(1—1,%_1, 9 R)
+¥To,-1,-13(—1,¥_1,9Rs) + € Ta1,—11 (Y1, ¥—1,9Ry)

+¥To1,-1,2(01, V-1, 9R2) + €2 Ta1,—1,3(¢1, -1, 9R3) + O(?)),

iwRs + 9 ' (eB311(¢¥1,9R1) +eB3 1,1 (¥_1,9R1) + B3 12(11,9Rs)
+eBs _12(1)—1,9R2) + eB313(¢1,9R3) + B3 1 3(¢—1,VR3)
+e2B321(V2,9R) + 2B 2.2(Va, VRs) + €2 B3 2. 5(¥2, U R3)

+e2Bs _91(V_o,9R1) + B3 _22(V_2,9R2) + B3 _23(V_2,9R3)
+&°B30.1(Vo,9Ry) 4 £° B3 02(Vo, 9 Ry) + £° B3 o 3(Vo, I R3)

+e¥ T30 (Y1, 01, 9R) + 2 T511,2(%1, 91, 9 Ra) + €% T31,1,3(¥1, ¥1, I R3)
+¥ T3, —1,—11 (-1, -1, 9R1) + €T3 1,12 (Y1, ¥_1, 9 R2)
+6°T3,-1,-1,3(—1, -1, 9R3) + €Tz 1,-1,1 (1, -1, U Ry)
+¥T31,-1,2(01, -1, 9R2) + €2 T5.1,—1,3(¥1, -1, 9R3) + O(?)),
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where

Bi41,1(t+1,9Ry)
By 412(1+1,YRy)
B1+13(¢+1,9R3)
(U9, YRy)
(U9, YR9)

Bi421
Bi42.2

B1123(V12,UR3)

By 11241, VR
(¢+1,9R3
\I’:I:Qy 19R1

\I’:I:Qy 19R2

By 413
By 491

)
)
)
Ba 11 1(¢i1ﬂ931)
)
)
)
)

(
(

By 429

Ba 1+23(V12,VR3)

)
)
)
B3 11 1(¢:l:1779R1)
B3 +12(¢+1,9R2)
(Y+1,YR3)
U9, 9Ry)

)

\I’:I:Q) 19R2

B3 413
Bs 121(
(

B3 122
B3 423(V42,YR3)
B30,1(Vo,URy)

B30,2(Vo,URy)
B30,3(Vo,UR3)

Bi(9R1,vY+1),

By(¢41,9R2) + Ba(IRa,11)

B3(v+1,9R3),

B1(VR1,Y(+2)2) +

B1(¥(+2)1,VR2) +

+By(IRa, 1 (+2)2) ,

Ba(Y(+2)15 19R3) + B3(Y(+2)2, VR3) + Bs((12)3, VR3)

+B5(VR3, ¥(+2)3)

B1(VR1,v02) + Ba(VR1,03)

B1(tbo1, VRa) + B3(VRa,103) + By

2(vo1,VR3) + B3 (o2, VR3) +

6(VR1,+1),
(
(
(

Ba(9R1,(+2)3) 5
Bs(9R2, v (19)3) + Ba(¥(x2)2, VR2)

(Y02, 9 Ry) +
Bs(vo3,VR3) +

B4(YR2,v02) ,
Bs(9R3,103)

SSEeC IV

9(¢+1,9R2) + Bo(IR2, ¥11)

3(Y+1,7R3),

6(VR1, Y (12)2) + Br(VR1,¢P(+2)3) 5

Be(Y(+2)15 19R2) + Bs(VR2, ¥ (12)3) + Bo(¥(x2)2, VR2)
+By(VR2, Y(+2)2) ,

Br(Y(+2)15 19R3) + Bs(Y(x2)2, VR3) + Bio(Y(+2)3, VR3)
+B10(VR3,Y(19)3) ;

Bg(VR1,v%02) + Br(VR1,03)

Bg(tbo1, VRa) + Bg(VRa,103) + By(v02, 9 R2) 4+ By(9 Rz, Yo2) ,
Bz (o1, VR3) + Bg(o2, Y R3) + B1o(vo3, VR3) + Bio(VR3,%03),
B11(VR1,¢+1),

B14(+1,9R2) + B1a(VR2,¥11),

B13(¢+1,9R3),

B11(9R1,Y(49)2) + Bia(VR1,Y¥(+2)3) 5

B11(¥(42)1,VR2) + B13(V Rz, ¥(+2)3) + B1a(¥(x2)2, VR2)
+B1a(VR2, Y(12)2) ,

Bia(¥(x2)1, VR3) + Bi3(V(x2)2, VR3) + Bis(Y(s2)3, VR3)
+B15(VR3,Y(19)3) ;

B11(YR1,%02) + Bi2(VR1,v03)

B11(to1,9R2) + B13(VRa,v03) + B1a(Yo2, VRz2) + B1a(VR2,vY02) ,
Bia(tbo1,9R3) + B13(v02, YV R3) + Bis(o3, VR3) + B15(VR3, 103)

S W

and the terms 7; j r.1(¥;, ¥r, VR;) stand for trilinear terms which are linear in the R;. They

will be treated in detail later. The operator 9~ is defined by its symbol 79/_\1(k:) =97 1(k) =
(9(k))~1. Notice that J~1(k) is at most of order O(s~1) for |k| < & but of order O(1) for
|k| > 0. We note here that the arguments of the terms B;, and Bj, are written as ¥
rather than 1 to emphasize that these terms depend on more than one component of the
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vector valued approximating function ¥, whereas the remaining terms depend only on a
single, scalar component, and hence their arguments are denoted ;.

3.2 The normal-form strategy for an example

In order to eliminate the O(1) and O(e) terms on the right hand sides of these equations
we make a series of normal-form transformations. Each of these transformations is a near
identity transformation which removes one (or more) of the “bad” terms.

We will explain the general strategy with a quite specific example which illustrates the
general principles involved and then go through each of the many terms that must be removed
from the right hand side of these equations and explain in turn how they are treated.

Suppose, for example, that we consider the terms from the second equation in (42)

Ot Ry = —iwRy + 619_13271’2(1[)1, 19R2) + ... (43)

and we wish to eliminate the term 619_13271,2(1/)1, VRy) = €91 (By (1, 9R3) + By(IR2, 1))
from the equation.

We will write Ry = Ry +eN (11, Ro) with N a bilinear function chosen in such a way that
the term e~ (Bg (11,9 Ra) + Bo(R2,11)) does not appear in the evolution equation for Rs.
If we write the evolution equation for Ry, we find

Ry = 0OiRy+eN (b1, Ra) +eN (11,0, Ra)
= —iwRy + 9™ (By(¥1,9Ry) + By(VRa, 1)) + eN (01, Ry)
+eN(1,0:R2) + ...
= —iwRy + e (By(¢1,9R2) + By(VRa, 1)) + iwe N (11, Ro) (44)
+eN (041, Ry) +eN (11,0t Ra) + ...

Thus, we see that in order to eliminate the term e ~!(Bg (11,9 Ra) + Bo(Y Rz, 1)) we should
choose the normal-form transformation N to satisfy

619_1(39(1/11, YRy) + Bg(URa,vn)) +iweN (1, Ra) +eN(0p)1, Re) +eN(¢1,0.R2) = 0. (45)

We can simplify this slightly if we replace 9, Ry in the argument of the last term by —iwRo,
which we can do at the expense of introducing additional terms of O(£?), which are absorbed
in the terms we have already neglected in the equation for 9,R,. We would like to make a
similar replacement of 0;1; but if we compute this derivative using the explicit expression
for ¢ we find it is not quite equal to —iw;. However, as we will show in Lemma 3.3 below,
it can be approximated by this expression — i.e., dpf1 = —iwipy + O(e?). If we make this
substitution (and again absorb the error in the terms we have ignored we find that N should
satisfy:

619_1(Bg(¢1, Q9R2) +BQ(Q9R2, ¢1)) +iwsN(1/)1, RQ) —5N(z'w¢1, RQ) —€N(T,Z)1, inQ) =0. (46)

From the explicit formulas for the quadratic terms in (40) we see that we can write the
Fourier transform of the bilinear term 9~ (Bg(11,9R2) + Bo(YR2,11)) as

/ O~ H(k) By (ky k — £, 0)1py (k — £)D(£) Ry (£)dl
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for some appropriate kernel By whose explicit form we discuss below. In order to compute
the kernel n of N, we write out the Fourier transform of (46) which gives

- / D (k) By (k, k — £,0)0(€), (k — €) Ry (0)de (47)
— (k) / Ak, ke — £, 001 (k — £) Ra(0)de
—i / Ak, ke — €, 0)w(k — ) (k — €)Ry(£)dl
i / Ak b — 0,00 (k — Ow(0) Ry(0)dE

or, eliminating the integrals and focusing on the equation satisfied by the kernels we see that
7 should satisfy

_— B iBy(k,k — £,0) 9(e)
kb =60 = GO w0 —w) 3k (48)

Clearly, n will only be defined if the expression (w(k) —w(k—¢) —w(¢)) can be bounded away
from zero (or in some rare cases which we discuss below, if a zero in this expression is off-set
by a zero of By at the same values of k and ¢.) This requirement leads to our non-resonance
conditions which we will have to verify in each of many different possible cases below. Before
beginning this straightforward but lengthy procedure we make a few more general remarks:

1. We must eliminate not only the term =1 (By (11, 9Rs) + Bg(9R2,%1)) from the equa-
tion for J;R,, but also many other terms — and even more in the equations for the
other variables. However, since the terms to be eliminated are linear in the dependent
variables R;, the transformations will be linear as well and we can construct the final
transformation in lowest order as a sum of the transformations constructed to eliminate
each of the terms in turn.

2. In order to prove our approximation theorems we will have to show not only that the
kernel n is well defined but also to estimate how the transformation it defines acts on
the function spaces Y, ;. This we will do with the aid of Lemma 3.1 below.

3. We must also eliminate a few terms of the form 97! B,,(0;thgk, VR;). These must be

handled in a slightly different fashion because (‘Mﬁqk is not approximated by iwkzﬁqk.
We explain exactly what modifications are necessary in our general scheme when we
encounter these terms below.

3.3 Some technical lemmas

A key lemma in what follows will be the following estimate of expressions like
N (i, R)(k) = / ik, k— 0,0 (k — O)R(L)dL (49)

where 1, is a part of the approximation constructed above (and in particular, is an entire
function) and R is an element of the space Y ;.
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Lemma 3.1. If there exist constants Cn > 0, s1,s2 > 0 and such that
(1+ k) 2l(k, k — €,0)] < On(1+ [k — €)* (1 + |¢])*
Then the expression (49) defines a bounded linear transformation

N Yoy — Yoo
wo = N(T/Jy,w),

and there exists a constant Cy, depending on o, s, s1, s2 and the norm of 1; (but independent
of €) such that

[N @, w)lly,, < Cyllwly,., -

Proof. From the definition of the norm on Y, s, we have:
~ 2
Ny )l = [0 e ( [ th = 50 - em(z)cw) n
2
< c/ (/(1 + 12267 W s, e — €, 0)| b, (K — e)uw(e)yde> dk
2
< CCN/ (/(1 1k — 42)5 26700 (6 — 0)] (1 + 15\2)82/2evlfyw(e)\de> d .

If we now think of the k-integration as the square of the L?-norm of a convolution we can
bound it with the aid of Young’s inequality by

Cllwlly, ., / (1 -+ [P2)*/2e 1 3 () ks

But since v; is entire this last integral is bounded by a constant, and using the way 1; is
constructed, we see that this constant is independent of . O

We will also need to construct normal-form transformations that eliminate trilinear terms
in some of these equations. To bound the resulting transformations we use the following
lemma whose proof we leave as an exercise since it is a very easy modification of the preceding
one.

Lemma 3.2. Let ¢ be entire and s > 0 be fixed. Suppose that there exist constants C, and
sj, = 1,2,3, such that

(1+ k)M (k k= £,0 —p,p)] < C(L+ [k — €)1 2 (1 + ¢ = p*)*/2(1 4 p*)™/2 .

Then the mapping M : w — M (1, ¢, w) defined by the kernel M is a bounded transformation
from Y5 s, to Yo .

We next turn to the result mentioned in our overview of the construction of the normal-
forms, namely the fact that we can approximate 0;)1 by —iw.

Lemma 3.3. Fiz s,0 > 0. There ezists a constant Cy = Cy(s,0) > 0 such that

[0stha1 + iwtpsnly,., < Cye®

Before proving this lemma we note that if we combine it with the method of proof of
Lemma 3.1 we easily obtain:
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Corollary 3.4. If there exist constants Cp, s1 and so such that
(1+ k)2 |b(k, k — €,0)] < Co(1+ [k — €])* (1 + [¢])*

then there exists a constant Cp (independent of €) such that the bilinear term B(i+1, R)
defined by the kernel b satisfies

1B(Ows1 +iwdir, R)lly,,.. < Cpe?|Rly,., -

Proof. (of Lemma 3.3) We will prove the case of 1)1 — the case of 11 works analogously
by the change ko — —kg. From the explicit formulas for 1)y we have

Oty (e, t) + iw(k)o (k, 1) = i(—w (ko) — cg(k — ko) + w (k)b (k,t) + e20rihn (K, 1) .

Here, the partial derivative with respect to “I” refers to differentiation with respect to the
“slow” time £2t that occurs in the second argument of the amplitude function A; in the
definition of ;. First consider the norm of the term &rt;. Recalling (see (35)) that we
truncated the support of A; in a neighborhood of size § we see that

1 k — ko

/(1+|k‘|2)81/26‘7|k|8T1z1(k?,t)|dk7 < E/k ol (1+|k|2)81/260|k‘|aj‘1211( ,52t)|dk7
1k=kol 5
)
< / (1+ ko + ep|2)*/2eolbo*ePl|ap A (p, €2t)|dp
p=—4
5 A
< Clko,o) / (a + 22 [p|)* /2= P a7 Ay (p, £20)|dp .
p=—0

However, because of the compact support of A;, this integral is finite.
Next note that there exists C,, such that

w(k) = w(ko) — cg(k — ko)| < Culk — kol .
Thus,
[ )26 M ) + gk ko) — ) ()
C, ~ k—k
<= [ oLy (S

< Cw€2/p2\z41(p,€2t)!dp
< Of(ko, Ay)e?

,e2t)|dk

where in the second inequality we again used the fact that the support of 1[11 is bounded and
in the last inequality that A; is bounded at least in H3 . O

With these technical lemmas in hand we now construct our normal-form transformation.

The transform is constructed term by term following the outline sketched in equations (44)-
(48).
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3.4 The first normal-form transform

We begin discussing the normal-form transform for the error equations. Due to the structure
of the nonlinear terms in the error equations the size of the Fourier transform of these terms
depends on whether £ is close to zero or not. In order to separate the behavior in these two
regions more clearly we define projection operators P° and P! by the Fourier multipliers

-~

PO(k) = xjnj<s(k) and P'(k) =1— P°(k) (50)

for a § > 0 sufficiently small, but independent of 0 < ¢ < 1. (This is the same constant §
that appears in the definition of ¥.) When necessary we will write

R=R'+R",

with R" = P"R for r = 0,1 and analogously with the other variables.
Applying the projection operators P%! to system (42) we see that it is equivalent to the
system of equations

OR) = iij?+79‘1P0( Z eBj (Y1, 9RY)

I=—1,1

n=1,2,3
+ Z 2B 1 (U, IR} + Z 2T 11 (V1, Y1, U R},
! o138
+ Z ( Z 2B on(Yo, IR + 5273,1,—1,n(7/}17¢—1779R;)>
r=0.1 n=12,3 n=12,3
+(’)(€3)>,
OR} = iwR+ Y 0P (Y eByua(v ;) (51)
r=0,1 l=-11
n=1,2,3
+ Z 52Bj,l,n(qlla19R:L)+ Z 527},l,l,n(¢l7¢l719R:L)
1=—2,0,2 l=-1,1
n=1.25 n=12,3
+ 3 ST a1, OR)) + O()
n=1,2,3

for j =1,2,3.

Here we used the fact that due to W;(k—£) = 0 unless |(k—¢) —lko| < § and R°(¢) = 0 for
10| > 6 we have POB; 11 (¢41,9RY) = P°Bj 49, (V19,9R0) = POT; 11 11.n(¥x1, 041, 9RY) =
0 for j,n € {1,2,3} if § > 0 is sufficiently small, but independent of 0 < ¢ < 1.

Since 91 P! is of order O(1) all terms on the second and the last line of the evolution
equation for le- are at least of order O(£?) and need not to be eliminated. Moreover, we will
show in Subsection 3.7 that all terms on the third line of the evolution equation for R? are
at least of order O(g?) as well and need not to be eliminated either.

In order to eliminate the terms in (51) which are of order O(1) or O(e) we look for a
normal-form transformation of the form

R = R4+ eNOY(W,RYY,
R' = R'4eNYO(U,R%) +eNVY (W, RY),
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where

R? - RO+ Z Njolln djlerlz)—i_ Z 2Njolln(\1ll7Riz) (52)
S
+ Z €2N30l1ln T;blywl?erz) ;
123
Rj = Rj+ Z Z &?N]llrn (Yn, Ry,) -
r=0,1 1=—1,1
n=1,2,3

Construction of N®1: Now, we start discussing systematically the construction of all

components of this normal-form transformation. First, we address the components N’ 0.1 d1n

for j,n € {1,2,3}. Proceeding as in Subsection 3.2 we see that the kernels nj#ld’n of Nﬁil’n

should be of the form

Y B P (R)bj ek k—€,0)  D(0)
B vy (2 R ) EREN () T o

where Bj,il,n are the kernels of B; 4+1,. Due to the fact that the PO and 1[1i1 have supports
localized near k = 0 and (k—¢) = kg respectively this expression only has to be analyzed for
|(k—£)+ko| <9 and |k| < §. As a consequence for 0 > 0 sufficiently small, but independent
of 0 < € <« 1, we can also restrict to wave numbers ¢ bounded away from 0. Hence from
the possible resonances discussed above only the resonance at k = 0 will play a role for
N jo’ illn The kernel ﬁ?:il’n can then be estimated as follows. First note that if we consider
the denominator of this expression near k = 0 then we have

—wj(k) —w(k =€) + wp(l) = —wi(0)k — (W(—€) + ' (—0)k) + wn(£) + O(K?) .

If wy(f) # —w(?) this quantity is bounded below by some O(1) constant for all |k| < §. If,
on the other hand, wy,(¢) = —w(¥), which is true if and only if n = 2, there exists a positive
constant C' such that

| —wj(k) —w(k =€) +w,(¢)] > C|k| . (54)

Here, we have used the fact that ¢ ~ £k because of the support of 1[1i1 and the fact that
w'(£ko) is O(1) and is not equal to w(0). Thus, only for n = 2, does the denominator of

. . 0,1 .
the expression for 541, get close to zero. However, in the case n = 2 we see from the

definitions of the form of the nonlinear terms that Bj7i172(k, k—€,0) = Bi(k,k —£,¢) for some
i € {4,9,14}. Thus we get by the subsequent Lemma 3.11 that

bj 1190k, k—£,0)] < C|k| . (55)

Hence, in the case of n = 2, there is a cancellation between the numerator and the denomi-
nator, while for other values of n the denominator is bounded away from zero and thus, there
exists a constant C' > 0 such that

(k)AL (R —0,0)] < C (56)

for all |k| < 0 and ¢ under consideration.
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Because of the factor of P(k) which makes ﬁ;’ilm(k,k —0,0) =0if |k| > 4, Njoil1 ., 18
“smoothing” in the sense that if R} € Y, s for some s > 1, then given any o, s, there exists
Cy o such that

|eND Ly (@, R, < Corw[RE . - (57)

In particular, this estimate holds when ¢/ = o and s’ = s. Note, however, that in spite of the
factor of € in front of IV jo’ ’ill’n, we cannot assume that Cyp ¢ ~ O(e) because of the factor of

9 1(k) ~e7! for k ~ 0, in the formula for the kernel of Njo”ill’n.

Now, we address the components IV ](-)7 iQn Their kernels ﬁ?:iQ’n should be of the form
iPO(K)bj o (k, k — £,0)  O(4)
(—wj(k) £ 2w(ko) +wn(l)) H(k)
where we have used the fact that 9,0,y = :|:2z'w(k:0)\i’i2 + O(e) to approximate the denomi-
nator. Since k — £ ~ £2ky we can further approximate the denominator as

—w;(k) £ 2w(ko) + wn(k F 2ko) .

Because of w(2kgy) # +2w(ko) # 0 the denominator is bounded away from zero for all |k < 4.
Moreover, since k and ¢ are restricted to bounded intervals, the operators sNﬁ’ilZn define
bounded transformations from Y, ; to itself

A(y):1|:2 n(k,k—&ﬁ) (58)

Finally, we address the components NY il 41, Proceeding analogously as in the case of

the bilinear terms we find that the kernels no l4ln should be of the form

201 iPO(k)T; 1 410(k b — £,0—p,p)  I(p)
n(k7k_€7€_p7p) = = y (59)
ML, (—wj(k) —w(k =) — w(l = p) + wn(p)) I(k)
where Tj,il,il,n(kz, k—¢,0—p,p) is the kernel of Tj 1 +1,n. Since k—{ ~ £ky and { —p = +ko
we can further approximate the denominator as

—w]'(k‘) F 2w(k:0) + wn(k: F 2k0)

and therefore the denominator is bounded away from zero for all ]k\ < 4. Moreover, since
k, £ and p are restricted to bounded intervals, the operators sN il +1n define bounded
transformations from Y ; to itself.

Construction of N9 and N'!: Before we proceed constructing the normal-form
transformation we will replace the terms e ' P'B; 11, (111, 9R") with j,n € {1,2,3} and
r € {0,1} in the evolution equations for le- by €9 P'B; 41, (1h41, 9 RY), where Jo(k) =
@(k) — ¢. This modification will help us to avoid a resonance problem at +ky. The key fact
that we will use below is that 190(0) = 0. Making this change introduces additional error
terms €29~ P'B; 11 (11, R) into the evolution equations for R}. However, since 97! (k)
is O(1) on the support of P!, these terms can be included in the error terms of order O(g?).

Now, proceeding as in Subsection 3.2 yields that the components N ]{ilm should satisfy
the equation

_iwﬁ 7 :I:l n(w:l:l’ ) le,il,n(iwzﬁ:tla RT) Ng ’:|:1 n(¢:|:17 anR;)
= 9P B, 110 (Y11, 90RY) . (60)

To extract the real ‘dangerous’ terms from ﬁ_lPlBj,il,nwil, YoR!) we will use the fol-
lowing lemma which takes advantage of the strong localization of ¢4 near the wave numbers
+ky in Fourier space.
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Lemma 3.5. Fizp € IR. Assume that k € C(IR3, T'). Assume further that ¢ € C%(IR) has
a finitely supported Fourier transform and that R € Y, .

e If k is Lipschitz with respect to its second argument for k — £ in some neighborhood of
p € IR, then there exists Cy ., > 0 such that

{—p i fl—p A
I [ st = 07 =R~ [ rap 0 B D) RO,
< Cw,n,p‘SHRHYa,s (61)

o If K is globally Lipschitz with respect to its third argument, then there exists Dy, > 0
such that

H/ = 4,0) ‘%(ﬂ)}?w)dz

€
i~ —l—p
= | Kl =L = p)eT Y (———) R(O)dly., (62)
< Dy el Ry,
Remark 3.6. Note that there are two important aspects of this lemma — the first is that we

fiz the second argument of the kernel function k to the value p (or the third to k —p) and the
second is that the error which we make by this procedure is O(e).

Proof. We give the details of the proof for the first of the two cases in the Lemma. The
very similar second case is left to the reader.

I [ nte = 0= S0 RO~ [ wtp 0 S RO,

3

-1 k—1— P\5 ? 20|k 2\s
=/</(%(k,k—w)—ﬁ(k,p, 0)e M p(——+ )R(ﬁ)d€> 2kl (1 + k) dk

€
L k=l=p 5 ? 20 |k| 2\s
< Cw | |(k—1¥)—ple ¢(7)R(£)d£ e (1+k*)°dk
< 03(/ eom(1+m2)s/2l IIzb( dm)?|RI, . < Cyrpe’|IRIT, .,

where to the next to last inequality we applied Young’s inequality to bound the L?-norm of
the convolution and the last relied on the fact that ¢ has compact support. O

Remark 3.7. The conclusions of Lemma 3.5 also hold if the integrals run only over a subset
of IR.

We use Lemma 3.5 to replace the equation (60) with an alternative equation for the
components IV, jlil ,, Which will result in a form for the normal-form transformation that is

easier to bound, at the expense of introducing additional “error” terms all of which are O(£?).
More specifically we apply Lemma 3.5 and make the following changes in (60)

(A.1) We replace N1, | (iwtps1, Ry) by Ny (iw(Ehko) s, By).
(A.2) We replace N\ | (¢s1,iwn R) (k) by Nty (W, iwn (K F ko) Ry) (k).
(A.3) We replace b; 41, (tx1, 90 RS) (k) by bjs1n(s1, 90(k F ko)RE) (k).
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Inserting these changes into (60) we find that the kernels of N jl’il’n should be of the form:

A~

iPY(k)bj 1k k= 0,0) Dok T ko)
(—w; (k) — w(hko) + wn(k F ko)) I(k)

iy (k= 0,0) = : (63)

Remark 3.8. The analysis of the kernel of N%' would be simplified by the changes (Al)-
(A3), too. However, we don’t make those changes in N because they would complicate the
analysis of the subsequent second normal-form transformation which is required due to the
fact that N = O(e71) for certain wave numbers.

Due to the fact that the support of TZJ:H is non-zero only near k = +kg, and the projection
operator P!, the expression (63) only has to be analyzed for |k — £ F ko| < § and |k| > 4.
We now consider the possible resonances in the denominator of (63), taking these restrictions
into account.

e k = 0: Since ﬁl(kz) = 0 for |k| < 0, this resonance does not play a role in the analysis
of either N1 or N1,

e k = +ky: The kernels ﬁ;;ln have a resonance at k = +ky whenever ;7 = 2 and a
resonance at k = Fko whenever j = 3 and n = 1. However, since the derivative of w;
for j = 2,3 at ko is O(1), we have a bound on the denominator of the form

| —wj(k) —w(Eko) + wn(k F ko)| > Clk F ko| (64)

This singularity is offset, however, by the fact that the term |[Jo(k T ko)| < C|k T ko|
and hence the kernels ﬁ;;ln can be extended continuously at k = k¢ with an O(1)
bound on its size.

e k= 1+2ky: The kernels ﬁ;;ln have a resonance at k = £2ky whenever 7 = 1 and n = 3.
However, in this case we have lA)J-,iLn(k:, k—0,0) = Bg(k:, k—¢,¢). This will imply that the
numerator of ﬁ]l:tln also vanishes at k = £2kq so that the quotient is still well-defined.
We discuss this surprising cancellation phenomenon in detail in Subsection 3.6.

There are no other resonances for the normal-form transforms and hence the kernel can
be bounded for all values of k£ and ¢ by an O(1) bound.

Having discussed the zeroes of the denominator we are are now interested in the asymp-
totics for |k| — oo, in order to see a gain or loss of regularity by the normal-form transform.
We first bound the expression for N§7’i173. We see from (129) that the numerator of the kernel

30



63,i1,3 == 613 has the form

bis(k,k—0,0) = —

Ko(k — 0)
(k- 0) {1 + f(o(k)léo(e)} (i0) (65)

1 {é(k: — 0O)Ko(0) — Ko(k)

w>
—
™
|
~
SN—
N——
—~
.
~
SN—

1 s 1 A
+5 bk —0)3(0)3(k —£) {m * ’CO(E)}

1 3(OKo(k — ) — Ko(k)3(0) |
PR { Kol0) } e

—5(0) {1 + Ko (k)Ko(k — E)} i(k — 0)

+1(/<: —0)t3(k — 0)3(0) { L Ko(k — e)}
2 Ko(€)

Our goal, throughout the construction of the normal-form transformation is to preserve,
as much as possible, the smoothness of the error functions. In practice, this means that when
we bound (14 k2)*| NV (k, k — £,0)] by C(1 + |k —£)2)* (1 + |¢>)*2 in order to apply Lemma
3.1, we will want to keep so small — we can “soak up” as many powers of |k — ¢| as we need
since this corresponds to differentiating the approximating function 41 which is entire. This
“trick” of moving derivatives from the factors of w to 1 is related to the smoothing properties
of the nonlinear terms in the water wave problem. Thus, for instance, by the estimates in
the proof of Corollary 3.13 on page 1499 of [SWO00] we see that for all s > 1 we have

Ko(f) = Ko (k)

\ <C(1+k— 023511+ )T . 66
G | SCUH k- ERae) (66)

(1+k2)5t1

Thus, the expression in the first line on the right hand side of inequality (65) can be bounded
by

vz | L[5 = 0Ko(0) - Ko®)s(k—0)\
e §<k>{ Kol — 0 }”)
2\5+1 ’60(5)—’60(@ _p12\5+3 2\5/2
< (L+K2)3H Gy | scath O2)3HE(L+ £2)°/2 (67)

The second line in (65) is bounded by writing
1+ Ko(k)Ko(k =€) = 1+ (Ko(k))? + Ko (k) (Ko(€) = Ko(h)) -

Noting first that the asymptotics of the hyperbolic tangent imply that |14 (760(73))2’ < CAe_“‘C'
and using the estimates on page 1499 of [SW00] to bound the term involving Ky (k) — Ko(¢)
we have
(14 K)°213(k = 0)||1 + Ko(k)Ko(k — 0)]|¢]
<O+ |k — 0221+ 2)%/? (68)
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Now, we bound the third line in 65. In this case, unfortunately, there is no cancellation
between the factors of Ky and the only smoothing comes from the factors of §(¢) and s(k —¥¢)
so we find

0k — 0303k — 0) {é 4 iéo(e)}

< Cl TRk — 0 Te
Ko(k —£)

l 2\s/2
2(1—|—k: )

Finally, the last three lines can be bounded analogously to the first three lines by changing
k — £ and /.

Combining these estimates on the numerator of the kernel ﬁéils with the previous in-
formations of the denominator we find

(L4872 gy kb = £.0)] < OO+ )2 (14 [k — €))*F2 (69)
From this estimate and Lemma 3.1 we find immediately:
Corollary 3.9. Ni’}:ﬂl:lﬁ defines a bounded linear operator from Y, o1 1/ to Yy s.

We now turn to estimate the terms of all other components of N&!. The terms in the
numerators of the kernels can be estimated just as in the case of the terms in the numerator
of ﬁéilg above. More specifically, those terms involving My, or (s¢ + Ko(s¢)K)d, can
be bounded using the smoothing properties exploited on page 1499 of [SWO00], so that they
result in no loss of smoothness. The terms involving My and (9 (5%))Ko(0ns:) lose half a
derivative as above.

Therefore, we find that the normal-form transformation N1 is well defined, but causes a
loss of smoothness. That is, we have the following. If Rl € Yf’  then there exists C' > 0 such
that

leNy i n@en, R)llyz2 | < CelRYlvz, - (70)

Hence, there is a loss of “1/2 a derivative” — i.e., we get a bound of N! in the space st—l/z

rather than Yf’ s- One the other hand, since we do not have to deal with the large values of
9~1(k) near k =~ 0 we obtain a factor of £ on the right-hand side of this estimate.

Taking into account that |w(k)| ~ +/|k| for |k| — oo we further obtain for j # n the
estimate

leNj iy (W1, RY) vz, < CellRhllyz, - (71)

Moreover, due to the compact support of Rg the loss of regularity is not present in the
estimate for N0, We find

leN} 2y (s, R llyz, < Cel RSy, - (72)
Now, we define the function space
YR =Y, o X Yo 12 x Yos 1o
Then we can sum up the results of this first normal-form transformation as follows:

Proposition 3.10. Let R" for r=0,1 be defined by (52). Then this transformation maps
(R, RY) € Y xYE into (R°, R") € Y x Y(Ii_l/z forall s > 1 and o > 0 and is invertible
on its range. Furthermore, if we write the inverse transformations as

R =R+ N;' (R RY), R'=R'+N7YR'RY,
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then there exist constants Cy, C1 such that the inverse transformations satisfy the estimates

NGB, B s, < CollRllym, + 1R lvr,) |
VTR R llyr < Cre(IR )y, + IRy m) -

IN

Finally, if (R, R") satisfy the equations (51) then (R, R') satisfy

até? = ZWJR? +e€ Z N(']’l (T;Z)lvgﬁ_lple,l27n(¢l270R71L)) + 528]0 ) (73)

.77l17m
I1,lg=—1,1
m=1,2,3
n=1,2,3
pl pl 201
atR] = O.)]Rj +e g] s

for j =1,2,3, where 2" = 52(5{,5§,~6’§)~f0r r = 0,1 denotes a collection of terms whose
Yai_l-norms are bounded by Ce? for (R, R') in some fized ball in YUIES X st.

Proof. The proof of invertibility of the transformation is deferred until the next section.
Assuming the invertibility for the moment the structure of the equations (73) follows imme-
diately using le» = le- + O(e) for j =1,2,3. O
3.5 Properties of the nonlinear terms for £ — 0

This subsection, along with the following two, give details about special features of the terms
that appear in the normal-form transformation which we have used in the construction in
the preceding section.

We start with some estimates for the nonlinear terms for k& — 0. Let B; be the kernel of

B;(f,9) + Bj(g, f), i.e.,
FBi(f.9)+ Bilg. )0 = [ Bk~ 6.0 f(k — 0g(0)de.

Then we have
Lemma 3.11. |B;(k,k — £,0)| < C|k| for j = 4,9, 14.

Proof. Due to the smoothness of kernel it is sufficient to show l’;’j(O, —/,¢) = 0. Consider
first

By(f,9) + Balg, f) = —Mi(sf,0a9) — Mi(59,0af)
+(5£)(9ag) + (59)(Oaf)
+Ko((s£)K0(0ag)) + Ko((59)Ko(9af))-

1. We start by considering the term in the second line above, i.e.,
/ Sk — O (k — 0)itg(0) + 5(k — 0k — 0)itf(0)de
= / 8k —0)f(k — 0)itg(0) + 3(0)g(0)i(k — 0) f (k — £)de.

The kernel
S(k—=0)il 4+ 5(0)i(k —0)

vanishes for £ = 0 using that § is an even function.
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2. If we now check the third line we have
Kdm/éw—w#w—wmu@wm@+§@—@mk—wnmawﬂaﬂ

Since |ICo(k)| < |k| we are also done with this term.

3. Finally we come to the first line, namely

[ = 0k = 0 - Okt 0
+Ko (k)G (k= 0)3(k — 0) f(k — 0)itg(L)

—Kg (k= 0)8(k = 0)g(k — )Ko(0)it f (¢)
o (K)o L (k — 0)3(k — 0)g(k — £)ilf(£))de.

Using that § is even and Ky is odd shows that the kernel

Ko(k) — Ko(k — 1) .

Ko(k) ~ Ko(t) KO(Z)@(/@ — )il + o0 3(0)i(k —0)

Ko(k —£)

vanishes for k = 0.

The next term to consider is Bg(f,g) + Bg(g, f). Many of the terms in this expression
appeared above but the new ones we consider are

—M2(8f) o (s9) — Ma(s9)0a(sf)
9o (51)K00a(59) + Oa(39)K00a(sf)

_ /_Ab@—@«k—oﬂk—owaoma

—Mo(k — 0)3(k — 0)§(k — £)it5(0) f(¢)
+i(k — 0)3(k — €) f (k — )Co(0)it5(0)g (L)
+i(k — 0)3(k — 0)g(k — 0)Ko(€)ils(0) f(€)de

Using that $ and M5 are even and Ky is odd shows that the kernels
—Ma(k —0)5(k — 0)il3(0) — Mo(£)5(0)i(k — 0)§(k — £)

and

i(k — 0)3(k — O)Ko(0)il3 () +i(0)3(0)Ko (k — £)i(k — £)5(k — £)

vanish for k = 0.
The term Bi4(f, g) + B14(g, f) works analogously because all types of terms in this ex-
pression have already appeared above. O

3.6 Cancellation

In the following we discuss the terms indicated before with cancellation. We have to show
the cancellation of Bs(141,9R3) at the wave number k = +2k( in the equation for R;. We
need the boundedness of A
b3(k77 k — E) E)
—w(k —0)+w(?)
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for |k — £ F ko| < 6. The denominator vanishes for the terms under consideration for k = 2.
Hence we have to prove that also R
b3(20,0,0) =0 . (74)

Due to the scalings the relevant quadratic terms on the right-hand side in the equation
for ¢y are

—Mi(scg, Dpc3) + My (scs, 0qc2)
+5c90,C3 — 5C304C2
+’C0(862/C0))8a63 — ’CQ(SC3IC0))8QCQ.

1. We consider the second line first. We plug in the ansatz and find
[ sl = 0300k = it Ra(0) = Gk — ORalle ~ 03(k — ()

We make a coordinate transform ¢ — k — £ in the second part of the integral. Then the
kernel

S$(k—=0)il —s5(0)i(k —0)
vanishes for k = 2/ as stated above.

2. Next we consider the third line. We plug in the ansatz and find

/ Ko(k)d1 (k — £)5(k — £)Ko(0)itd(6) Rs(0)
—Ko(k)I(k — €)Rs(k — €)3(k — 0)Ko(£)ilrps1 (€)dl

We make a coordinate transform ¢ — k — £ in the second part of the integral. Then the
kernel

Ko(k)3(k — O)Ko(£)il — Ko(k)3(6)Ko(k — L)i(k — €)
vanishes for k = 2¢ as stated above.
3. Finally consider the first line. Recall that

Ml(Zl, Ul) = [ICngl,ICO]Ul
(Ko ' 21) (KoUn) = Ko((Kg ' Z1)Uh).

Thus we get

—Mi (5941, 04(9R3)) + Mi(sUR3, 0at+1)
= — (K5 (s£1))(KoOa(VR3)) + Ko((Kg ' (51£1))0a(IR3))
+(IG ! <sﬂR3>><icoaa¢ﬂ> Ko((Kq ! (s9R3))Dath1)
= [ 5 = 030k~ O (k — OKa(iE () R0
Ko (k)Cg L (k — 0)3(k — 0)tpgr (k — 0)itd () R3(¢)
+C5 (k= 0)3(k = 00 (k — €) Ry (k — 0)Ko(£)ilths (£)
—Ko(k)Kg (k= 0)5(k — £)0(k — €)R3(k — £)ilep11 (£))dl
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We make a coordinate transform ¢ — k — £ in the second part of the integral. Then the
kernel

—Ky (b — 0)3(k — £)KCo(£)il
k—0)5(k — 0)il

vanishes for k = 2/ as stated above. The first and the third line, and the second and
the fourth line cancel.

Hence, we have shown (74).

3.7 Long wave form

We now verify that as we claimed just after (51), the terms in the third line of the equation for
R? are O(g?), and hence can be ignored. First, we address the terms 2972 P°B; o ,(¥o, Y R:)
for j,n=1,2,3 and r = 0,1. We split B, ,(¥o,YR},) in the components

Bjon(Vo,IRy,) = Z B! . (t0i, VRy,)
1=1,2,3

By applying the same methods as we used to bound 537i173 as well as the inequality |¢| <
|k| + |k — £] we get

sup | (P8 0,,) ke — €,0)] < C(R| + [ — €] (75)
[¢=0(1)

for i = 1,2,3, where 133-70771(1@, k—¢,0) is the kernel of B;',om' This estimate is a consequence of
the fact that each summand in Bj g, contains at least one a-derivative. Using this estimate
and the bound |k|/(e + |k|) < 1 we obtain

\/P%mﬁ4@fﬁm@w—wmwamw—wémwﬂ'

IN

50 g—1 N ST H0 k=01, (1. _ T
C(/!P () [k0™" (k) [vboi (k 6)\1Rn(€)yd€+/\P (R)I*==[oi (K 5)\!Rn(€)’d€>

IN

0 o O 50 a1 O
C(/!P (k)| [vbos (k ﬁ)HRn(@!d@Jr/!P (k)10 toi (k ﬁ)HRn(@!d@)

for 4 = 1,2,3. This implies that for any o', s’ we have

€207 PO B (W0, 9B}y, ., < &°Cor o (Vo) R} Iy, . (76)

where the constant Cyr (W) is independent of € due to the fact that ¥y is long wave-length,
i.e., the Fourier transform of Wy is strongly concentrated near k& = 0. Hence, the terms
e297 PYB; o.,(Vo,9R:) are of order O(¢?) and need not to be eliminated.

Finally, we turn to the consideration of the trilinear terms 6219_1P07},17_17n(¢1, Y_1,VR])
for j,n =1,2,3 and r = 0, 1. Using [Cr85, Lemma 3.7] and [SWO00, Corollary 3.16] as well as
the inequality |p| < |k| + |k — p| we get

S (P°Tj1—1n) (b k — €,0 —p,p)| < C([k| + |k —pl) , (77)
p|=0(1
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where 7?-71,_1,n(k:, k—¢,0—p,p) is the kernel of T; 1 _1 . This estimate is a consequence of the
fact that each summand in 71 1, contains at least one a-derivative. Using this estimate
and the bound |k|/(¢ + |k|) < 1 we obtain

‘ [P Tk~ €8 = )0k~ 1€~ p) )ty
< c / PR [ (k — )] 1€ — p)] |2, (p)] dedp

+C [ PO 1E221 sk = )] (€~ )] |y o) e
This implies that for any o/, s’ we have

e PO 1 —1n (1, 1, OR) |y, < €2Corw (1, 90-1) | Ryl (78)

where the constant C,/ ¢ (1)9) is independent of € due to the fact that the Fourier transform
of ¢11)_; is strongly concentrated near 0. Hence, the terms e29 = POT; 1 1 ,,(¢1,¢_1,9R:)
are also of order O(¢?) and need not to be eliminated.

3.8 The second normal-form transform

We now construct a second normal-form transformation to remove the remaining terms of
O(e) from (73). Before doing so we analyze the offending terms in more detail. The terms
can be written as

eNYy (. €97 P By gy (1, 0R))) () (79)
. /A?} (ke — 0,00 (k— 0)
0 (0)PL(0) ( [bnianttt=p.p wlz(e—p)é(p)ﬁ;(p)dp) ar

where we recall that

PP (k)bj 1y m(k, k= £,0)  9(0)
(—wi(k) = w(k = 0) +wn(0) (k)

A%t (ke k—0,0) =

]llm

We now apply Lemma 3.5 to simplify this expression as we did for N (r = 0,1). If we
do so we obtain the expression

N (o, €07 (- = 1ikio) P B 1y (W1, 9(- — lakio) RY,)) () (80)
—c / At o (B)dy, (k — 0P (k — Iy ko)
X ( / bininn(k — Lo, k — Liko — p, p) i (€ = p)D(k — (11 + 1a)ko) R (p )dp> de
+E25](-)’1 ,

1 20,1 0,1 .
where 2801 = 52(5?’ ,53’ ,5??’ ) denotes a collection of terms whose Y

»s—1-DOTMS are
bounded by Ce? for (R°, R') in some fixed ball in st X Yf’i.

37



Moreover, we use the abbreviation
iPO(k)bj 1, ik, L Ko, b — 11ko) 1
(—w]'(k’) — w(llk’o) + wm(k: — llk’o)) 19(]9) '

With these modifications we can now prove that all terms of the form (79) with [; = —l»
are O(g?) and hence can be included in the 625; terms in (73):

Lemma 3.12. There exists C > 0 such that
Ny, (1, €97 P By 1 (-1, 0R))lv,, < CE|[R} v, .,

J,1m

Nty (1,0 P By (1, 9By, < C22( Ryl

]7_17m -

20,1
njvllvm(k:) -

Proof. Since Njo,il,m contains the factor ﬁo(k‘) means that the integral over k& which occurs
in the Y, s;-norm runs only over the integral |k| < 6. Thus, we can bound the Y, -norm by
bounding the maximum of the kernel. The first term in Lemma 3.12 has the modified kernel

2051 (k)P (k — k)b 1.0 (k — ko, k — ko — p, p) 9 (k). (81)

Since 9(k)nj1.m(k) is O(1) bounded and all other terms in (81) are O(1) bounded for |k| < &
we have an O(g?) bound for the kernel (81). The second term in Lemma 3.12 can be estimated
similarly. O

Lemma 3.12 implies that the terms of the form (79) with [; = —ls need not be eliminated
by the normal-form transformation. Thus we now turn to the terms of the form (79) with
[y = ls. If we simplify the kernels of these terms with the aid of Lemma 3.5, we find the
kernels have the form:

20 1. (k) P (k F ko) b 1.0 (k T ko, k F ko — p, p)9(k T 2ko) (82)

plus errors that are of size O(¢?). Note that in contrast to the terms considered in Lemma

3.12 this expression does not contain a factor of J(k) to offset the J(k) in the denominator

of ﬁj,il,m(k‘) and thus they must be eliminated by a second normal-form transformation.
We look for a transformation of the form

R? = Rg) + 5D?71’+(7;Z)17 ¢17 Rl) + 5D?’1’_(7,Z)—1, Tzz)—b Rl)

R} = Rj. (83)
Differentiating the expression for Rg we find, just as in Subsection 3.2, that the terms of O(¢)
in (73) will be eliminated if DJO-’l’Jr satisfies

{ =iy DY, BY) = DY (g, 1, RY) = DY (8, iwn, RY)

+DYE (g, 0, ARY) + NP (207 PUB (g1, 9RY) | =0, (84)
where A(k) is a diagonal matrix with entries iw;(k), j = 1,2,3. We find that we have to
choose

€D?71’+(¢17¢17R1) (85)

b, (k — ko, k — ko — p,p)dn (€ — p)I(k — 2ko) Rh (p)
<[ D2 / ooy (B) — 20(ko) + wn(k — 2ko) dp

de,
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where we used as above in the kernel that K — ¢ ~ ¢ — p =~ kg due to the localization of 12)1 SO
we have p =~ —2ky which is made rigorous with Lemma 3.5. According to Young’s inequality
we have to estimate the kernel w.r.t. the sup norm. We already know that the numerator
in this expression in O(e). In order to estimate the denominator note that in this expression
k ~ 0 due to the factor of P in 7j1.m(k). Hence

(—wj(k) — 2w(ko) + wn(k — 2ko)) = —2w(ko) — wn(2ko) # 0.

Regardless of the value of 7 and n this expression is bounded strictly away from zero. Hence
the mapping e D%+ is O(g)-bounded. We can construct and estimate an analogous expres-
sion for D%V~ in a very similar fashion. Therefore, the normal-form transform is well defined
and invertible. We find

Lemma 3.13. If
R = R +eD%M* (1,41, RY) + DOV (1,401, RY)
with eD%Y* defined as in (85), then for any o > 0 and s > 1 there exists C > 0 such that
le DO (Wur, ot RYllyr, < Cel|R |y, -

Remark 3.14. Note that there is no loss of smoothness in this transformation due to the
factor of P° in (85) via 1 +1.m(k).

Now, just as in Proposition 3.10 we have:
Proposition 3.15. Fiz o > 0 and s > 1. Suppose (R°, R') satisfy the equations (73). Define
(R, R') via the transformations (83). Then for any p > 0, there exists €, > 0 such that

for all e| < e, the transformation (83) is invertible on the ball of radius p in YUIE X st.
Furthermore, (R°,RY) satisfy the equations

ORY = ARO 4280, (86)
ORY = AR+,

where A(kz) is a diagonal matriz with entries iw;(k), j =1,2,3 and e*E", r = 0,1, denotes a

collection of terms whose st_l norms are bounded by Ce2.

Proof. The invertibility of the transformation in this case results from a simple application
of the Neumann series since there is no loss of smoothness. The equation for R? and R!
follow in the same way the equations for R® and R were derived in the proof of Proposition
3.10. O
Finally, we consider the composition of the two normal-form transformations, namely

RO — RO + €D0’1’+(¢1,1/)1,R1) —|—€D0’1’_(¢_1,¢_1,R1)
R 4+ eN%Y (W, RY) + DOV F 4y, 4p1, R + eNYO(W, RO) + eNDL(W, RY))
+eD (g, b, R + eNYO(W, RO) + eNBL(W, RY))
= R'+eFR), (87)

with a similar expression for R! = R! +eF!(R). From Proposition 3.10 and Proposition 3.15
we see that

1. FO and F! are linear functions of R, and
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2. The (composite) normal-form transformation loses at most half a derivative, i.e., there
exists a constant C'r such that

leF (B)llyr < Cre|Rlyg, -
o,s—1/2 >

There is no loss of regularity in F° due to its compact support in Fourier space.

If we now insert the information we have derived on the equations satisfied by the trans-
formed variables we find the following proposition:

Proposition 3.16. There exists a (linear) change of variables,
R =R+eF(R)

defined for R € st and invertible on its range such that in terms of the transformed variables

the equation for the evolution of the error in our approximation takes the form
OR = AR+ *(R) + 3G(R) + e 39 'Res (V) . (88)
Furthermore the linear term €2((R) and the bilinear term e3G(R) satisfy the estimates
IR lyn_, < CreIRlvs -

and

[EGR)llyx_, < Coe®[Rllyz IRlyz_, -
Proof. The proof follows from the estimates in Proposition 3.10 and Proposition 3.15. The
last estimate also relies on the estimates in [SW00, Lemma 3.14, Lemma 3.15 and Corollary

3.16] which exclude the occurrence of terms quadratic in [|R||yx . O

4 Inverting the normal-form transform

To complete the derivation of the evolution equation for (RY, R') in Proposition 3.15 we now
prove the invertibility of the first normal-form transform asserted in Proposition 3.10. There
is a serious problem due to fact that N'! loses half a derivative, i.e., is a mapping from
st into YURS .. Therefore, inverting the normal-form transform with the help of Neumann’s

2
series is not possible.

The basic idea behind the inversion is the use of energy estimates to invert the trans-
formation. In the following we explain this strategy by reviewing the handling of a model
problem from [SW11, Section 5].

We consider a linear transformation v — u which can be written in Fourier variables as:

A~

(k) = (k) + & / b(k)a(k — m)(m)dm.
We assume that:
. ?)\(k:) is pure imaginary.
° ?)\(k:) is Lipschitz as a function of k£ with a Lipschitz constant which is independent of

I<ekl.
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o~

e b(k) ~ ik for |k| — oo

Furthermore, a is assumed to be smooth and real-valued.
Then we find

[ F@i) + 5w = 2 [ 5@ + e [ TRk~ m)om)dm di
te / o(k)b(k) (e —m) 3(m)dm dk
— 2 [5Wo() + = [ FEDRIaCk — m)om)dm di
+e / o(m)b(m) a(m — k) o(k)dk dm
= 2/@@(@ +E/@a(k—m)@(m)(z§(k) + b(m))dk dm

where we used a(¢) = a(—{) due to the fact that a is real-valued.
Hence
2(0)172 < 2[oll 2l g2 +es1

where with the Gagliardo-Nirenberg inequality

st = | [ S®s(myat — m)G(k) + 5om)dk d
< /]fu a(k —m)|Clk — m|dm dk
< ol / a( — m)|C|(¢ — m)|de

since |b(k)+b(m)| = |[b(k)—b(m)| < C|k—m)] if b is Lipschitz-continuous and purely imaginary,
and this last integral will be finite if the kernel a is sufficiently smooth.

If instead of inverting the transformation in the Sobolev spaces H?®, we work in the expo-
nentially weighted spaces, Y5 s, the observation that e?lkl < eolb=mlealml  plug an argument
very similar to that just above yields the estimates

[ully,,. < Cllolly.

o,s5+1 and HUHYO',S S CHUHYO',S .

Now, we consider the first normal-form transformation constructed in the previous section:

R} = R}+eN' (¥, R
1 _ 1 1,1 1 1,0 0
R; = Rj+eN; (V,R)+eN;" (¥, R")

for j = 1,2,3. Recall that only the terms N jl’l lose smoothness. Both N](-)’1 and N ]-1’0 are
bounded transformations from Y, s to Y, , . Thus, we first consider just

5 1,1 1,0
R} = Rj+eN;" (¥,R") +eN;"(¥,R’) . (89)
From the previous section we know that

NN, RY (k) = Y /;}n 1(k —m)RE (m)dm,
1=-1,1

n=1,2,3
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;’ll j satisfies the hypotheses on the
11

kernel assumed in the above model problem whereas the components 7 iln
cause a loss of regularity. Furthermore, 1/34 plays the role of @ in the model problem and
hence has the necessary smoothness properties. Thus, we multiply both sides of (89) by le-,
add together the cases for j = 1,2,3 and take the st norm of both sides. Then we find
analogously to the above model problem that

where from the explicit formula (63) one can verify that n

for j # n do not

IR 2.5, < IRy | B Iy, + Crell B 3p, + Coc(IR 3 p, + IR0 ) (90)

where HRIH%GI?S = HR%H%,GI?S + HR%H%,J?S, and similarly for ”Rluyalj’,s and HROHY[}?S.

This inequality implies that the transformation R' — R! is 1-1, hence invertible and
satisfies the estimate

1 .
171y, < (=g ) (11 + a1 ) (o1)

so that we can write

1 Dl 1 0

We now consider the transformation for R?, which with the help of (91). We can write

R} = RY+eN)Y(w, R (93)
_ 0 0,1 nl 2 A70,1 Dl 0
= RY+eN (T, RY) + N, F(R', RY)),

or
R} = (R} — eN}"' (W, R")) — >N\ (0, F(R', R")) . (94)

Recall that N%! is smoothing as we remarked in (57) and the extra power of € insures that
2N (W, F(R', R)) is also small. Thus (94) can be inverted by a Neumann series and we
see that the normal-form transformation (52) is invertible and satisfies the estimates claimed
in Proposition 3.10.

5 The error estimates

In this final section, we verify that the difference between the true solution of the water wave
problem and the (improved) NLS approximation remains small over the relevant time scale.

In order to solve and control the error equation (88), we use energy estimates in a scale
of Banach spaces of analytic functions. Because we cut-off the Fourier transforms of our
approximation functions in Fourier space (see (37)) the approximation functions and the
residual term computed from them are analytic in a strip of width O(1) in the complex
plane, even though our original solutions of the NLS equation were only in H*4.

We now use this analyticity to allow us to apply results on optimal regularity for parabolic
equations. We do this by allowing the width of the domain of analyticity to shrink with time.
This adds an “artificial” smoothing to the equation (88).

To see how rapidly we can allow the width of the analyticity strip to shrink note that it is
initially of width 20 = O(1) and we need to control solutions of the error equation for times
of O(£72) so we can shrink the width of the analyticity strip with a velocity of order O(¢?).

Hence, we define

7€(li‘,t) = §(k‘,t)@(k:,t) = {(}(ka’t)e—\kl(a—ba%)
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with constants a,b > 0 chosen below. If w(t) € L?, then R(t) is analytic in a strip of width
a—be?t, ie., t € [0,a/(be?)]. Computing the equation for w we find

dyw = Aw — |k[be?w + e20(w) + G (w) + e >0~ 'Res(e V), (95)
where £(w) = S~L()¢(S(H)w), G(w) = S~L(H)G(S(t)w), and Res(e¥) = S~L(t)Res(cV).
If we use the estimates on ¢ and G from Proposition 3.16, along with the fact that the
support of Res(e¥) is bounded in Fourier space, then we immediately obtain the following
estimates for the terms in (95).

Corollary 5.1. For any r > 3, there exist constants 5’L, 5’@ and 5}3 such that

1)1 < Crllwllay,
IG@)llgr— < Callwlagllw] -,
le>9 ' Res(eW) ||y, < Cre?,

where Hy = H" x H™=1/2 x g7=1/2,

We control the solutions of equation (95) using energy estimates and Gronwall’s inequality.
Fix some index s > 6 and define

112 = 1122 + 1IF12 (96)
where
1712, = / K25 £ () k. (97)
‘We have
Sulugl12a = —be? / k][ (k) [2dk + <2 / 1@ (k) 1(Euw) ) (k) (98)

+2 [ [3,0IG )tk + [ 1@ (k)| (k) (Res () (k)

for j = 1,2,3. Applying the Cauchy-Schwarz inequality and the estimates of Corollary 5.1,
we find

1

ft\lelliz < —be?|lwyl s + IIWj\ILZ(éLeszHHg + 5G€3HwHH;IIWIIH; + Cre?)
< 0wyl + (o + Ol + Coclullly + Cne.
Now consider
1 . o~ <
p0lus B = =be? [P Pk + 2 [ K1 11w 0k (99)

—

e / IK[22 15 (8) (G () ) (k) |k + / 5[5 (k) |01 (k) (R () ()| s

If we once again apply the Cauchy-Schwarz inequality and the estimates in Corollary 5.1 we
can bound the last three integrals in (99) by

Will gs Cre?|w s —1—5 e3|wl| . wl s +5’ 62}. 100
sl o172 {Cre?llwl gsnse + Cae® [l oy 1] e + Cr (100)
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Combining (99) and (100) gives
1 - ~ ~
ft”%\\%,s < —e*(b— (CL +Cr) — CGEH’LUHH;W)ijH?{swz + Cre”. (101)

Combining this with the estimate on the L:norm of w and using || f||gzs < 2||f||g- for all
r > 3 we obtain the inequality

1 S ~ ~
R R
Applying Gronwall’s inequality to (102) we obtain:
Proposition 5.2. Ifb— 3(Cy, + Cr) — 3Cqe SUPo<i<t, [W(t)| ys-1/2 = 0, then
- R

sup. IO, < (0O, +2Cnco).
0<t<tg

Take tg = ¢ 2T) and Hw(O)H%js_{ < 2CRrT). Then choose b such that b — 3(C, 4+ CR) —
2466;6'RT05 > 0. The Proposition 5.2 implies
Corollary 5.3. For all 0 < et < fo,

lw(®ll3;, < 4CxTo.

Finally we must check that the smoothing operator S(t¢) is well defined. We require
that the constants a and b in its definition be such that ¢ > a and a — bt > a/2 for all
0 < 2t < Tp. In this case S(t) is well defined. (Note that this means in particular that
Ty < o/(2b).) Finally, we have

Corollary 5.4. Choose T} = min(fo,fo). Then

s [R()lyr, < sw [R@)lyr < s [R@Iyn (103)

0<e2t<T 0<e2t<T be2t,s 0<e2t<T t,s
= sup_ [S@w)llyr = sup _|w(t)]m; <4CrRT.
0<e2t<Ty a=betts <2<y

Since the Ya2/27s

Corollary 5.5. Choose T} = min(fo,fo). Then

-norm controls any Sobolev norm, we obtain

sup [ R(0) 5, < 4o,
0<e2t<Ty )

Combining this estimate with Proposition 3.10, Proposition 3.15, and Lemma 2.6 implies
Theorem 2.8.
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A Appendix

A.1 Some estimates on the operator IC(X)

In this appendix we prove the statements about the analyticity of the operater K used in
previous sections. Note that as described in Section 2 the value of (X7, X2)U; is obtained
by solving the boundary value problem

Ap=0, in Qt), (104)

Op, @ =0, for me=—1, (105)

Op, 0 =Ur, on TI(t), (106)

where Q(t) is the domain {(z1,22) | —o00 < 71 < 00, =1 < w2 < n(z1,t)} and I'(t) =

{(z1,n(z1,t))] 1 € IR} is the upper surface of the fluid, specified in Lagrangian variables
by the curve (a + X (a,t), Xo(a,t)). If ¢p(x1,x2) is the solution of this problem (for fixed t)
then 8m2¢|p(t) = /C(Xl, Xg)Ul.

We now solve this boundary value problem in the spaces Y, s to analyze the analyticity
of I(X). We will reduce the problem on €Q(¢) to a problem on the fixed rectangular domain
R={(z,y) | —c0o <2< 0o0,0<y< 1} and with this in mind we introduce the Banach

spaces
K;S =H"((0,1),Y5;) .

Before treating the full problem that defines K(X) we derive a pair of simple lemmas that
we will use later.

Let u(z,y) = 0y¢(x,y) and v(z,y) = Jyp(x,y). Consider the homogeneous boundary
value problem

Oyu+0yv = 0,
Dyu— oo — 07} (z,y) € R,
V|y=0 =0, u(z,1)=U(z) . (107)
Lemma A.1. IfU € Y, then u € Kg s+(1/2) N K}j s—(1/2)"
Proof. Taking Fourier transforms with respect to x we find
. U (k) cosh(ky)
kyy) = ——————=
(k. ) cosh(k)

Then )
U (k) cosh(ky)

cosh(k) dydk .

2 > b ok 2 s4+(1/2)
U = eIl (1 + k2)sT
Flio ., o /k:—oo /y:o ( )

Performing the integral with respect to y the integrand becomes

(1—|—k‘2)5+(1/2) R )
AT RE U (k)|

2k cosh(k)

and the integral over k is finite since U € Y, ;. A similar calculation shows u € ]KCIT s—(1/2)" O
Next consider the inhomogeneous system of equations

Opu+0yv = f,
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Oyu—0,v = g,
U‘y:() = u]yzl = 0. (108)

If we represent u(z,y) as a series in cos((2m+1)my/2) and v(x,y) as a series in sin((2m+
1)mz/2) then a computation similar to that above yields:

1

Lemma A.2. Suppose f and g are elements of Kg’s NK, s—1- Then the solutions u and v of

the inhomogeneous system are elements of ]KS.’SH N K}m.

With these preliminaries in hand we now turn to a consideration of the operator IC(X).
We map the variables (1, z2) in the original fluid domain onto a rectangle via the change of
variables

1 =a+ Xi(a), z2=2z(1+X3(a)) .

If u(zq,22) = a(a, z) and v(z1, 22) = 0(e, z) then

daii+ 0,0 = Ry,
O.ii— 0a = Ry, (109)

where Ry and Ry are given by
- 00 X1 . Xo _ 200, X201
Rl— <1—|—X2>8ZU+<1—|—X2>82U+<(1—|—X2)>7
[ 0aXy _ Xo . 200, X20,0
R2_<1+X2>azu+<1+X2>azu <(1+X2)> ’

subject to the boundary conditions @(c, 1) = 9;X; and © = 0.
Let (u”,v") be the solution of the homogeneous equations:

and

Ol + 00" = 0,
dul — 9 = 0 (110)

with boundary conditions u"(a, 1) = U; and v = 0.
We can solve this problem with the aid of Lemma A.1 and we find:

Lemma A.3. If Uy €Y, ,_(1)2) the u” and v are in Kg’s NnK!

o,s—1°

Remark A.4. Note that the boundary value of v"|.—1 gives us the value of the linearized
operator KoUy. Applying the trace theorem we see that Lemma A.3 implies that Ko is a
bounded operator from Y, ;_(1/2) to itself.

Now set @ = @& — u”, T = v — v" and we find that
dat + 0,0 = Ry,
0,u— 0,0 = Ry, (111)
where R and Ry are given by
o= (183‘_);2) o (1 fi(z) o <%> Ol 0
— (16;1_);2) a0 + <1 j—%@) D0 + (7,2%)4{2;9(25}‘) ) (112)
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and

— B 8aX1 _ X2 _ ZaowX2azﬁ h h
fo = <1+X2>8zu+ <1+X2>8zu_ ( (14 X>) ) O Oar

00 X1 hoy X, A <z8aX28zvh>
0.u ou —_— 113
<1+X2> <1—|—X2> (1+ X5) (113)
where now we have zero boundary conditions @(«, 1) = 0 and T(a, 0) = 0.
Define

F(u,v;0,X1,X2) = (F1(4,0;0,X1, X2), Fo(u, 0;0,X1, X2)) ,

where Fy = 0,0+ 0,0 — Ry and Fy = 0,4 — 0,0 = R.

Note that a solution (@,v) of our partial differential equations is a zero of F. We will
solve the PDE’s by applying the implicit function theorem to find zeros of F.

Define the Banach spaces E = (KJ ;N KJ +_1)? with boundary conditions @(c, 1) = 0 and

9(a,0) =0, F =Y, 51 x Y, and G = (K 5 )% (In fact we consider the complex extensions

of these spaces so that we can work with complex Banach spaces.)

Note that F is an analytic function from F x F into G.

If we take X7 = X5 = 0, then we can find (u”,v%) such that

since this is just the solution of the inhomogeneous, partial differential equations. More
precisely, this can be rewritten as

9o’ + 900 = 9" — 90" +

(5

o’ — 9,00 = out — " +

B (z@an(?Zv >
(1 + Xg) )
Note that the right hand side of this system of equations is an element of the Banach

space G' and using Fourier transform we can solve for (u%,0%) € E.
Next observe that if we linearize F at (u”,v%;0,0) we have

U O U + 0.V
0,0. = :
(D(U,U)F(u 7U )070)) <V> - <62U—8av> '

But then, for any (f,g) € G, we see that

u U + 0.V f
(D(u,U)F(uo"UO;O,O)) <V> = (azU_aaV) — <g>

again just requires us to solve a the same linear, constant coefficient partial differential
equation. Again, for any (f,g) € G we can find (U,V) € E by Fourier transform and hence
D(uvv)F(uO, v%;0,0) has a bounded inverse.
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Thus, we can apply the analytic implicit function theorem and we find that for any
(0aX1, X2) in a sufficiently small neighborhood of the origin in F' there exist solutions (@, v) €
E depend analytically on 9, X7, Xo.

Since the trace operator is a bounded linear operator from E into Y, ,_(1/2) we see that
v(a, 1) = K(X1, X2)(0:X1) depends analytically on (0,X1, X2) in a sufficiently small neigh-
borhood of the origin in F'.

Thus, we have proven:

Proposition A.5. K(X1,X2) is a linear operator from Y, ,_(1/9) to itself which depends
analytically on (0aX1,X2) € Yo 3 X Yo 5.

One other operator which we used in Section 2 was M. Recall that to avoid the secular
growth in the variable X7, we introduced the variable Z; = Ky X7 and we associated to Z;
the operator

Mi(Zy,-) = [X1, Kol
which satisfies
Lemma A.6. Letr >0, ¢ > 1/2 and 0 < p < q. Then there exists a C > 0 such that

M (e, w)l|ar < Cllall e l[w] ga-e,

IMia, w)llmr < Cllall L ip)llull ra-s-
Proof. See [SW00, Corollary 3.13] and [SW03, Remark A.6] . O

Remark A.7. M is well defined, even though Ko is not invertible in general, due to the
commutator in its definition.

In order to express the term d,X; in terms of Z; we defined additionally the operator
My = —3a(/C0)_1
which is a map from H**! to H*.

Remark A.8. Finally, the operator (1+ IC%)- s infinitely smoothing due to the fact that in
Fourier space its symbol (1 + Ko(k)?) vanishes with some exponential rate for |k| — oco.

A.2 Some properties of our function spaces.

It is more or less obvious that the spaces Y, are Banach spaces. For s > 1/2 something
stronger is true.

Lemma A.9. The spaces Y, s are Banach algebras for all 0 > 0 and all s > %

Proof. Suppose that u and v are in Y, 5. Then

lul2, = /(1+k2)se2"|k (/a(k—e)@(z)de>2dk

0/ </[(1+ |k —£*)*% + (1 +e2)s/2]e0<kl+k—fl>|a(k—5)||@(e)|de>2dk
0/ </(1 e — £]2)3/2 e UM +HE=ED g —£)||ﬁ(£)|d€>2dk

2
Jo/2 o =D e — )1
+C/</ (1+ k) k=D ik — o)) (e)yde> dk (115)

IN

IA
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Each of the two terms in the last line of this inequality can be interpreted as the square
of the L?-norm of a convolution and hence we use Young’s inequality to bound each of them
in turn. For instance the first is bounded by

C (/(1+ wy?)se%fly@(e)y?de) (/ e2"|k]ﬁ(/<;)d/<;>
= Cllvllo,s (/(1 + k)2 (1 + Iklz)s/Qe%’“'lﬂ(k)ldk) (116)

If we now apply the Cauchy-Schwarz inequality to this last integral we find that it is bounded
by a constant times ||u||,s provided s > 1/2. Applying a similar argument to the second
term in the last expression in (115) completes the proof of the lemma. ]

A.3 Explicit form of the bilinear terms in our equations.

In this appendix we give explicit formulas for the bilinear terms appearing in the equations
of motion (and which are important for analyzing the normal-form transformation):

Bi(c1,c2) = —Mi(c1,00c2) , (117)
Bs(cr,e3) = =M (c1,0ac3) , (118)
Bg(Cg,Cg) = Ml(SC;J,,aan) — Ml(SCQ,aanJ,) (119)

—[863 + ICQ(SCg)]Co]aaCQ + [SCQ + ]Co(SCg)]Co]aa63 ,

By(f,9) = —Ma(sf,0a9) + [sf + Ko(sf)Ko0]0ug , (120)
B5(Cg, 63) = M1(803, aaC;),) — [803 + ICQ(SCg)ICQ]aa03 , (121)

1 1
Bﬁ(Cl, Cg) = %Ml(cl, aaCQ) — 5/\42(61)8@(802) s (122)

1 1
B7(Cl, 63) = %Ml(cl, aaC;),) + 5./\/(2(61)8@(803) , (123)

1 1

Bs(co,c3) = 2—8./\/(1(302, Onc3) — 2—8./\/(1(863,8@02) (124)

—[SCQ + ICQ(SCQ)]Co]aa63 + [863 + ICQ(SCg)]C()]aaCQ
1 1
+§M2(802)8a(803) + §M2(863)8a(862)

—%(GQ(SCQ))ICOZ?Q(SC;;) — %(8a(303))IC08a(302) ,

Bo(f.g) = g-Mi(sF,da9) 5 + Ko(s/)Koldag (125)

— 5 Moa(5£)0al59) + 5(0u(5F))Koa(s9)
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1
310(63, 63) = —2—8M1(863,8a63) + [863 + KQ(SCg)K0]8a63 (126)

—%M2(863)aa(863) + %(aa(863))lC08a(303) ,

1 1
Byi(c1,c2) = _%Ml(clyaac2) - 5/\42(01)%(862) ; (127)
1 1
Bia(ci,c3) = _2_8M1(6178a63) + §M2(01)5a(863) ; (128)
1 1
Bis(co,c3) = —%Ml(SCQ, Onc3) + %Ml(SC;g,aan) (129)

—[sca + Ko(sc2)KolOacs + [sc3 + Ko(sc3)KolOaco
1 1
—1-5./\/12(302)8&(303) + §M2(863)8a(802)

—%(aa(SC2))/coaa(303) _ %(aa(sc?,))/coaa(sq) ,

Buulf.) = —5-Mi(sf,09) ~ [sf + Ko(s)Koldag (130)

— 5 Mal5)0u(59) + 5(0u(sF))Koda(sg)

1
Bl5((33, 63) = 2—8./\/(1(863, 8003) + [863 + ]Co(SCg)]Co]aaC;; (131)

—%Mg(sc;),)ﬁa(sc;),) + %(0a(363))IC08a(303) .
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