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Abstract

In 1968 V.E. Zakharov derived the Nonlinear Schrödinger equation for the 2D water
wave problem in the absence of surface tension, i.e., for the evolution of gravity driven
surface water waves, in order to describe slow temporal and spatial modulations of a
spatially and temporarily oscillating wave packet. In this paper we give a rigorous proof
that the wave packets in the two-dimensional water wave problem in a canal of finite depth
can be accurately approximated by solutions of the Nonlinear Schrödinger equation.
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1 Introduction

In 1968 V.E. Zakharov [Za68] derived the Nonlinear Schrödinger (NLS) equation

∂TA = iν1∂
2
XA+ iν2A|A|2, (1)

with T ∈ IR, X ∈ IR, A(X,T ) ∈ IC, and coefficients νj = νj(k0) ∈ IR from the equations of
the 2D water wave problem in case of no surface tension in order to describe slow spatial and
temporal modulations of a spatially and temporarily oscillating wave packet ei(k0x−ω0t) with
a basic spatial wave number k0 6= 0 and a basic temporal wave number ω0 6= 0.

cg

cp

ε

1/ε

Figure 1: The envelope (advancing with the group velocity cg) of the oscillating wave packet (ad-

vancing with the phase velocity cp = ω0/k0) is described by the amplitude A which solves the NLS

equation (1).

The 2D water wave problem without surface tension consists in finding the irrotational
flow of an incompressible fluid in an infinitely long canal of finite or infinite depth with a
free surface under the influence of gravity. We will consider the case of finite depth. The
coordinates are denoted with x1 ∈ IR in the horizontal and x2 ≥ −1 in the vertical direction.
The fluid is contained in the unbounded domain Ω(t) between the impermeable bottom
{(x1,−1)|x1 ∈ IR} and the free unknown top surface Γ(t) = {(x1, η(x1, t))| x1 ∈ IR}. Under
these assumptions it turns out that the problem is completely determined by the evolution
of the free surface Γ(t).

In detail, the velocity field u = (u1, u2) satisfies Euler’s equations in Ω(t). From the
assumption of the irrotationality of the flow, i.e., rot u = 0, which is preserved by Euler’s
equations, it follows that the velocity field can be written as a gradient of a potential φ :
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Ω(t) → IR, i.e., u = ∇φ, which due to the incompressibility of the fluid, (i.e., div u = 0),
satisfies the equation

∆φ = 0, in Ω(t). (2)

The impermeability of the bottom gives the lower boundary condition

u2|x2=−1 = ∂x2φ|x2=−1 = 0. (3)

On the free surface Γ(t) we have the kinematic boundary condition and the balance of forces,

∂tη = ∂x2φ− (∂x1η) (∂x1φ), (4)

∂tφ = −1

2
((∂x1φ)

2 + (∂x2φ)
2)− gη, (5)

with g being the gravitational constant. Without loss of generality we will set g = 1 and the
depth of the fluid at rest, i.e., η = 0, to one in the following.

Since equation (2) can be solved in Ω(t), under the boundary condition (3) and u1|Γ(t) =
∂x1φ|Γ(t) given on the top surface, uniquely up to a constant, all terms on the right hand side
of (4) and (5) can be computed if η and w = u1|Γ(t) are known. Hence, the system will be
determined by the evolution of the two variables η = η(x1, t) and w = w(x1, t). Therefore,
we can restrict ourselves in the following considerations to these variables.

The equations (2)-(5) are called the Eulerian formulation of the water wave problem. We
use this relative simple formulation only in the introduction in order to formulate our results.
For the proof of the approximation result we will work with the Lagrangian formulation of
the water wave problem. For the Eulerian formulation local existence and uniqueness results
have been shown for instance in [Sh76, KN79, La05] and for the Lagrangian formulation local
existence and uniqueness results have been shown for instance in [Na74, Yo82, Yo83, Cr85,
Wu97, Wu99, SW00, Ig01, SW02]. For a third formulation of the water wave problem in
which the top surface is parametrized by arc length a local existence and uniqueness theorem
has been shown in [Am03, AM05, AM09]. The existence and uniqueness theorems for the
water wave problem can be distinguished according to whether or not one considers the 2D or
3D problem, finite or infinite depth, with or without surface tension, regularity of the initial
conditions and the coordinates which have been chosen to formulate the problem. Some of
these coordinates have the disadvantage of showing secular growth of several variables.

We will derive the NLS equation with the help of the ansatz

(
η

w

)
= εΨNLS +O(ε2)

where
εΨNLS = εA(ε(x1 − cgt), ε

2t)ei(k0x1−ω0t)ϕ(k0) + c.c.. (6)

Here 0 < ε≪ 1 is a small perturbation parameter, ϕ(k0) ∈ IC2, cg being the group velocity of
the wave packet and −ω0 < 0 being the basic temporal wave number associated to the basic
spatial wave number k0 > 0. (The minus sign in front on ω0 simply reflects the fact that we
consider right moving waves.) T = ε2t is the slow time scale and X = ε(x1 − cgt) is the slow
spatial scale, i.e., the time scale of the modulations is O(1/ε2) and the spatial scale of the
modulations is O(1/ε). The complex-valued amplitude A = A(X,T ) solves in lowest order
the NLS equation (1) from the beginning of the paper. By (6) we describe complex-valued
slow modulations in time and in space of the underlying temporarily and spatially oscillating
wave train ei(k0x1−ω0t). See Figure 1. The basic spatial wave number k = k0 and the basic
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temporal wave number −ω = −ω0 are related via the linear dispersion relation of the water
wave problem (2)-(5), namely

L(ω±, k) = ω2
± − k tanh(k) = 0, (7)

where we choose the branch of solutions

ω(k) := sign(k)
√
k tanh(k) . (8)

Then the group velocity cg of the wave packet is given by cg = ∂kω|k=k0 . This ansatz leads
to waves moving to the right. To obtain waves moving to the left, −ω0 and cg have to be
replaced by ω0 and −cg.

It is the purpose of this paper to demonstrate how well the solutions of the 2D water
wave problem can be approximated via the formal ansatz (6). As a first step in [CSS92]
the so-called residual, i.e., the terms which do not cancel after inserting the ansatz (6) into
the equations of the water wave problem (2)-(5) has been estimated in some Sobolev norms.
Estimates for the residual in the 3D-case where the NLS equation is replaced by the Davey-
Stewartson system can be found in [CSS97]. The question, if there are solutions of the
water wave problem (2)-(5) which behave as predicted by the NLS equation remained open
in [CSS92, CSS97]. In [SW11] the NLS approximation has been rigorously justified for a
quasilinear reduced model equation for the 2–D water wave problem with finite depth and no
surface tension. This reduced model shares with the Lagrangian formulation of the 2–D water
wave problem some of the principal difficulties which have to be overcome for a validity proof
for the NLS approximation. More recently, Totz and Wu [TW12] have demonstrated the
validity of the NLS approximation for the 2–D water wave problem in a channel of infinite
depth, though as we explain later in this introduction, we feel that the finite and infinite
depth cases are quite different, and techniques applicable in one context do not necessarily
transfer to the other.

Notation. We denote the Fourier transform by

(Fu)(k) = û(k) =
1

2π

∫
u(x1)e

−ikx1dx1.

The Sobolev space Hs is equipped with the norm

‖u‖Hs =

(∫
|û(k)|2(1 + |k|2)sdk

)1/2

.

Moreover, let ‖u‖Cn
b
=

∑n
j=0 ‖∂

j
xu‖C0

b
, where ‖u‖C0

b
= supx1∈IR |u(x1)|.

Because of the loss of smoothness in normal-form transformations we make in a subsequent
section, we are forced to work in spaces of analytic functions. Hence, we define

Yσ,s = {f ∈ L2(IR) | ‖f‖Yσ,s =
(∫

(1 + k2)se2σ|k||f̂(k)|2dk
)1/2

<∞}.

Functions in Yσ,s are analytic in a strip of width 2σ centered on the real axis.
Our result is

Theorem 1.1. Fix sA ≥ s + 5 ≥ 11. Then for all k0 > 0 and for all C1, T0 > 0 there exist
T1 > 0, C2 > 0, ε0 > 0 such that for all solutions A ∈ C([0, T0],H

sA(IR, IC)) of the NLS
equation (1) with

sup
T∈[0,T0]

‖A(·, T )‖HsA (IR, IC) ≤ C1
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the following holds. For all ε ∈ (0, ε0) there exists a solution

(η,w) ∈ C([0, T1/ε
2], (Hs(IR, IR))2)

of the 2D water wave problem (2)-(5) which satisfies

sup
t∈[0,T1/ε2]

‖
(
η

w

)
(·, t) − εΨNLS(·, t)‖(Hs(IR,IR))2 ≤ C2ε

3/2.

The error of order O(ε3/2) is small compared with the solution (η,w) and the approx-
imation εΨNLS which are both of order O(ε) in L∞ such that the dynamics of the NLS
equation can be found in the water wave problem, too. We note that this fact should not be
taken for granted. There are modulation equations (for examples see [Schn95, GS01]) which
although derived by reasonable formal arguments do not reflect the true dynamics of the
original equations. However, our theorem is not optimal, since in general we cannot prove
T1 = T0. Nevertheless our estimates are on an O(1/ε2) time scale and T1 ∼ 1/C1 has a
reasonable size such that the approximation statement is not void.

The NLS equation is a completely integrable Hamiltonian system which can be solved
explicitly with the help of some inverse scattering scheme, cf. [AS81]. Our theorem guarantees
that for instance parts of the soliton dynamics present in the NLS equation for ν1(k0) and
ν2(k0) having the same sign can be found approximately in the water wave problem, too. For
a discussion of the values of the coefficients νj(k0) in (1) see also [AS81, Figure 4.15, p. 321].

The assumption s ≥ 6 is due to our local existence and uniqueness theory of the water
wave problem. The solutions of the NLS equation have to be at least three times more regular
than the solutions of the water wave problem due to the fact that the linear dispersion relation
(7) has to be expanded at the spatial wave number k0 up to third order. The additional loss
comes mainly from the fact that a higher order approximation is used and that the result
is proved for the Lagrangian formulation and then transfered to the Eulerian formulation of
the water wave problem.

In order to explain the main ideas of the proof of Theorem 1.1 we consider an abstract
evolutionary problem

∂tv = Λv +B(v, v),

with Λ a linear and B a symmetric bilinear operator. Suppose that v is formally approximated
by εΨNLS , i.e., that the residual

Res(v) = −∂tv + Λv +B(v, v)

is small for v = εΨNLS . By modifying the formal approximation εΨNLS the residual can
be made arbitrarily small, i.e., for all γ > 0 there exists a formal approximation εΨ close to
εΨNLS such that

Res(εΨ) = O(εγ) and εΨ− εΨNLS = O(ε2). (9)

This residual has been estimated in [CSS92]. The estimates contain complicated expansions
of the Dirichlet-Neumann operator which appears in the solution of (2).

In order to prove Theorem 1.1 we have to estimate the error

εβR = v − εΨ
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for all t ∈ [0, T0/ε
2] to be of order O(εβ) for a β > 1, i.e., we have to prove that R is of order

O(1) for all t ∈ [0, T0/ε
2]. The error R satisfies

∂tR = ΛR+ 2εαB(Ψ, R) + εβB(R,R) + ε−βRes(εΨ) .

In our case Λ generates a uniformly bounded semigroup and so we were done beside possible
arbitrary complicated functional analytic details, if a) α ≥ 2, b) β > 2 and c) ε−βRes(εΨ) =
O(ε2). The result then would follow by a rescaling of time, T = ε2t, and an application of
Gronwall’s inequality (e.g. [KSM92]). In our case, however, we have α = 1. We can still
make γ in (9) arbitrary large by picking our approximate solution as described below, and in
particular, strictly bigger than 4. As a consequence, we can choose β > 2 and so the points
b) and c) are satisfied easily. The difficulty is to control the term 2εB(Ψ, R) in the linear
evolution.

The idea of eliminating this term with a normal-form transform

R = w + εM(Ψ, w)

with M a bilinear mapping goes back to Kalyakin (cf. [Kal88]). See also [Schn98b]. In order
to eliminate 2εB(Ψ, R) by this near identity change of variables a so called non-resonance
condition has to be satisfied. The eigenvalues λj = λj(k) of the linearized problem (in our
problem below, j = 1, 2, 3, corresponding to the fact that we write the water wave problem
as a system of three equations) as a function over the Fourier wave numbers k have to satisfy

|λp(k)− λ2(k0)− λq(k − k0)| ≥ cnr > 0 . (10)

for p, q = 1, 2, 3 and all k ∈ IR. It is easy to see that the eigenvalues λj = iωj of the
water wave problem with ω1 = 0 and ωj = (−1)j−1ω(k) for j = 2, 3, where ω(k) is given
by (8), do not satisfy (10) and do possess at least one resonance at the wave number k = 0.
This resonance is trivial for the water wave problem but a resonance at the wave number
k = 0 always implies another resonance for the wave number k = k0 which is non-trivial for
the water wave problem. A resonance is called trivial if the quadratic terms vanish for the
resonant wave number, too. Otherwise it is called non-trivial. For more details, see Section
3. Therefore, [Kal88] is no longer applicable and an improved method developed in [Schn98a]
has to be applied. According to an error made in [Schn98a] in the handling of the trivial
resonance, the method of [Schn98a] has to be modified slightly, similar to [DS06] and [SW11].
In principle, the method is mainly based on a suitable scaling of the error function R which
depends on the wave numbers followed by a number of special normal-form transforms.

After making the normal-form transformation to eliminate the low-order terms in the
equation for the remainder, we must control the evolution of the remaining terms. Because the
normal-form transformation results in a loss of regularity, the local existence and uniqueness
theorems for the water wave problem mentioned above are no longer applicable. Therefore,
we proceed as follows. We choose the Lagrangian formulation of the water wave problem and
use a Cauchy-Kowalevskaya like method, like [KN79] did for the Eulerian formulation of the
water wave problem. We cannot work with the Eulerian formulation since this formulation
already loses a derivative on the right hand side which is the maximal allowance for the
Cauchy-Kowalevskaya like method. In the Lagrangian formulation the right hand side only
loses half a derivative, plus half a derivative from the normal-form transform makes one
derivative after the normal-form transform such that the Cauchy-Kowalevskaya method still
applies. While this method might seem to require that we consider only analytic solutions of
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the NLS equation, we can, in fact, consider less smooth solutions, by mollifying them during
the approximation process.

Recently, the nature and effects of resonances in the water wave problem has also been
examined for the 2D water wave problem by Wu [Wu09] and for the 3D water wave problem
in by Germain, Masmoudi and Shatah [GMS12] and with an alternative method by Wu
[Wu11] in establishing (almost) global existence results in case of infinite depth, i.e., ω2 = |k|.
However, due to the different goal in [GMS12] the normal-from transformation does not have
to be inverted and the loss of regularity occurs in such a way that the local existence method
of the untransformed system still can be used.

In case of infinite depth and no surface tension the elimination of all quadratic terms is
possible without loss of regularity as has been shown in [Wu09], [Wu11] by using the special
structure of this problem. This has been used very recently by Totz and Wu [TW12] to prove
the NLS approximation property for the 2D water wave problem in the case of infinite depth
and no surface tension. This is the first result establishing the approximation property for
the full water wave problem and the NLS equation over the appropriate, NLS, time-scale.
However, the methods used in that work are very different from those used in this paper and
the differences between the water wave problem in the cases of infinite vs. finite depth are
such that a transfer of the results from [TW12] to the case of finite depth does not seem
obvious to us.

The justification of the NLS equation in case of positive surface tension will be the sub-
ject of further research. For large surface tension or large basic wave number k0 there are no
additional non-trivial resonances. In case of small surface tension additional non-trivial reso-
nances occur and the proof of a possible approximation property will be much more involved.
See [Schn05] and [DS06] for the handling of model problems.

The plan of the paper is as follows. In Section 2 we present the Lagrangian formulation
of the water wave problem and write it as a first order dynamical system. In a next step the
linear part of the Fourier transformed dynamical system is diagonalized. For the diagonalized
system we derive the associated NLS equation and construct a modified approximation which
makes the residual small. After that we formulate our approximation result for the Lagrangian
formulation. In Section 3 we perform the normal-form transform. In this context, special
attention is given to the handling of the trivial resonance at the Fourier wavenumber k = 0
and of the nontrivial resonance at k = k0. Since the normal-form transform loses regularity
it cannot be inverted with the help of a Neumann series. Thus, Section 4 is devoted to
the inversion of the normal-form transform. For this purpose we use appropriate energy
estimates. In Section 5 we verify that the difference between the true solution of the water
wave problem and the (improved) nonlinear Schrödinger approximation remains small over
the relevant time scale. We establish the error estimates for the transformed system with
the help of the Cauchy-Kowalevskaya like method by proving energy estimates in a scale of
Banach spaces of analytic functions.

Further notation and basic facts: We introduce the scaling operator (Sεu)[x1] =
u(εx1) and the translation operator (τyu)[x1] = u(x1+y). We have ‖SεA‖Hm ≤ Cε−1/2‖A‖Hm ,
but ‖SεA‖Cm

b
≤ C‖A‖Cm

b
.

In addition to the spaces of analytic functions we introduced earlier we will also sometimes
need to use Sobolev spaces with spatial weights, namely the Sobolev space Hs(m) equipped
with the norm ‖u‖Hs(m) = ‖uρm‖Hs where ρ(x1) = (1 + x21)

1/2. We also use the notation
L2(m) = H0(m). We define the space L1(m) with u ∈ L1(m) ⇔ uρ ∈ L1. It is well known
that Fourier transform F is an isomorphism from the space Hn(m)(IR, IC) into the space
Hm(n)(IR, IC). It is a continuous mapping from L1(m) into Cmb , but not vice versa. We also
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define weighted analogues of the analytic function spaces defined above by Yσ,s(m) = {f ∈
L2(IR) | ρmf ∈ Yσ,s}.

Throughout this paper many constants are denoted with C - the constant may change
without comment in successive inequalities if it can be chosen independently of the spatial
perturbation parameter 0 < ε≪ 1. The commutator of two operators L and M is defined as
[L,M ] = LM −ML.

Acknowledgments: The work of Guido Schneider was partially supported by the Deut-
sche Forschungsgemeinschaft DFG under the grant Schn520/3-1/2. The work of Eugene
Wayne was supported in part by the NSF through the grant DMS-0908093. Guido Schneider
would like to thank the Mathematics Department of Boston University for its hospitality. Eu-
gene Wayne thanks the Mathematics Institute at the University of Stuttgart for its hospitality
and the DAAD for support for a visit of one month to Stuttgart.

2 Preparations

2.1 The Lagrangian formulation of the water wave problem

As we mentioned in the introduction the Eulerian formulation (2)-(5) of the 2D water wave
problem is not adequate for our purposes. Thus, this subsection is devoted to presenting the
Lagrangian formulation of the water wave problem and rewriting this formulation as a first
order system of partial differential equations.

For fixed time t the free surface of the fluid can be written as

Γ(t) = {(X̃1(α, t), X̃2(α, t)) = (α+X1(α, t),X2(α, t))|α ∈ IR} .

It is a Jordan-curve which has no intersection with the bottom {(α,−1)|α ∈ IR}. Under the
assumptions on the flow which we made in the introduction the dynamics of the 2D water
wave problem is completely determined by the evolution of the free surface Γ(t) which is
governed by (for a careful derivation of the following system of equations see [Yo82])

∂2tX1(1 + ∂αX1) + ∂αX2(1 + ∂2tX2) = 0, (11)

∂tX2 = K(X)∂tX1. (12)

The operator K(X) depends linearly on U1 = ∂tX1, but nonlinearly on X. It is related to the
Dirichlet-Neumann operator and its existence is a consequence of the incompressibility and
irrotationality of the flow. It is defined by K(X)U1 = ∂x2φ|Γ(t), where φ : Ω(t) → IR solves
for fixed t the boundary value problem

∆φ = 0, in Ω(t),

∂x2φ = 0, for x2 = −1,

∂x1φ = U1, on Γ(t).

The operator K(X) is of the form K(X) = K0 + S1(X), where K0 is the linear part of the
operator K(X), and has the Fourier symbol K̂0(k) = −i tanh(k). The nonlinear part S1(X)·
has certain smoothing properties which are summarized in Appendix A.1. In particular, we
prove that K(X) (and as a consequence, S1(X)) depends analytically on ∂αX1,X2 ∈ Yσ,s for
any σ > 0, s > 1.

As explained in [SW00], due to the behavior of the system at the wave number k = 0 the
variable X1 is unbounded in space and grows rapidly in time for the approximation which
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makes the resulting solutions difficult to control over the long time scales which we need to
work with. However, as we also discussed in that reference, the derivatives of X1 do not
suffer from this secular growth, and thus it is advantageous to work with the variable Z1 =
K0X1 (which for “long-wavelength” initial conditions behaves like Z1 ≈ −∂αX1.) Somewhat
surprisingly the system of equations for the water wave problem can be rewritten entirely in
terms of the variables W = (Z1,X2, U1), namely

∂tW = FW(W) (13)

with

FW(W) =




K0U1

K0U1 + S1(X)U1

−(1−M2Z1 + (∂αX2)K0 + (∂αX2)S1(X))−1[(∂αX2)(1 + [∂t,S1(X)]U1)]


 ,

where
M2· = −∂α(K0)

−1 · .
From the estimates on K(X) proved in Appendix A.1 we see that FW is an analytic

mapping from Yσ,s × Yσ,s × Yσ,s− 1
2
into Yσ,s− 1

2
× Yσ,s− 1

2
× Yσ,s−1

Moreover we define the vector V = (X1,X2, U1). We also abuse notation slightly and do
not distinguish between operators which depend on V or W, i.e., for instance we will write
K(X) as either K(V) or K(W), depending on the circumstances.

Remark 2.1. Note that from (11)-(12) to (13) information is lost. In order to compute the
physical solution the point X1(0, t) has to be computed a posteriori from X1(0, 0) and U1(0, t)
which is contained in (13). However, (13) is independent of X1(0, t). This corresponds to
the fact that the bottom of the canal can be shifted without having any influence on the
dynamics in Ω(t).

Remark 2.2. The choice of variables (Z1,X2, U1) has the additional advantage that all vari-
ables will scale the same in terms of the small perturbation parameter for ε→ 0. (X1,X2, U1)
scale differently at the wave number k = 0.

For completeness we close this section with some remarks about the existence and unique-
ness of solutions of system (13) which is obtained indirectly. System (13) is embedded in a
larger quasilinear system of PDE’s for which standard local existence and uniqueness tech-
niques apply.

From [SW00] we have the following local and uniqueness theorem.

Theorem 2.3. Define the space Hs = Hs×Hs×Hs−1/2. For all s ≥ 6 there exists a C1 > 0
such that for all C2 ∈ (0, C1] we have a t0 > 0 such that the following is true. For each initial
condition W0 ∈ Hs with ‖W0‖Hs ≤ C2 there exists a unique solution W ∈ C([0, t0],Hs) of
(13) with W|t=0 = W0.

However, as explained in the introduction, due to a loss of smoothness in the normal-form
transformations this existence theory is insufficient to prove the accuracy of the approximation
by the NLS equation and hence in Section 5 we prove a new existence theorem in the analytic
function spaces introduced above.
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2.2 The diagonalization

In order to construct the normal-form transformations it is useful to diagonalize the linear
part of (13). In Fourier space the linearization is given by

∂t




Ẑ1

X̂2

Û1


 =




0 0 −i tanh(k)
0 0 −i tanh(k)
0 −ik 0







Ẑ1

X̂2

Û1


 .

The eigenvalues of the matrix on the right hand side are given by λj = iωj for j = 1, 2, 3 with

ω1(k) = 0, ω2(k) = −ω(k), ω3(k) = ω(k),

where
ω(k) = sign(k)

√
k tanh(k).

We write the original coordinates as sum of the associated eigenvectors, i.e.,




Ẑ1

X̂2

Û1


 = ĉ1




1
0
0


+ ĉ2




ŝ
ŝ
1


+ ĉ3




−ŝ
−ŝ
1




=




1 ŝ −ŝ
0 ŝ −ŝ
0 1 1







ĉ1
ĉ2
ĉ3


 = D(k)




ĉ1
ĉ2
ĉ3


 ,

with ŝ = ŝ(k) =
√
k−1 tanh(k). The adjoint eigenvectors are given




1
−1
0


 ,




0
1/(2ŝ)
1/2


 ,




0
−1/(2ŝ)

1/2


 .

Due to the asymptotic behavior of ŝ it is easy to see that from (Z1,X2, U1) ∈ Yσ,s × Yσ,s ×
Yσ,s− 1

2
, it follows (c1, c2, c3) ∈ Yσ,s × Yσ,s− 1

2
× Yσ,s− 1

2
and vice versa. The variables c =

(c1, c2, c3)
T satisfy

∂tc = Fc(c) = D−1FW(Dc) (14)

For the same reason, Fc is a smooth mapping from Hs × Hs−1/2 × Hs−1/2 into Hs−1/2 ×
Hs−1 ×Hs−1.

According to the fact that the quadratic terms play the major role in the following we
expand (13) up to terms of quadratic order and find with [SW00, Lemma 3.8] and [SW00,
Remark 3.9] based on [Cr85, Lemma 3.7: page 827] that

∂tZ1 = K0U1,
∂tX2 = K0U1 +M1(Z1, ∂αU1)− (X2 +K0(X2K0))∂αU1 +O(‖W‖3),
∂tU1 = −∂αX2 − (M2Z1)∂αX2 + (∂αX2)K0∂αX2 +O(‖W‖3),

(15)

where M1(Z1, ·) = [X1,K0]·. Here, ‖W‖ = ‖Z1‖Yσ,s + ‖X2‖Yσ,s + ‖U1‖Y
σ,s−1

2

. The notation

O(‖W‖3) means that the terms omitted from the equation can be bounded by C‖W‖3, an
estimate which follows from the analyticity of the nonlinearity in (13).
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The system for c1, c2, c3 is then given by

∂tc1 = −M1(c1 + sc2 − sc3, ∂α(c2 + c3))

+((sc2 − sc3) +K0((sc2 − sc3)K0))∂α(c2 + c3) +O(‖c‖3),
∂tc2 = −iωc2 +

1

2s
(M1(c1 + sc2 − sc3, ∂α(c2 + c3))

−((sc2 − sc3) +K0((sc2 − sc3)K0))∂α(c2 + c3))

−1

2
(M2(c1 + sc2 − sc3))∂α(sc2 − sc3) (16)

+
1

2
(∂α(sc2 − sc3))K0∂α(sc2 − sc3) +O(‖c‖3),

∂tc3 = iωc3 −
1

2s
(M1(c1 + sc2 − sc3, ∂α(c2 + c3))

−((sc2 − sc3) +K0((sc2 − sc3)K0))∂α(c2 + c3))

−1

2
(M2(c1 + sc2 − sc3))∂α(sc2 − sc3)

+
1

2
(∂α(sc2 − sc3))K0∂α(sc2 − sc3) +O(‖c‖3),

where ‖c‖ = ‖c1‖Yσ,s + ‖c2‖Y
σ,s−1

2

+ ‖c3‖Y
σ,s− 1

2

.

2.3 Derivation of the NLS equation

In order to derive the NLS equation we make the ansatz




c1
c2
c3


 = εΨ1 + εΨ−1 + ε2Ψ0 + ε2Ψ2 + ε2Ψ−2 (17)

with

εΨ±1 = εψ±1




0
1
0


 = εA±1(ε(α − cgt), ε

2t)E±1




0
1
0


 ,

ε2Ψ0 =




ε2ψ01

ε2ψ02

ε2ψ03


 =




ε2A01(ε(α − cgt), ε
2t)

ε2A02(ε(α − cgt), ε
2t)

ε2A03(ε(α − cgt), ε
2t)


 ,

ε2Ψ±2 =




ε2ψ(±2)1

ε2ψ(±2)2

ε2ψ(±2)3


 =




ε2A(±2)1(ε(α − cgt), ε
2t)E±2

ε2A(±2)2(ε(α − cgt), ε
2t)E±2

ε2A(±2)3(ε(α − cgt), ε
2t)E±2


 ,

where E = ei(k0α−ω0t), ω0 = ω(k0), Aj = A−j and Ajl = A−jl. Here, and throughout the
remainder of the paper, we will use upper case Ψ to denote vector valued functions and lower
case ψ to denote scalar functions.

Remark 2.4. Our ansatz leads to waves moving to the right. For waves moving to the left
one has to replace in the above ansatz the vector (0, 1, 0)T by (0, 0, 1)T as well as −ω0 by ω0

and cg by −cg.
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We equate the coefficients of the εmEj to zero and find that the coefficients of εE1 and
ε2E1 vanish identically due to the definition of ω = ω(k) and cg = cg(k). For ε

3E1 we obtain

∂TA1 = − iω
′′(k0)

2
∂2XA1 + nonlinear terms.

The nonlinear terms are a sum of multiples of A1|A1|2, A1A0l, and A−1A2l. In the next steps
we obtain algebraic relations such that the A2l can be expressed in terms of A2

1 and the A0l

in terms of |A1|2, respectively.
For ε2E2 we obtain

−2ω0A21 = γ21A
2
1

(−2ω0 + ω(2k0))A22 = γ22A
2
1, (18)

(−2ω0 − ω(2k0))A23 = γ23A
2
1

with coefficients γ2l ∈ IC. Since 2ω0 6= 0, −2ω0 + ω(2k0) 6= 0 and −2ω0 − ω(2k0) 6= 0, which
follows from the explicit form of ω(k), the A2l are well-defined in terms of A2

1.
All terms vanish identically for ε2E0. This is obvious for the linear terms. For the

quadratic terms the calculations are analogous to those of Appendix A of [SW11] (see specif-
ically equation (94)). The nonlinear terms in ε3E0 must be proportional to ∂X since no other
combination of terms in the approximation (17) leads to terms proportional to ε3E0. So we
find

0 = −cg∂XA01 + γ01∂X(A1A−1),

−cg∂XA02 = −ω′(0)∂XA02 + γ02∂X(A1A−1),

−cg∂XA03 = ω′(0)∂XA03 + γ03∂X(A1A−1),

where now γ0l ∈ IR according to the fact that we consider a real-valued problem. Since
cg 6∈ {0,−ω′(0), ω′(0)} we can divide the equations for ε3E0 by ∂X and can express the A0l

in terms of |A1|2.
As mentioned above the nonlinear terms in the equation for ε3E1 include A1|A1|2 as well

as terms consisting of combinations of A1 with the A0l and of A−1 with the A2l. Eliminating
A0l and A2l by the algebraic relations obtained for ε3E0 and ε2E2 gives finally the NLS
equation

∂TA1 = −iω
′′(k0)

2
∂2XA1 + iν2(k0)A1|A1|2

with a ν2(k0) ∈ IR.

2.4 The modified approximation

After the derivation of the NLS equation in the last section, this section is devoted to the
construction of the improved approximation εΨ. We proceed in two steps. First, the above
approximation is extended by higher order terms. Secondly, the support of the modified
approximation in Fourier space is restricted to small neighborhoods of integer multiples of
the basic wave number k0 > 0 by introducing some cut-off functions. Since the approximation
in Fourier space is strongly concentrated around these wave numbers the approximation is
only changed slightly by this modification, but this second step will give us a much simpler
control on the resonances and makes εΨ an analytic function.
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As explained in the introduction the approximation (17) is modified in order to make the
so called residual

Res(c) = −∂tc+ Fc(c)

small. The residual will contain all terms which do not cancel after inserting the approxi-
mation into the equations. Hence, Res(c) = 0 if and only if c solves (14). In a first step the
above approximation is extended by higher order terms. Therefore, we define

ε3Ψh =
∑

j=−1,1




ε3A1
j1(ε(α − cgt), ε

2t)Ej

ε3A1
j2(ε(α − cgt), ε

2t)Ej

ε3A1
j3(ε(α − cgt), ε

2t)Ej




+
∑

j=−3,3




ε3Aj1(ε(α − cgt), ε
2t)Ej

ε3Aj2(ε(α − cgt), ε
2t)Ej

ε3Aj3(ε(α − cgt), ε
2t)Ej




+




ε4A1
01(ε(α− cgt), ε

2t)
ε4A1

02(ε(α− cgt), ε
2t)

ε4A1
03(ε(α− cgt), ε

2t)




+
∑

j=−2,2




ε4A1
j1(ε(α − cgt), ε

2t)Ej

ε4A1
j2(ε(α − cgt), ε

2t)Ej

ε4A1
j3(ε(α − cgt), ε

2t)Ej




+
∑

j=−4,4




ε4Aj1(ε(α − cgt), ε
2t)Ej

ε4Aj2(ε(α − cgt), ε
2t)Ej

ε4Aj3(ε(α − cgt), ε
2t)Ej


 .

Inserting
εΨ = εΨ1 + εΨ−1 + ε2Ψq

with

ε2Ψq =




ε2ψq1
ε2ψq2
ε2ψq3


 = ε2Ψ0 + ε2Ψ2 + ε2Ψ−2 + ε3Ψh

into the equations of the water wave problem will show that the residual is formally at least
of order O(ε5) if the Ajl, A

1
jl are chosen in a suitable way. Again we equate the coefficients

of the εmEj to zero. The resulting equations

−jω0Aj1 = nonlinear terms,

(−jω0 + ω(jk0))Aj2 = nonlinear terms, (19)

(−jω0 − ω(jk0))Aj3 = nonlinear terms,

for j ∈ {3, 4} and

−2ω0A
1
21 = nonlinear terms,

(−2ω0 + ω(2k0))A
1
22 = nonlinear terms, (20)

(−2ω0 − ω(2k0))A
1
23 = nonlinear terms,

for j = 2 can be resolved with respect to the Ajl, A
1
2l since we have the validity of the non-

resonance conditions jω0 6= 0, −jω0+ω(jk0) 6= 0, and −jω0−ω(jk0) 6= 0 for all j ∈ {2, 3, 4}.
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For j = 1 we obtain

−ω0A
1
11 = nonlinear terms,

∂TA
1
12 = − iω

′′(k0)

2
∂2XA

1
12 + nonlinear terms, (21)

(−ω0 − ω(k0))A
1
13 = nonlinear terms,

where the nonlinear terms in the second equation depend linearly on A1
12. The first and the

third equation can be resolved with respect to A1
11 and A

1
13 since ω0 6= 0 and −ω0−ω(k0) 6= 0,

respectively.
For j = 0 we obtain

0 = −cg∂XA1
01 + nonlinear terms,

−cg∂XA1
02 = −ω′(0)∂XA

1
02 + nonlinear terms, (22)

−cg∂XA1
03 = ω′(0)∂XA

1
03 + nonlinear terms.

The equations can be solved forA1
0l since all nonlinear terms are of the form of some previously

determined expression, differentiated with respect to X. Since ω′(0) 6= ±cg, we can determine
A1

0l by a straightforward integration.
We have the following scheme (l = 1, 2, 3, d = 1, 3). The first group of equations is given

by

∂TA1 = −iω
′′(k0)

2
∂2XA1 + iν2(k0)A1|A1|2, (23)

A2l = ℓ2l(A1A1), (24)

A0l = ℓ0l(A1A−1), (25)

where ν2(k0) ∈ IR and the ℓs are linear maps in their arguments, which can be computed as
discussed above. The second group of equations is given by

∂TA
1
12 = −iω

′′(k0)

2
∂2XA

1
12 (26)

+ℓ112(A
1
0lA1, A

1
2lA−1, A0lA

1
12, A2lA

1
−12, A

1
12A1A−1, A1A1A

1
−12) + f112,

A1
1d = f11d, (27)

A3l = f3l, (28)

where the ℓs are linear maps in their arguments and the fs functions of the variables of the
first group. The third group of equations is given by

A1
2l = ℓ12l(A

1
12A1) + f12l, (29)

A1
0l = ℓ10l(A

1
12A−1, A1A

1
−12) + f10l, (30)

A4l = f4l, (31)

where the ℓs are linear maps in their arguments and the fs functions of the variables of the
first and second group. Moreover, we have the relations

A−1 = A1, (32)

A−jl = Ajl, (33)

A1
−jl = A

1
jl. (34)

The NLS equation is the only nonlinear equation. All other equations are linear partial
differential equations, or linear algebraic equations. Therefore, we have
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Theorem 2.5. Fix sA ≥ s+5 ≥ 11. Let A1 ∈ C([0, T0],H
sA) be a solution of the Nonlinear

Schrödinger equation (23). Then the Aj , Ajl and A
1
jl defined through (24)-(34) exist for all

t ∈ [0, T0] and satisfy Aj , Ajl, A
1
jl ∈ C([0, T0],H

sA).

From the form of the Ansatz for εΨ and the discussion above we see that formally the
residual is now of order O(ε5). Furthermore, the nonlinear terms in the water wave problem
all contain a derivative (or a factor of K0, or a commutator, both of which behave like a
derivative for wavenumbers near k = 0.) If we consider the behavior of the residual near
k = 0, we see that the contribution comes from terms in which all factors of E±j have
cancelled. Thus, the derivative must act on a factor of Ajkℓ, and because of the long-wave
character of these terms, the derivative creates an additional power of ε - i.e. the residual
is actually of O(ε6) near k = 0. Alternatively, one could extend the approximation εΨ by
terms of even higher order, as was done in [SW11], resulting in a residual of order O(εm)
with m ≥ 6.

For the subsequent analysis it is advantageous to modify Ψ further. With the help of the
characteristic function

χ[−δ,δ](k) =

{
1, k ∈ [−δ, δ],
0, k 6∈ [−δ, δ]

we introduce the operator (Eδu)(α) = F−1(χ[−δ,δ]Fu)(α). It allows us to extract the Fourier
modes belonging to intervals of wave numbers. According to the existing literature the
operators Eδ are called mode filters. Such mode filters work as follows:

‖EδSεu− Sεu‖Hs ≤ C‖(χ[−δ,δ] − 1)ε−1S1/εû‖H0(s)

≤ supk∈IR |(χ[−δ,δ] − 1)(1 + k2)s/2

(1 + |k/ε|2)(s+5)/2 | ε−1/2‖u‖Hs+5

≤ Cεs+9/2‖u‖Hs+5 .

(35)

Thus, we set δ = k0/16 and modify our approximation by replacing all terms of the form
SετcgtAj, SετcgtAjl and SετcgtA

n
jl in the approximation Ψ by

SετcgtÃj := EδSετcgtAj, (36)

SετcgtÃjl := EδSετcgtAjl, (37)

SετcgtÃ
1
jl := EδSετcgtA

1
jl. (38)

(We note that heretofore, we have written terms like SετcgtAj as εAj(ε(α− cgt), ε
2t)).

Then, for the residual the following estimates hold.

Lemma 2.6. Let sA ≥ s + 5 ≥ 11 and A1 ∈ C([0, T0],H
sA(IR, IC)) be a solution of the

NLS equation (23). Assume that the Ãj , Ãjl, Ã
1
jl satisfy (36)-(38), where the Aj , Ajl, A

1
jl

solve (23)-(34). Then there exist CRes, ε0 > 0 such that for all ε ∈ (0, ε0) the corresponding
approximation εΨ satisfies

sup
t∈[0,T0/ε2]

‖Res(εΨ)‖Hs ≤ CResε
9/2,

sup
t∈[0,T0/ε2]

‖EδRes(εΨ)‖Hs ≤ CResε
11/2,

sup
t∈[0,T0/ε2]

‖εΨ − εΨNLS‖Hs ≤ CResε
3/2.
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Moreover, we have

sup
t∈[0,T0/ε2]

(‖εΨ̂±1‖L1(s+1) + ‖εΨ̂q‖L1(s+1)) = O(1).

Proof. Due to our ”cut-off”-procedure the residual can be written as

Res(Ψ) =

4∑

j=−4

aj with suppFaj ⊂ [jk0 − k0/4, jk0 + k0/4].

By construction the above results hold since we have additionally the estimate (35). There-
fore, we are done.

Remark 2.7. The bound on CResε
9/2 rather than Cε5 on the residual is simply a result of the

way the L2-norms scale, i.e., if A ∈ L2, and (SεA)(x) = A(εx), then ‖SεA‖L2 = ε−1/2‖A‖L2 ,
cf. (35). In contrast we have ‖u‖C0

b
= ‖Sεu‖C0

b
and since F(SεA) = ε−1S1/ε(FA) we have

‖û‖L1 = ‖ε−1S1/εû‖L1 . The last estimates are used for instance to estimate

‖ΨR‖Hs ≤ C‖Ψ‖Cs
b
‖R‖Hs ≤ C‖Ψ̂‖L1(s)‖R‖Hs

without loss of powers in ε.

2.5 The approximation result in Lagrangian coordinates

Our result for the water wave problem in Lagrangian coordinates is as follows

Theorem 2.8. Fix sA ≥ s+ 5 ≥ 11, let β = 7/2, and let Hs = Hs ×Hs ×Hs−1/2. For all
CA, C0, T0 > 0 there exist CR, ε0, T1 > 0 such that for all ε ∈ (0, ε0) the following is true.
Let A ∈ C([0, T0],H

sA) be a solution of (1) with

sup
T∈[0,T0]

‖A‖HsA ≤ CA

and let W|t=0 = εΨ|t=0+ε
βR|t=0 ∈ Hs with ‖R|t=0‖Hs ≤ C0. Then there is a unique solution

W = εΨ + εβR ∈ C([0, T1/ε
2],Hs) of (13) which satisfies

sup
t∈[0,T1/ε2]

‖R(t)‖Hs ≤ CR.

Before we start to prove this approximation result, we show how it relates to the formu-
lation in the introduction.

Proof of Theorem 1.1: Theorem 1.1 is a consequence of Theorem 2.8. The estimates
for the Eulerian variables w = w(x, t) and η = η(x, t) defined by

w(X̃1(α, t), t) = ∂tX1(α, t) and η(X̃1(α, t), t) = X2(α, t)

follow in a fashion very similar to that of [SW03]. Let A ∈ C([0, T0],H
sA) be a solution of (1)

and construct εΨ as in Subsection 2.4. Let W = εΨW+εβRW with ΨW = (ΨZ1 ,ΨX2 ,ΨU1) =
DΨ and RW = (RZ1 , RX2 , RU1) = DR be the solution of (13) constructed in Theorem 2.8.
Note that X1(α, t) = X1(α, 0)+

∫ t
0 U1(α, τ)dτ . Theorem 2.8 implies that U1 = εΨU1 +ε

βRU1 ,
with β = 7/2. We find with functions Aj ∈ C([0, T0],H

sA) such that

∫ t

0
U1(α, τ)dτ =

3∑

j=−3

ε||j|−1|+1(−iω0)

∫ t

0
Aj(ε(α − cgτ), ε

2τ)Ejdτ + c.c.+

∫ t

0
U rem1 (α, τ)dτ

16



where ‖
∫ t
0 U

rem
1 (·, τ)dτ‖Hs ≤ Ctε7/2. Turning our attention to the integral involving A1 we

see that
∫ t

0
A1(ε(α− cgτ), ε

2τ)ei(k0α−ω0τ)dτ = −
∫ t

0
A1(ε(α − cgτ), ε

2τ)
1

iω0
∂τ (e

i(k0α−ω0τ))dτ

= − 1

iω0
A1(ε(α − cgτ), ε

2τ)ei(k0α−ω0τ)|t0 (39)

+
1

iω0
ε2

∫ t

0
∂TA

1(ε(α − cgτ), ε
2τ)ei(k0α−ω0τ)dτ

+
1

iω0
ε

∫ t

0
∂XA

1(ε(α − cgτ), ε
2τ)ei(k0α−ω0τ)dτ

= − 1

iω0
A1(ε(α − cgτ), ε

2τ)ei(k0α−ω0τ)|t0

+
1

iω0
ε2

∫ t

0
∂TA

1(ε(α − cgτ), ε
2τ)ei(k0α−ω0τ)dτ

− 1

(iω0)2
ε∂XA

1(ε(α− cgτ), ε
2τ)ei(k0α−ω0τ)|t0

+
1

(iω0)2
ε3

∫ t

0
∂X∂TA

1(ε(α − cgτ), ε
2τ)ei(k0α−ω0τ)dτ

+
1

(iω0)2
ε2

∫ t

0
∂2XA

1(ε(α − cgτ), ε
2τ)ei(k0α−ω0τ)dτ.

The integrals involving the other Ajs can be treated analogously. Hence, we get

‖ε
∫ t

0
Aj(ε(· − cgτ), ε

2τ)Ejdτ‖Hs ≤ C(
√
ε+ tε5/2) .

(The “loss” of half a power of ε is again just a reflection of the way in which the Sobolev
norms scale when evaluated on long-wavelength functions.)

Combining this with the estimates above, we see that for 0 ≤ t ≤ T1/ε
2, we have ‖X1(·, t)−

X1(·, 0)‖Cs−2
b

≤ C
√
ε. Thus, by the inverse function theorem the function X̃1(α, t) = α +

X1(α, t) has an inverse X̃1
−1

(x, t) = x+ Ξ(x, t) with

sup
t∈[0,T1/ε2]

‖Ξ(·, t)‖Cs−2
b

≤ C
√
ε.

Thus, if we note that ε(ψ1 + ψ−1) is equal to the order ε term in εΨX2 we have

sup
t∈[0,T1/ε2]

‖η(·, t) − ε(ψ1(·, t) + ψ−1(·, t))‖Cs−2
b

≤ sup
t∈[0,T1/ε2]

(‖X2(·, t) − ε(ψ1(·, t) + ψ−1(·, t))‖Cs−2
b

+ ‖X2(·, t)− η(·, t)‖Cs−2
b

)

= sup
t∈[0,T1/ε2]

(‖X2(·, t) − ε(ψ1(·, t) + ψ−1(·, t))‖Cs−2
b

+ ‖X2(·, t)−X2(X̃
−1
1 (·, t), t)‖Cs−2

b
)

≤ Cε3/2 + Cε3/2 .

The estimate on w is similar and Theorem 1.1 follows.
The rest of this paper is devoted to the proof of Theorem 2.8. The proof consists of an

estimate showing that the error function R stays O(1) bounded on the long time interval of
length O(1/ε2). In order to do so, in the equations for the error the terms of O(ε) have to
be eliminated by a normal-form transform.
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3 The normal-form transform

As described in the introduction, in order to control the solutions of the equation for the
very long time intervals needed to justify the NLS approximation we must make normal-form
transforms to simplify the equations of motion. There is a resonance at the wave number
k = 0 in this problem which, in a sense that we explain below, is “trivial”. However, this
resonance implies the existence of a “nontrivial” resonance at the wave number k = k0 which
we treat using a slight correction of the method in [Schn98a]. An additional complication in
the present situation is due to the “artificial” variable Z1 which results in one component of
the diagonalized system of equations (16) having a linear frequency that is identically zero.
As a result we get additional resonances which necessitate rescaling the correction to the NLS
equation differently for different wave numbers. This in turn leads to further complications,
but in the end, we obtain, as described in the outline of the method, a normal-form transform
which results in a linear system whose evolution remains bounded over the time scale of
interest.

3.1 The ansatz for the error function

We consider first the diagonalized system

∂tc1 = B1(c1, c2) +B2(c1, c3) +B3(c2, c3)

+B4(c2, c2) +B5(c3, c3) +O(‖c‖3),
∂tc2 = −iωc2 +B6(c1, c2) +B7(c1, c3) +B8(c2, c3) (40)

+B9(c2, c2) +B10(c3, c3) +O(‖c‖3),
∂tc3 = iωc3 +B11(c1, c2) +B12(c1, c3) +B13(c2, c3)

+B14(c2, c2) +B15(c3, c3) +O(‖c‖3),

associated to (13), where here and in the following the Bj stand for bilinear mappings which
do not depend explicitly on α. Notice that we do not have B(c1, c1)-terms, cf. (16).

The explicit form of these bilinear terms can be computed with the aid of the expansion
of the operator K(X) found in [Cr85] and [SW00] and they are listed in Appendix A.3. In
Sections 2.3 and 2.4, we computed the formal approximation to the solutions of this system
of equations and found:

c1 = ε2ψq1,

c2 = εψ1 + εψ−1 + ε2ψq2,

c3 = ε2ψq3.

If we now write the true solution as the sum of this approximation, plus a correction term,
i.e., if we write c1 = ε2ψq1+ε

βR1, c2 = εψ1+εψ−1+ε
2ψq2+ε

βR2 and c3 = ε2ψq3+ε
βR3, for

a β > 1 sufficiently large, then we find that the equations of motion for the Rj’s contain not
only the diagonal terms 0, −iω and iω but also terms linear in Rj and of O(ε) of the form
εB1(ψ1, R1), εB1(ψ−1, R1), etc. Our basic goal is to remove these terms by making normal-
form transformations of the form wj = Rj + εN+

j (ψ1, R)+ εN−
j (ψ−1, R) and choosing N±

j to
eliminate the terms of O(ε) in the equations for Rj. Unfortunately, certain terms are impos-
sible to eliminate by this procedure. For instance, consider the term B9(ψ1, R2)+B9(R2, ψ1).
If we write the Fourier transform of this term as

∫
B̂9(k, k − ℓ, ℓ)ψ̂1(k − ℓ)R̂2(ℓ)dℓ, and if we

write the (Fourier transform of) the corresponding term in the normal-form transformation
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rescaling

Figure 2: The curves k 7→ ωj(k) and the curves k 7→ ω3(k0)+ωm(k−k0) for j,m ∈ {1, 2, 3} and
k0 = 2. Intersection points correspond to quadratic resonances. There are the resonances
at k = 0 and k = ±k0 already mentioned in the introduction. The resonance at k = 0 turns
out to trivial, i.e., also the nonlinear terms vanish at this wavenumber. The resonances at
k = ±k0 can only be resolved by scaling c1, c2 and c3 one order smaller close to k = 0. Beside
these resonances there are additional resonances at ±2k0 coming from the artificial variable
c1 in the Lagrangian formulation. In the resonances at ±2k0 there is some cancellation of
terms.

as
∫
N̂+

9 (k, k−ℓ, ℓ)ψ̂1(k−ℓ)ŵ(ℓ)dℓ, we find that the kernel in the normal-form transformation
must satisfy

−i(ω(k) − ω(k0)− ω(k − k0))N̂
+
9 (k, k − ℓ, ℓ) = B̂9(k, k − ℓ, ℓ) .

Unfortunately, the resonance at k = k0 prevents us from solving this equation (or at least, if
we solve this equation the expression for N̂+

9 will have a zero in the denominator.) Note that
this problem arises from the behavior of R2 near wave number zero and to circumvent this
problem we rescale the error function by an additional power of ε for wave numbers close to
zero. Postponing the details of the estimates until later, the problem is solved by making the
final ansatz

c1 = ε2ψq1 + ε3ϑR1,

c2 = εψ1 + εψ−1 + ε2ψq2 + ε3ϑR2, (41)

c3 = ε2ψq3 + ε3ϑR3,

where ϑRj is defined by ϑ̂Rj = ϑ̂R̂j with

ϑ̂(k) =

{
1 for |k| > δ ,

ε+ (1− ε)|k|/δ for |k| ≤ δ

with δ chosen as above. By this choice ϑ̂(k)R̂j(k) is small at the wavenumbers close to
zero reflecting the fact that the nonlinearity vanishes at k = 0. Moreover, we define R =
(R1, R2, R3).
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If we ignore the inhomogeneous and nonlinear terms which we have already explained
how to handle, we obtain the following system of equations:

∂tR1 = ϑ−1
(
εB1,1,1(ψ1, ϑR1) + εB1,−1,1(ψ−1, ϑR1) + εB1,1,2(ψ1, ϑR2)

+εB1,−1,2(ψ−1, ϑR2) + εB1,1,3(ψ1, ϑR3) + εB1,−1,3(ψ−1, ϑR3)

+ε2B1,2,1(Ψ2, ϑR1) + ε2B1,2,2(Ψ2, ϑR2) + ε2B1,2,3(Ψ2, ϑR3)

+ε2B1,−2,1(Ψ−2, ϑR1) + ε2B1,−2,2(Ψ−2, ϑR2) + ε2B1,−2,3(Ψ−2, ϑR3)

+ε2B1,0,1(Ψ0, ϑR1) + ε2B1,0,2(Ψ0, ϑR2) + ε2B1,0,3(Ψ0, ϑR3)

+ε2T1,1,1,1(ψ1, ψ1, ϑR1) + ε2T1,1,1,2(ψ1, ψ1, ϑR2) + ε2T1,1,1,3(ψ1, ψ1, ϑR3)

+ε2T1,−1,−1,1(ψ−1, ψ−1, ϑR1) + ε2T1,−1,−1,2(ψ−1, ψ−1, ϑR2)

+ε2T1,−1,−1,3(ψ−1, ψ−1, ϑR3) + ε2T1,1,−1,1(ψ1, ψ−1, ϑR1)

+ε2T1,1,−1,2(ψ1, ψ−1, ϑR2) + ε2T1,1,−1,3(ψ1, ψ−1, ϑR3) +O(ε3)
)
,

∂tR2 = −iωR2 + ϑ−1
(
εB2,1,1(ψ1, ϑR1) + εB2,−1,1(ψ−1, ϑR1) + εB2,1,2(ψ1, ϑR2)

+εB2,−1,2(ψ−1, ϑR2) + εB2,1,3(ψ1, ϑR3) + εB2,−1,3(ψ−1, ϑR3)

+ε2B2,2,1(Ψ2, ϑR1) + ε2B2,2,2(Ψ2, ϑR2) + ε2B2,2,3(Ψ2, ϑR3)

+ε2B2,−2,1(Ψ−2, ϑR1) + ε2B2,−2,2(Ψ−2, ϑR2) + ε2B2,−2,3(Ψ−2, ϑR3)

+ε2B2,0,1(Ψ0, ϑR1) + ε2B2,0,2(Ψ0, ϑR2) + ε2B2,0,3(Ψ0, ϑR3) (42)

+ε2T2,1,1,1(ψ1, ψ1, ϑR1) + ε2T2,1,1,2(ψ1, ψ1, ϑR2) + ε2T2,1,1,3(ψ1, ψ1, ϑR3)

+ε2T2,−1,−1,1(ψ−1, ψ−1, ϑR1) + ε2T2,−1,−1,2(ψ−1, ψ−1, ϑR2)

+ε2T2,−1,−1,3(ψ−1, ψ−1, ϑR3) + ε2T2,1,−1,1(ψ1, ψ−1, ϑR1)

+ε2T2,1,−1,2(ψ1, ψ−1, ϑR2) + ε2T2,1,−1,3(ψ1, ψ−1, ϑR3) +O(ε3)
)
,

∂tR3 = iωR3 + ϑ−1
(
εB3,1,1(ψ1, ϑR1) + εB3,−1,1(ψ−1, ϑR1) + εB3,1,2(ψ1, ϑR2)

+εB3,−1,2(ψ−1, ϑR2) + εB3,1,3(ψ1, ϑR3) + εB3,−1,3(ψ−1, ϑR3)

+ε2B3,2,1(Ψ2, ϑR1) + ε2B3,2,2(Ψ2, ϑR2) + ε2B3,2,3(Ψ2, ϑR3)

+ε2B3,−2,1(Ψ−2, ϑR1) + ε2B3,−2,2(Ψ−2, ϑR2) + ε2B3,−2,3(Ψ−2, ϑR3)

+ε2B3,0,1(Ψ0, ϑR1) + ε2B3,0,2(Ψ0, ϑR2) + ε2B3,0,3(Ψ0, ϑR3)

+ε2T3,1,1,1(ψ1, ψ1, ϑR1) + ε2T3,1,1,2(ψ1, ψ1, ϑR2) + ε2T3,1,1,3(ψ1, ψ1, ϑR3)

+ε2T3,−1,−1,1(ψ−1, ψ−1, ϑR1) + ε2T3,−1,−1,2(ψ−1, ψ−1, ϑR2)

+ε2T3,−1,−1,3(ψ−1, ψ−1, ϑR3) + ε2T3,1,−1,1(ψ1, ψ−1, ϑR1)

+ε2T3,1,−1,2(ψ1, ψ−1, ϑR2) + ε2T3,1,−1,3(ψ1, ψ−1, ϑR3) +O(ε3)
)
,
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where

B1,±1,1(ψ±1, ϑR1) = B1(ϑR1, ψ±1) ,

B1,±1,2(ψ±1, ϑR2) = B4(ψ±1, ϑR2) +B4(ϑR2, ψ±1) ,

B1,±1,3(ψ±1, ϑR3) = B3(ψ±1, ϑR3) ,

B1,±2,1(Ψ±2, ϑR1) = B1(ϑR1, ψ(±2)2) +B2(ϑR1, ψ(±2)3) ,

B1,±2,2(Ψ±2, ϑR2) = B1(ψ(±2)1, ϑR2) +B3(ϑR2, ψ(±2)3) +B4(ψ(±2)2, ϑR2)

+B4(ϑR2, ψ(±2)2) ,

B1,±2,3(Ψ±2, ϑR3) = B2(ψ(±2)1, ϑR3) +B3(ψ(±2)2, ϑR3) +B5(ψ(±2)3, ϑR3)

+B5(ϑR3, ψ(±2)3) ,

B1,0,1(Ψ0, ϑR1) = B1(ϑR1, ψ02) +B2(ϑR1, ψ03) ,

B1,0,2(Ψ0, ϑR2) = B1(ψ01, ϑR2) +B3(ϑR2, ψ03) +B4(ψ02, ϑR2) +B4(ϑR2, ψ02) ,

B1,0,3(Ψ0, ϑR3) = B2(ψ01, ϑR3) +B3(ψ02, ϑR3) +B5(ψ03, ϑR3) +B5(ϑR3, ψ03) ,

B2,±1,1(ψ±1, ϑR1) = B6(ϑR1, ψ±1) ,

B2,±1,2(ψ±1, ϑR2) = B9(ψ±1, ϑR2) +B9(ϑR2, ψ±1) ,

B2,±1,3(ψ±1, ϑR3) = B8(ψ±1, ϑR3) ,

B2,±2,1(Ψ±2, ϑR1) = B6(ϑR1, ψ(±2)2) +B7(ϑR1, ψ(±2)3) ,

B2,±2,2(Ψ±2, ϑR2) = B6(ψ(±2)1, ϑR2) +B8(ϑR2, ψ(±2)3) +B9(ψ(±2)2, ϑR2)

+B9(ϑR2, ψ(±2)2) ,

B2,±2,3(Ψ±2, ϑR3) = B7(ψ(±2)1, ϑR3) +B8(ψ(±2)2, ϑR3) +B10(ψ(±2)3, ϑR3)

+B10(ϑR3, ψ(±2)3) ,

B2,0,1(Ψ0, ϑR1) = B6(ϑR1, ψ02) +B7(ϑR1, ψ03) ,

B2,0,2(Ψ0, ϑR2) = B6(ψ01, ϑR2) +B8(ϑR2, ψ03) +B9(ψ02, ϑR2) +B9(ϑR2, ψ02) ,

B2,0,3(Ψ0, ϑR3) = B7(ψ01, ϑR3) +B8(ψ02, ϑR3) +B10(ψ03, ϑR3) +B10(ϑR3, ψ03) ,

B3,±1,1(ψ±1, ϑR1) = B11(ϑR1, ψ±1) ,

B3,±1,2(ψ±1, ϑR2) = B14(ψ±1, ϑR2) +B14(ϑR2, ψ±1) ,

B3,±1,3(ψ±1, ϑR3) = B13(ψ±1, ϑR3) ,

B3,±2,1(Ψ±2, ϑR1) = B11(ϑR1, ψ(±2)2) +B12(ϑR1, ψ(±2)3) ,

B3,±2,2(Ψ±2, ϑR2) = B11(ψ(±2)1, ϑR2) +B13(ϑR2, ψ(±2)3) +B14(ψ(±2)2, ϑR2)

+B14(ϑR2, ψ(±2)2) ,

B3,±2,3(Ψ±2, ϑR3) = B12(ψ(±2)1, ϑR3) +B13(ψ(±2)2, ϑR3) +B15(ψ(±2)3, ϑR3)

+B15(ϑR3, ψ(±2)3) ,

B3,0,1(Ψ0, ϑR1) = B11(ϑR1, ψ02) +B12(ϑR1, ψ03) ,

B3,0,2(Ψ0, ϑR2) = B11(ψ01, ϑR2) +B13(ϑR2, ψ03) +B14(ψ02, ϑR2) +B14(ϑR2, ψ02) ,

B3,0,3(Ψ0, ϑR3) = B12(ψ01, ϑR3) +B13(ψ02, ϑR3) +B15(ψ03, ϑR3) +B15(ϑR3, ψ03)

and the terms Ti,j,k,l(ψj , ψk, ϑRl) stand for trilinear terms which are linear in the Rl. They

will be treated in detail later. The operator ϑ−1 is defined by its symbol ϑ̂−1(k) = ϑ̂−1(k) =
(ϑ̂(k))−1. Notice that ϑ̂−1(k) is at most of order O(ε−1) for |k| ≤ δ but of order O(1) for
|k| ≥ δ. We note here that the arguments of the terms Bj,0,n and Bj,2,n are written as Ψ
rather than ψ to emphasize that these terms depend on more than one component of the
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vector valued approximating function Ψ, whereas the remaining terms depend only on a
single, scalar component, and hence their arguments are denoted ψj .

3.2 The normal-form strategy for an example

In order to eliminate the O(1) and O(ε) terms on the right hand sides of these equations
we make a series of normal-form transformations. Each of these transformations is a near
identity transformation which removes one (or more) of the “bad” terms.

We will explain the general strategy with a quite specific example which illustrates the
general principles involved and then go through each of the many terms that must be removed
from the right hand side of these equations and explain in turn how they are treated.

Suppose, for example, that we consider the terms from the second equation in (42)

∂tR2 = −iωR2 + εϑ−1B2,1,2(ψ1, ϑR2) + . . . (43)

and we wish to eliminate the term εϑ−1B2,1,2(ψ1, ϑR2) = εϑ−1(B9(ψ1, ϑR2) + B9(ϑR2, ψ1))
from the equation.

We will write R̃2 = R2+εN(ψ1, R2) with N a bilinear function chosen in such a way that
the term εϑ−1(B9(ψ1, ϑR2)+B9(ϑR2, ψ1)) does not appear in the evolution equation for R̃2.
If we write the evolution equation for R̃2, we find

∂tR̃2 = ∂tR2 + εN(∂tψ1, R2) + εN(ψ1, ∂tR2)

= −iωR2 + εϑ−1(B9(ψ1, ϑR2) +B9(ϑR2, ψ1)) + εN(∂tψ1, R2)

+εN(ψ1, ∂tR2) + . . .

= −iωR̃2 + εϑ−1(B9(ψ1, ϑR2) +B9(ϑR2, ψ1)) + iωεN(ψ1, R2) (44)

+εN(∂tψ1, R2) + εN(ψ1, ∂tR2) + . . .

Thus, we see that in order to eliminate the term εϑ−1(B9(ψ1, ϑR2)+B9(ϑR2, ψ1)) we should
choose the normal-form transformation N to satisfy

εϑ−1(B9(ψ1, ϑR2)+B9(ϑR2, ψ1))+ iωεN(ψ1, R2)+ εN(∂tψ1, R2)+ εN(ψ1, ∂tR2) = 0 . (45)

We can simplify this slightly if we replace ∂tR2 in the argument of the last term by −iωR2,
which we can do at the expense of introducing additional terms of O(ε2), which are absorbed
in the terms we have already neglected in the equation for ∂tR2. We would like to make a
similar replacement of ∂tψ1 but if we compute this derivative using the explicit expression
for ψ1 we find it is not quite equal to −iωψ1. However, as we will show in Lemma 3.3 below,
it can be approximated by this expression – i.e., ∂tψ1 = −iωψ1 + O(ε2). If we make this
substitution (and again absorb the error in the terms we have ignored we find that N should
satisfy:

εϑ−1(B9(ψ1, ϑR2)+B9(ϑR2, ψ1))+ iωεN(ψ1, R2)−εN(iωψ1, R2)−εN(ψ1, iωR2) = 0 . (46)

From the explicit formulas for the quadratic terms in (40) we see that we can write the
Fourier transform of the bilinear term ϑ−1(B9(ψ1, ϑR2) +B9(ϑR2, ψ1)) as

∫
ϑ̂−1(k)B̂9(k, k − ℓ, ℓ)ψ̂1(k − ℓ)ϑ̂(ℓ)R̂2(ℓ)dℓ
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for some appropriate kernel B̂9 whose explicit form we discuss below. In order to compute
the kernel n̂ of N , we write out the Fourier transform of (46) which gives

−
∫
ϑ̂−1(k)B̂9(k, k − ℓ, ℓ)ϑ̂(ℓ)ψ̂1(k − ℓ)R̂2(ℓ)dℓ (47)

= iω(k)

∫
n̂(k, k − ℓ, ℓ)ψ̂1(k − ℓ)R̂2(ℓ)dℓ

−i
∫
n̂(k, k − ℓ, ℓ)ω(k − ℓ)ψ̂1(k − ℓ)R̂2(ℓ)dℓ

−i
∫
n̂(k, k − ℓ, ℓ)ψ̂1(k − ℓ)ω(ℓ)R̂2(ℓ)dℓ ,

or, eliminating the integrals and focusing on the equation satisfied by the kernels we see that
n̂ should satisfy

n̂(k, k − ℓ, ℓ) =
iB̂9(k, k − ℓ, ℓ)

(ω(k)− ω(k − ℓ)− ω(ℓ))

ϑ̂(ℓ)

ϑ̂(k)
. (48)

Clearly, n̂ will only be defined if the expression (ω(k)−ω(k− ℓ)−ω(ℓ)) can be bounded away
from zero (or in some rare cases which we discuss below, if a zero in this expression is off-set
by a zero of B̂9 at the same values of k and ℓ.) This requirement leads to our non-resonance
conditions which we will have to verify in each of many different possible cases below. Before
beginning this straightforward but lengthy procedure we make a few more general remarks:

1. We must eliminate not only the term εϑ−1(B9(ψ1, ϑR2) +B9(ϑR2, ψ1)) from the equa-
tion for ∂tR2, but also many other terms – and even more in the equations for the
other variables. However, since the terms to be eliminated are linear in the dependent
variables Rj, the transformations will be linear as well and we can construct the final
transformation in lowest order as a sum of the transformations constructed to eliminate
each of the terms in turn.

2. In order to prove our approximation theorems we will have to show not only that the
kernel n̂ is well defined but also to estimate how the transformation it defines acts on
the function spaces Yσ,s. This we will do with the aid of Lemma 3.1 below.

3. We must also eliminate a few terms of the form ϑ−1Bn(∂tψqk, ϑRj). These must be

handled in a slightly different fashion because ∂tψ̂qk is not approximated by iωkψ̂qk.
We explain exactly what modifications are necessary in our general scheme when we
encounter these terms below.

3.3 Some technical lemmas

A key lemma in what follows will be the following estimate of expressions like

N̂(ψj , R)(k) =

∫
n̂(k, k − ℓ, ℓ)ψ̂j(k − ℓ)R̂(ℓ)dℓ , (49)

where ψj is a part of the approximation constructed above (and in particular, is an entire
function) and R is an element of the space Yσ,s.
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Lemma 3.1. If there exist constants CN > 0, s1, s2 ≥ 0 and such that

(1 + k2)s/2|n̂(k, k − ℓ, ℓ)| ≤ CN (1 + |k − ℓ|)s1(1 + |ℓ|)s2

Then the expression (49) defines a bounded linear transformation

N : Yσ,s2 → Yσ,s

w → N(ψj , w) ,

and there exists a constant Cψ depending on σ, s, s1, s2 and the norm of ψj (but independent
of ε) such that

‖N(ψj , w)‖Yσ,s ≤ Cψ‖w‖Yσ,s2 .

Proof. From the definition of the norm on Yσ,s, we have:

‖N(ψj , w)‖2Yσ,s =
∫

(1 + |k|2)se2σ|k|
(∫

n̂(k, k − ℓ, ℓ)ψ̂j(k − ℓ)ŵ(ℓ)dℓ

)2

dk

≤ C

∫ (∫
(1 + k2)s/2eσ|k||n̂(k, k − ℓ, ℓ)||ψ̂j(k − ℓ)||ŵ(ℓ)|dℓ

)2

dk

≤ CCN

∫ (∫
(1 + |k − ℓ|2)s1/2eσ|k−ℓ||ψ̂j(k − ℓ)|(1 + |ℓ|2)s2/2eσ|ℓ||ŵ(ℓ)|dℓ

)2

dk .

If we now think of the k-integration as the square of the L2-norm of a convolution we can
bound it with the aid of Young’s inequality by

C‖w‖Yσ,s2
∫

(1 + |k|2)s1/2eσ|k||ψ̂j(k)|dk .

But since ψj is entire this last integral is bounded by a constant, and using the way ψj is
constructed, we see that this constant is independent of ε.

We will also need to construct normal-form transformations that eliminate trilinear terms
in some of these equations. To bound the resulting transformations we use the following
lemma whose proof we leave as an exercise since it is a very easy modification of the preceding
one.

Lemma 3.2. Let ψ be entire and s > 0 be fixed. Suppose that there exist constants C, and
sj, j = 1, 2, 3, such that

(1 + k2)s/2|M̂(k, k − ℓ, ℓ− p, p)| ≤ C(1 + |k − ℓ|2)s1/2(1 + |ℓ− p|2)s2/2(1 + p2)s3/2 .

Then the mapping M : w →M(ψ, φ,w) defined by the kernel M̂ is a bounded transformation
from Yσ,s3 to Yσ,s.

We next turn to the result mentioned in our overview of the construction of the normal-
forms, namely the fact that we can approximate ∂tψ1 by −iωψ1.

Lemma 3.3. Fix s, σ > 0. There exists a constant Cψ = Cψ(s, σ) > 0 such that

‖∂tψ±1 + iωψ±1‖Yσ,s ≤ Cψε
2

Before proving this lemma we note that if we combine it with the method of proof of
Lemma 3.1 we easily obtain:
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Corollary 3.4. If there exist constants Cb, s1 and s2 such that

(1 + k2)s/2|b̂(k, k − ℓ, ℓ)| ≤ Cb(1 + |k − ℓ|)s1(1 + |ℓ|)s2 ,

then there exists a constant CB (independent of ε) such that the bilinear term B(ψ±1, R)
defined by the kernel b̂ satisfies

‖B(∂tψ±1 + iωψ±1, R)‖Yσ,s ≤ CB ε
2‖R‖Yσ,s2 .

Proof. (of Lemma 3.3) We will prove the case of ψ1 – the case of ψ−1 works analogously
by the change k0 → −k0. From the explicit formulas for ψ1 we have

∂tψ̂1(k, t) + iω(k)ψ̂1(k, t) = i(−ω(k0)− cg(k − k0) + ω(k))ψ̂1(k, t) + ε2∂T ψ̂1(k, t) .

Here, the partial derivative with respect to “T” refers to differentiation with respect to the
“slow” time ε2t that occurs in the second argument of the amplitude function A1 in the
definition of ψ1. First consider the norm of the term ∂T ψ̂1. Recalling (see (35)) that we
truncated the support of A1 in a neighborhood of size δ we see that

∫
(1 + |k|2)s1/2eσ|k||∂T ψ̂1(k, t)|dk ≤ 1

ε

∫
|k−k0|

ε
≤δ

(1 + |k|2)s1/2eσ|k||∂T Â1(
k − k0
ε

, ε2t)|dk

≤
∫ δ

p=−δ
(1 + |k0 + εp|2)s1/2eσ|k0+εp||∂T Â1(p, ε

2t)|dp

≤ C(k0, σ)

∫ δ

p=−δ
(a+ 2ε|p|)s1/2eεσ|p||∂T Â1(p, ε

2t)|dp .

However, because of the compact support of Â1, this integral is finite.
Next note that there exists Cω such that

|ω(k)− ω(k0)− cg(k − k0)| ≤ Cω|k − k0|2 .

Thus,

∫
(1 + |k|2)s1/2eσ|k||ω(k0) + cg(k − k0)− ω(k)||ψ̂1(k, t)|dk

≤ Cω
ε

∫
|k − k0|2|Â1(

k − k0
ε

, ε2t)|dk

≤ Cωε
2

∫
p2|Â1(p, ε

2t)|dp

≤ C(k0, A1)ε
2 ,

where in the second inequality we again used the fact that the support of ψ̂1 is bounded and
in the last inequality that Â1 is bounded at least in H3 .

With these technical lemmas in hand we now construct our normal-form transformation.
The transform is constructed term by term following the outline sketched in equations (44)-
(48).
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3.4 The first normal-form transform

We begin discussing the normal-form transform for the error equations. Due to the structure
of the nonlinear terms in the error equations the size of the Fourier transform of these terms
depends on whether k is close to zero or not. In order to separate the behavior in these two
regions more clearly we define projection operators P 0 and P 1 by the Fourier multipliers

P̂ 0(k) = χ|k|≤δ(k) and P̂ 1(k) = 1− P̂ 0(k) (50)

for a δ > 0 sufficiently small, but independent of 0 < ε ≪ 1. (This is the same constant δ
that appears in the definition of ϑ.) When necessary we will write

R = R0 +R1 ,

with Rr = P rR for r = 0, 1 and analogously with the other variables.
Applying the projection operators P 0,1 to system (42) we see that it is equivalent to the

system of equations

∂tR
0
j = iωjR

0
j + ϑ−1P 0

( ∑

l=−1,1
n=1,2,3

εBj,l,n(ψl, ϑR
1
n)

+
∑

l=−2,2
n=1,2,3

ε2Bj,l,n(Ψl, ϑR
1
n) +

∑

l=−1,1
n=1,2,3

ε2Tj,l,l,n(ψl, ψl, ϑR1
n)

+
∑

r=0,1

( ∑

n=1,2,3

ε2Bj,0,n(Ψ0, ϑR
r
n) +

∑

n=1,2,3

ε2Tj,1,−1,n(ψ1, ψ−1, ϑR
r
n)
)

+O(ε3)
)
,

∂tR
1
j = iωjR

1
j +

∑

r=0,1

ϑ−1P 1
( ∑

l=−1,1
n=1,2,3

εBj,l,n(ψl, ϑR
r
n) (51)

+
∑

l=−2,0,2
n=1,2,3

ε2Bj,l,n(Ψl, ϑR
r
n) +

∑

l=−1,1
n=1,2,3

ε2Tj,l,l,n(ψl, ψl, ϑRrn)

+
∑

n=1,2,3

ε2Tj,1,−1,n(ψ1, ψ−1, ϑR
r
n) +O(ε3)

)

for j = 1, 2, 3.
Here we used the fact that due to Ψ̂l(k−ℓ) = 0 unless |(k−ℓ)− lk0| < δ and R̂0(ℓ) = 0 for

|ℓ| > δ we have P 0Bj,±1,n(ψ±1, ϑR
0
n) = P 0Bj,±2,n(Ψ±2, ϑR

0
n) = P 0Tj,±1,±1,n(ψ±1, ψ±1, ϑR

0
n) =

0 for j, n ∈ {1, 2, 3} if δ > 0 is sufficiently small, but independent of 0 < ε≪ 1.
Since ϑ−1P 1 is of order O(1) all terms on the second and the last line of the evolution

equation for R1
j are at least of order O(ε2) and need not to be eliminated. Moreover, we will

show in Subsection 3.7 that all terms on the third line of the evolution equation for R0
j are

at least of order O(ε2) as well and need not to be eliminated either.
In order to eliminate the terms in (51) which are of order O(1) or O(ε) we look for a

normal-form transformation of the form

R̃0 = R0 + εN0,1(Ψ, R1) ,

R̃1 = R1 + εN1,0(Ψ, R0) + εN1,1(Ψ, R1) ,
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where

R̃0
j = R0

j +
∑

l=−1,1
n=1,2,3

εN0,1
j,l,n(ψl, R

1
n) +

∑

l=−2,2
n=1,2,3

ε2N0,1
j,l,n(Ψl, R

1
n) (52)

+
∑

l=−1,1
n=1,2,3

ε2N0,1
j,l,l,n(ψl, ψl, R

1
n) ,

R̃1
j = R1

j +
∑

r=0,1

∑

l=−1,1
n=1,2,3

εN1,r
j,l,n(ψl, R

r
n) .

Construction of N0,1: Now, we start discussing systematically the construction of all
components of this normal-form transformation. First, we address the components N0,1

j,±1,n

for j, n ∈ {1, 2, 3}. Proceeding as in Subsection 3.2 we see that the kernels n̂0,1j,±1,n of N0,1
j,±1,n

should be of the form

n̂0,1j,±1,n(k, k − ℓ, ℓ) =
iP̂ 0(k)b̂j,±1,n(k, k − ℓ, ℓ)

(−ωj(k) − ω(k − ℓ) + ωn(ℓ))

ϑ̂(ℓ)

ϑ̂(k)
, (53)

where b̂j,±1,n are the kernels of Bj,±1,n. Due to the fact that the P̂ 0 and ψ̂±1 have supports
localized near k = 0 and (k−ℓ) = ±k0 respectively this expression only has to be analyzed for
|(k− ℓ)± k0| < δ and |k| < δ. As a consequence for δ > 0 sufficiently small, but independent
of 0 < ε ≪ 1, we can also restrict to wave numbers ℓ bounded away from 0. Hence from
the possible resonances discussed above only the resonance at k = 0 will play a role for
N0,1
j,±1,n. The kernel n̂0,1j,±1,n can then be estimated as follows. First note that if we consider

the denominator of this expression near k = 0 then we have

−ωj(k)− ω(k − ℓ) + ωn(ℓ) = −ω′
j(0)k − (ω(−ℓ) + ω′(−ℓ)k) + ωn(ℓ) +O(k2) .

If ωn(ℓ) 6= −ω(ℓ) this quantity is bounded below by some O(1) constant for all |k| < δ. If,
on the other hand, ωn(ℓ) = −ω(ℓ), which is true if and only if n = 2, there exists a positive
constant C such that

| − ωj(k)− ω(k − ℓ) + ωn(ℓ)| ≥ C|k| . (54)

Here, we have used the fact that ℓ ≈ ±k0 because of the support of ψ̂±1 and the fact that
ω′(±k0) is O(1) and is not equal to ω′

j(0). Thus, only for n = 2, does the denominator of

the expression for n̂0,1j,±1,n get close to zero. However, in the case n = 2 we see from the

definitions of the form of the nonlinear terms that b̂j,±1,2(k, k− ℓ, ℓ) = B̂i(k, k− ℓ, ℓ) for some
i ∈ {4, 9, 14}. Thus we get by the subsequent Lemma 3.11 that

|b̂j,±1,2(k, k − ℓ, ℓ)| ≤ C|k| . (55)

Hence, in the case of n = 2, there is a cancellation between the numerator and the denomi-
nator, while for other values of n the denominator is bounded away from zero and thus, there
exists a constant C ≥ 0 such that

|ϑ̂(k)n̂0,1j,±1,n(k, k − ℓ, ℓ)| ≤ C (56)

for all |k| ≤ δ and ℓ under consideration.
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Because of the factor of P̂ 0(k) which makes n̂0,1j,±1,n(k, k − ℓ, ℓ) = 0 if |k| > δ, N0,1
j,±1,n is

“smoothing” in the sense that if R1
n ∈ Yσ,s for some s > 1, then given any σ′, s′, there exists

Cσ′,s′ such that

‖εN0,1
j,±1,n(ψ±1, R

1
n)‖Yσ′,s′

≤ Cσ′,s′‖R1
n‖Yσ,s . (57)

In particular, this estimate holds when σ′ = σ and s′ = s. Note, however, that in spite of the
factor of ε in front of N0,1

j,±1,n, we cannot assume that Cσ′,s′ ∼ O(ε) because of the factor of

ϑ−1(k) ∼ ε−1 for k ≈ 0, in the formula for the kernel of N0,1
j,±1,n.

Now, we address the components N0,1
j,±2,n. Their kernels n̂

0,1
j,±2,n should be of the form

n̂0,1j,±2,n(k, k − ℓ, ℓ) =
iP̂ 0(k)b̂j,±2,n(k, k − ℓ, ℓ)

(−ωj(k)± 2ω(k0) + ωn(ℓ))

ϑ̂(ℓ)

ϑ̂(k)
, (58)

where we have used the fact that ∂tΨ̂±2 = ±2iω(k0)Ψ̂±2 +O(ε) to approximate the denomi-
nator. Since k − ℓ ≈ ±2k0 we can further approximate the denominator as

−ωj(k)± 2ω(k0) + ωn(k ∓ 2k0) .

Because of ω(2k0) 6= ±2ω(k0) 6= 0 the denominator is bounded away from zero for all |k| ≤ δ.
Moreover, since k and ℓ are restricted to bounded intervals, the operators εN0,1

j,±2,n define
bounded transformations from Yσ,s to itself.

Finally, we address the components N0,1
j,±1,±1,n. Proceeding analogously as in the case of

the bilinear terms we find that the kernels n̂0,1j,±1,±1,n should be of the form

n̂0,1j,±1,±1,n(k, k − ℓ, ℓ− p, p) =
iP̂ 0(k)T̂j,±1,±1,n(k, k − ℓ, ℓ− p, p)

(−ωj(k)− ω(k − ℓ)− ω(ℓ− p) + ωn(p))

ϑ̂(p)

ϑ̂(k)
, (59)

where T̂j,±1,±1,n(k, k−ℓ, ℓ−p, p) is the kernel of Tj,±1,±1,n. Since k−ℓ ≈ ±k0 and ℓ−p ≈ ±k0
we can further approximate the denominator as

−ωj(k)∓ 2ω(k0) + ωn(k ∓ 2k0)

and therefore the denominator is bounded away from zero for all |k| ≤ δ. Moreover, since
k, ℓ and p are restricted to bounded intervals, the operators εN0,1

j,±1,±1,n define bounded
transformations from Yσ,s to itself.

Construction of N1,0 and N1,1: Before we proceed constructing the normal-form
transformation we will replace the terms εϑ−1P 1Bj,±1,n(ψ±1, ϑR

r
n) with j, n ∈ {1, 2, 3} and

r ∈ {0, 1} in the evolution equations for R1
j by εϑ−1P 1Bj,±1,n(ψ±1, ϑ0R

r
n), where ϑ̂0(k) =

ϑ̂(k) − ε. This modification will help us to avoid a resonance problem at ±k0. The key fact
that we will use below is that ϑ̂0(0) = 0. Making this change introduces additional error
terms ε2ϑ−1P 1Bj,±1,n(ψ±1, R

r
n) into the evolution equations for R1

j . However, since ϑ̂−1(k)

is O(1) on the support of P̂ 1, these terms can be included in the error terms of order O(ε2).
Now, proceeding as in Subsection 3.2 yields that the components N1,r

j,±1,n should satisfy
the equation

−iωjN1,r
j,±1,n(ψ±1, R

r
n)−N1,r

j,±1,n(iωψ±1, R
r
n) +N1,r

j,±1,n(ψ±1, iωnR
r
n)

= −ϑ−1P 1Bj,±1,n(ψ±1, ϑ0R
r
n) . (60)

To extract the real ‘dangerous’ terms from ϑ−1P 1Bj,±1,n(ψ±1, ϑ0R
r
n) we will use the fol-

lowing lemma which takes advantage of the strong localization of ψ±1 near the wave numbers
±k0 in Fourier space.
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Lemma 3.5. Fix p ∈ IR. Assume that κ ∈ C(IR3, IC). Assume further that ψ ∈ C2(IR) has
a finitely supported Fourier transform and that R ∈ Yσ,s.

• If κ is Lipschitz with respect to its second argument for k − ℓ in some neighborhood of
p ∈ IR, then there exists Cψ,κ,p > 0 such that

‖
∫
κ(·, · − ℓ, ℓ)ε−1ψ̂(

· − ℓ− p

ε
)R̂(ℓ)dℓ−

∫
κ(·, p, ℓ)ε−1ψ̂(

· − ℓ− p

ε
)R̂(ℓ)dℓ‖Yσ,s

≤ Cψ,κ,pε‖R‖Yσ,s (61)

• If κ is globally Lipschitz with respect to its third argument, then there exists Dψ,κ > 0
such that

‖
∫
κ(·, · − ℓ, ℓ)ε−1ψ̂(

· − ℓ− p

ε
)R̂(ℓ)dℓ

−
∫
κ(·, · − ℓ, · − p)ε−1ψ̂(

· − ℓ− p

ε
)R̂(ℓ)dℓ‖Yσ,s (62)

≤ Dψ,κε‖R‖Yσ,s

Remark 3.6. Note that there are two important aspects of this lemma – the first is that we
fix the second argument of the kernel function κ to the value p (or the third to k− p) and the
second is that the error which we make by this procedure is O(ε).

Proof. We give the details of the proof for the first of the two cases in the Lemma. The
very similar second case is left to the reader.

‖
∫
κ(·, · − ℓ, ℓ)ε−1ψ̂(

· − ℓ− p

ε
)R̂(ℓ)dℓ−

∫
κ(·, p, ℓ)ε−1ψ̂(

· − ℓ− p

ε
)R̂(ℓ)dℓ‖2Yσ,s

=

∫ (∫
(κ(k, k − ℓ, ℓ)− κ(k, p, ℓ))ε−1ψ̂(

k − ℓ− p

ε
)R̂(ℓ)dℓ

)2

e2σ|k|(1 + k2)sdk

≤
∫ (

Cκ

∫
|(k − ℓ)− p|ε−1ψ̂(

k − ℓ− p

ε
)R̂(ℓ)dℓ

)2

e2σ|k|(1 + k2)sdk

≤ C2
κ(

∫
eσm(1 +m2)s/2|m

ε
||ψ̂(m

ε
)|dm)2‖R‖2Yσ,s ≤ Cψ,κ,pε

2‖R‖2Yσ,s ,

where to the next to last inequality we applied Young’s inequality to bound the L2-norm of
the convolution and the last relied on the fact that ψ̂ has compact support.

Remark 3.7. The conclusions of Lemma 3.5 also hold if the integrals run only over a subset
of IR.

We use Lemma 3.5 to replace the equation (60) with an alternative equation for the
components N1,r

j,±1,n which will result in a form for the normal-form transformation that is

easier to bound, at the expense of introducing additional “error” terms all of which are O(ε2).
More specifically we apply Lemma 3.5 and make the following changes in (60)

(A.1) We replace N1,r
j,±1,n(iωψ±1, R

r
n) by N

1,r
j,±1,n(iω(±k0)ψ±1, R

r
n).

(A.2) We replace N̂1,r
j,±1,n(ψ±1, iωnR

r
n)(k) by N̂

1,r
j,±1,n(ψ±1, iωn(k ∓ k0)R

r
n)(k).

(A.3) We replace b̂j,±1,n(ψ±1, ϑ0R
r
n)(k) by b̂j,±1,n(ψ±1, ϑ̂0(k ∓ k0)R

r
n)(k).
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Inserting these changes into (60) we find that the kernels of N̂1,r
j,±1,n should be of the form:

n̂1,rj,±1,n(k, k − ℓ, ℓ) =
iP̂ 1(k)b̂j,±1,n(k, k − ℓ, ℓ)

(−ωj(k)− ω(±k0) + ωn(k ∓ k0))

ϑ̂0(k ∓ k0)

ϑ̂(k)
. (63)

Remark 3.8. The analysis of the kernel of N0,1 would be simplified by the changes (A1)–
(A3), too. However, we don’t make those changes in N0,1 because they would complicate the
analysis of the subsequent second normal-form transformation which is required due to the
fact that N0,1 = O(ε−1) for certain wave numbers.

Due to the fact that the support of ψ̂±1 is non-zero only near k = ±k0, and the projection
operator P̂ 1, the expression (63) only has to be analyzed for |k − ℓ ∓ k0| < δ and |k| ≥ δ.
We now consider the possible resonances in the denominator of (63), taking these restrictions
into account.

• k = 0: Since P̂ 1(k) = 0 for |k| ≤ δ, this resonance does not play a role in the analysis
of either N1,0 or N1,1.

• k = ±k0: The kernels n̂1,rj,±1,n have a resonance at k = ±k0 whenever j = 2 and a
resonance at k = ∓k0 whenever j = 3 and n = 1. However, since the derivative of ωj
for j = 2, 3 at ±k0 is O(1), we have a bound on the denominator of the form

| − ωj(k)− ω(±k0) + ωn(k ∓ k0)| ≥ C|k ∓ k0| (64)

This singularity is offset, however, by the fact that the term |ϑ̂0(k ∓ k0)| ≤ C|k ∓ k0|
and hence the kernels n̂1,rj,±1,n can be extended continuously at k = ±k0 with an O(1)
bound on its size.

• k = ±2k0: The kernels n̂
1,r
j,±1,n have a resonance at k = ±2k0 whenever j = 1 and n = 3.

However, in this case we have b̂j,±1,n(k, k−ℓ, ℓ) = b̂3(k, k−ℓ, ℓ). This will imply that the

numerator of n̂1,rj,±1,n also vanishes at k = ±2k0 so that the quotient is still well-defined.
We discuss this surprising cancellation phenomenon in detail in Subsection 3.6.

There are no other resonances for the normal-form transforms and hence the kernel can
be bounded for all values of k and ℓ by an O(1) bound.

Having discussed the zeroes of the denominator we are are now interested in the asymp-
totics for |k| → ∞, in order to see a gain or loss of regularity by the normal-form transform.
We first bound the expression for N1,1

3,±1,3. We see from (129) that the numerator of the kernel
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b̂3,±1,3 = b̂13 has the form

b̂13(k, k − ℓ, ℓ) = − 1

2ŝ(k)

{
ŝ(k − ℓ)K̂0(ℓ)− K̂0(k)ŝ(k − ℓ)

K̂0(k − ℓ)

}
(iℓ)

−ŝ(k − ℓ)
{
1 + K̂0(k)K̂0(ℓ)

}
(iℓ) (65)

+
1

2
ℓ(k − ℓ)ŝ(ℓ)ŝ(k − ℓ)

{
1

K̂0(k − ℓ)
+ K̂0(ℓ)

}

− 1

2ŝ(k − ℓ)

{
ŝ(ℓ)K̂0(k − ℓ)− K̂0(k)ŝ(ℓ)

K̂0(ℓ)

}
i(k − ℓ)

−ŝ(ℓ)
{
1 + K̂0(k)K̂0(k − ℓ)

}
i(k − ℓ)

+
1

2
(k − ℓ)ℓŝ(k − ℓ)ŝ(ℓ)

{
1

K̂0(ℓ)
+ K̂0(k − ℓ)

}

Our goal, throughout the construction of the normal-form transformation is to preserve,
as much as possible, the smoothness of the error functions. In practice, this means that when
we bound (1 + k2)s|N̂1,1(k, k− ℓ, ℓ)| by C(1 + |k− ℓ|2)s1(1 + |ℓ|2)s2 in order to apply Lemma
3.1, we will want to keep s2 small – we can “soak up” as many powers of |k − ℓ| as we need
since this corresponds to differentiating the approximating function ψ±1 which is entire. This
“trick” of moving derivatives from the factors of w to ψ is related to the smoothing properties
of the nonlinear terms in the water wave problem. Thus, for instance, by the estimates in
the proof of Corollary 3.13 on page 1499 of [SW00] we see that for all s > 1 we have

(1 + k2)
s
2
+ 1

4

∣∣∣∣∣
K̂0(ℓ)− K̂0(k)

K̂0(k − ℓ)

∣∣∣∣∣ ≤ C(1 + |k − ℓ|2) s
2
+ 1

4 (1 + ℓ2)
s−1
2 . (66)

Thus, the expression in the first line on the right hand side of inequality (65) can be bounded
by

(1 + k2)s/2

∣∣∣∣∣
1

ŝ(k)

{
ŝ(k − ℓ)K̂0(ℓ)− K̂0(k)ŝ(k − ℓ)

K̂0(k − ℓ)

}
(iℓ)

∣∣∣∣∣

≤ (1 + k2)
s
2
+ 1

4

∣∣∣∣∣
K̂0(ℓ)− K̂0(k)

K̂0(k − ℓ)

∣∣∣∣∣ |ℓ| ≤ C(1 + |k − ℓ|2) s
2
+ 1

4 (1 + ℓ2)s/2 (67)

The second line in (65) is bounded by writing

1 + K̂0(k)K̂0(k − ℓ) = 1 + (K̂0(k))
2 + K̂0(k)

(
K̂0(ℓ)− K̂0(k)

)
.

Noting first that the asymptotics of the hyperbolic tangent imply that |1+(K̂0(k))
2| ≤ Ce−|k|

and using the estimates on page 1499 of [SW00] to bound the term involving K̂0(k) − K̂0(ℓ)
we have

(1 + k2)s/2|ŝ(k − ℓ)||1 + K̂0(k)K̂0(k − ℓ)||ℓ|
≤ C(1 + |k − ℓ|2)s/2(1 + ℓ2)s/2 . (68)
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Now, we bound the third line in 65. In this case, unfortunately, there is no cancellation
between the factors of K̂0 and the only smoothing comes from the factors of ŝ(ℓ) and ŝ(k− ℓ)
so we find

1

2
(1 + k2)s/2

∣∣∣∣∣ℓ(k − ℓ)ŝ(ℓ)ŝ(k − ℓ)

{
1

K̂0(k − ℓ)
+ K̂0(ℓ)

}∣∣∣∣∣ ≤ C|ℓ|s+ 1
2 |k − ℓ|s+ 1

2 .

Finally, the last three lines can be bounded analogously to the first three lines by changing
k − ℓ and ℓ.

Combining these estimates on the numerator of the kernel n̂1,13,±1,3 with the previous in-
formations of the denominator we find

(1 + k2)s/2
∣∣∣n̂1,13,±1,3(k, k − ℓ, ℓ)

∣∣∣ ≤ C(1 + |ℓ|)s+ 1
2 (1 + |k − ℓ|)s+ 1

2 . (69)

From this estimate and Lemma 3.1 we find immediately:

Corollary 3.9. N1,1
3,±1,3 defines a bounded linear operator from Yσ,s+1/2 to Yσ,s.

We now turn to estimate the terms of all other components of N1,1. The terms in the
numerators of the kernels can be estimated just as in the case of the terms in the numerator
of n̂1,13,±1,3 above. More specifically, those terms involving M1, or (sψ + K0(sψ)K0)∂α can
be bounded using the smoothing properties exploited on page 1499 of [SW00], so that they
result in no loss of smoothness. The terms involving M2 and (∂α(sψ))K0(∂αs·) lose half a
derivative as above.

Therefore, we find that the normal-form transformation N1,1 is well defined, but causes a
loss of smoothness. That is, we have the following. If R1

n ∈ Y 2
σ,s then there exists C > 0 such

that
‖εN1,1

n,±1,n(ψ±1, R
1
n)‖Y 2

σ,s−1/2
≤ Cε‖R1

n‖Y 2
σ,s

. (70)

Hence, there is a loss of “1/2 a derivative” – i.e., we get a bound of N1,1 in the space Y 2
σ,s−1/2

rather than Y 2
σ,s. One the other hand, since we do not have to deal with the large values of

ϑ−1(k) near k ≈ 0 we obtain a factor of ε on the right–hand side of this estimate.
Taking into account that |ω(k)| ∼

√
|k| for |k| → ∞ we further obtain for j 6= n the

estimate
‖εN1,1

j,±1,n(ψ±1, R
1
n)‖Y 2

σ,s
≤ Cε‖R1

n‖Y 2
σ,s

. (71)

Moreover, due to the compact support of R̂0
n the loss of regularity is not present in the

estimate for N1,0. We find

‖εN1,0
j,±1,n(ψ±1, R

0
n)‖Y 2

σ,s
≤ Cε‖R0

n‖Y 2
σ,s

. (72)

Now, we define the function space

Y R
σ,s = Yσ,s × Yσ,s−1/2 × Yσ,s−1/2 .

Then we can sum up the results of this first normal-form transformation as follows:

Proposition 3.10. Let R̃r for r = 0, 1 be defined by (52). Then this transformation maps
(R0, R1) ∈ Y R

σ,s×Y R
σ,s into (R̃0, R̃1) ∈ Y R

σ,s×Y R
σ,s−1/2 for all s > 1 and σ ≥ 0 and is invertible

on its range. Furthermore, if we write the inverse transformations as

R0 = R̃0 +N−1
0 (R̃0, R̃1) , R1 = R̃1 +N−1

1 (R̃0, R̃1) ,

32



then there exist constants C0, C1 such that the inverse transformations satisfy the estimates

‖N−1
0 (R̃0, R̃1)‖Y R

σ,s
≤ C0(‖R̃0‖Y R

σ,s
+ ‖R̃1‖Y R

σ,s
) ,

‖N−1
1 (R̃0, R̃1)‖Y R

σ,s
≤ C1ε(‖R̃0‖Y R

σ,s
+ ‖R̃1‖Y R

σ,s
) .

Finally, if (R0, R1) satisfy the equations (51) then (R̃0, R̃1) satisfy

∂tR̃
0
j = iωjR̃

0
j + ε

∑

l1,l2=−1,1
m=1,2,3
n=1,2,3

N0,1
j,l1,m

(ψl1 , εϑ
−1P 1Bm,l2,n(ψl2 , ϑR̃

1
n)) + ε2E0

j , (73)

∂tR̃
1
j = ωjR̃

1
j + ε2E1

j ,

for j = 1, 2, 3, where ε2Er = ε2(Er1 , Er2 , Er3 ) for r = 0, 1 denotes a collection of terms whose
Y R
σ,s−1-norms are bounded by Cε2 for (R̃0, R̃1) in some fixed ball in Y R

σ,s × Y R
σ,s.

Proof. The proof of invertibility of the transformation is deferred until the next section.
Assuming the invertibility for the moment the structure of the equations (73) follows imme-
diately using R1

j = R̃1
j +O(ε) for j = 1, 2, 3.

3.5 Properties of the nonlinear terms for k → 0

This subsection, along with the following two, give details about special features of the terms
that appear in the normal-form transformation which we have used in the construction in
the preceding section.

We start with some estimates for the nonlinear terms for k → 0. Let Bj be the kernel of
Bj(f, g) +Bj(g, f), i.e.,

F(Bj(f, g) +Bj(g, f))(k) =

∫
B̂j(k, k − ℓ, ℓ)f̂(k − ℓ)ĝ(ℓ)dℓ.

Then we have

Lemma 3.11. |B̂j(k, k − ℓ, ℓ)| ≤ C|k| for j = 4, 9, 14.

Proof. Due to the smoothness of kernel it is sufficient to show B̂j(0,−ℓ, ℓ) = 0. Consider
first

B4(f, g) +B4(g, f) = −M1(sf, ∂αg)−M1(sg, ∂αf)

+(sf)(∂αg) + (sg)(∂αf)

+K0((sf)K0(∂αg)) +K0((sg)K0(∂αf)).

1. We start by considering the term in the second line above, i.e.,
∫
ŝ(k − ℓ)f̂(k − ℓ)iℓĝ(ℓ) + ŝ(k − ℓ)ĝ(k − ℓ)iℓf̂(ℓ)dℓ

=

∫
ŝ(k − ℓ)f̂(k − ℓ)iℓĝ(ℓ) + ŝ(ℓ)ĝ(ℓ)i(k − ℓ)f̂(k − ℓ)dℓ.

The kernel
ŝ(k − ℓ)iℓ+ ŝ(ℓ)i(k − ℓ)

vanishes for k = 0 using that ŝ is an even function.
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2. If we now check the third line we have

K0(k)

∫
ŝ(k − ℓ)f̂(k − ℓ)K0(ℓ)iℓĝ(ℓ) + ŝ(k − ℓ)ĝ(k − ℓ)K0(ℓ)iℓf̂(ℓ)dℓ.

Since |K0(k)| ≤ |k| we are also done with this term.

3. Finally we come to the first line, namely

∫
(−K−1

0 (k − ℓ)ŝ(k − ℓ)f̂(k − ℓ)K0(ℓ)iℓĝ(ℓ)

+K0(k)K−1
0 (k − ℓ)ŝ(k − ℓ)f̂(k − ℓ)iℓĝ(ℓ)

−K−1
0 (k − ℓ)ŝ(k − ℓ)ĝ(k − ℓ)K0(ℓ)iℓf̂(ℓ)

+K0(k)K−1
0 (k − ℓ)ŝ(k − ℓ)ĝ(k − ℓ)iℓf̂(ℓ))dℓ.

Using that ŝ is even and K0 is odd shows that the kernel

K0(k)−K0(ℓ)

K0(k − ℓ)
ŝ(k − ℓ)iℓ+

K0(k)−K0(k − ℓ)

K0(ℓ)
ŝ(ℓ)i(k − ℓ)

vanishes for k = 0.

The next term to consider is B9(f, g) + B9(g, f). Many of the terms in this expression
appeared above but the new ones we consider are

−M2(sf)∂α(sg)−M2(sg)∂α(sf)

+∂α(sf)K0∂α(sg) + ∂α(sg)K0∂α(sf)

=

∫
−M2(k − ℓ)ŝ(k − ℓ)f̂(k − ℓ)iℓŝ(ℓ)ĝ(ℓ)

−M2(k − ℓ)ŝ(k − ℓ)ĝ(k − ℓ)iℓŝ(ℓ)f̂(ℓ)

+i(k − ℓ)ŝ(k − ℓ)f̂(k − ℓ)K0(ℓ)iℓŝ(ℓ)ĝ(ℓ)

+i(k − ℓ)ŝ(k − ℓ)ĝ(k − ℓ)K0(ℓ)iℓŝ(ℓ)f̂(ℓ)dℓ .

Using that ŝ and M2 are even and K0 is odd shows that the kernels

−M2(k − ℓ)ŝ(k − ℓ)iℓŝ(ℓ)−M2(ℓ)ŝ(ℓ)i(k − ℓ)ŝ(k − ℓ)

and
i(k − ℓ)ŝ(k − ℓ)K0(ℓ)iℓŝ(ℓ) + i(ℓ)ŝ(ℓ)K0(k − ℓ)i(k − ℓ)ŝ(k − ℓ)

vanish for k = 0.
The term B14(f, g) + B14(g, f) works analogously because all types of terms in this ex-

pression have already appeared above.

3.6 Cancellation

In the following we discuss the terms indicated before with cancellation. We have to show
the cancellation of B3(ψ±1, ϑR3) at the wave number k = ±2k0 in the equation for R1. We
need the boundedness of

b̂3(k, k − ℓ, ℓ)

−ω(k − ℓ) + ω(ℓ)
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for |k − ℓ∓ k0| ≤ δ. The denominator vanishes for the terms under consideration for k = 2ℓ.
Hence we have to prove that also

b̂3(2ℓ, ℓ, ℓ) = 0 . (74)

Due to the scalings the relevant quadratic terms on the right-hand side in the equation
for c1 are

−M1(sc2, ∂αc3) +M1(sc3, ∂αc2)

+sc2∂αc3 − sc3∂αc2

+K0(sc2K0))∂αc3 −K0(sc3K0))∂αc2.

1. We consider the second line first. We plug in the ansatz and find

∫
ψ̂±1(k − ℓ)ŝ(k − ℓ)iℓϑ̂(ℓ)R̂3(ℓ)− ϑ̂(k − ℓ)R̂3(k − ℓ)ŝ(k − ℓ)iℓψ̂±1(ℓ)dℓ.

We make a coordinate transform ℓ→ k− ℓ in the second part of the integral. Then the
kernel

ŝ(k − ℓ)iℓ− ŝ(ℓ)i(k − ℓ)

vanishes for k = 2ℓ as stated above.

2. Next we consider the third line. We plug in the ansatz and find

∫
K0(k)ψ̂±1(k − ℓ)ŝ(k − ℓ)K0(ℓ)iℓϑ̂(ℓ)R̂3(ℓ)

−K0(k)ϑ̂(k − ℓ)R̂3(k − ℓ)ŝ(k − ℓ)K0(ℓ)iℓψ̂±1(ℓ)dℓ.

We make a coordinate transform ℓ→ k− ℓ in the second part of the integral. Then the
kernel

K0(k)ŝ(k − ℓ)K0(ℓ)iℓ−K0(k)ŝ(ℓ)K0(k − ℓ)i(k − ℓ)

vanishes for k = 2ℓ as stated above.

3. Finally consider the first line. Recall that

M1(Z1, U1) = [K−1
0 Z1,K0]U1

= (K−1
0 Z1)(K0U1)−K0((K−1

0 Z1)U1).

Thus we get

−M1(sψ±1, ∂α(ϑR3)) +M1(sϑR3, ∂αψ±1)

= −(K−1
0 (sψ±1))(K0∂α(ϑR3)) +K0((K−1

0 (sψ±1))∂α(ϑR3))

+(K−1
0 (sϑR3))(K0∂αψ±1)−K0((K−1

0 (sϑR3))∂αψ±1)

=

∫
−K−1

0 (k − ℓ)ŝ(k − ℓ)ψ̂±1(k − ℓ)K0(ℓ)iℓϑ̂(ℓ)R̂3(ℓ)

+K0(k)K−1
0 (k − ℓ)ŝ(k − ℓ)ψ̂±1(k − ℓ)iℓϑ̂(ℓ)R̂3(ℓ)

+K−1
0 (k − ℓ)ŝ(k − ℓ)ϑ̂(k − ℓ)R̂3(k − ℓ)K0(ℓ)iℓψ̂±1(ℓ)

−K0(k)K−1
0 (k − ℓ)ŝ(k − ℓ)ϑ̂(k − ℓ)R̂3(k − ℓ)iℓψ̂±1(ℓ))dℓ .
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We make a coordinate transform ℓ→ k− ℓ in the second part of the integral. Then the
kernel

−K−1
0 (k − ℓ)ŝ(k − ℓ)K0(ℓ)iℓ

+K0(ℓ)K−1
0 (k − ℓ)ŝ(k − ℓ)iℓ

+K−1
0 (ℓ)ŝ(ℓ)K0(k − ℓ)i(k − ℓ)

−K0(k)K−1
0 (ℓ)ŝ(ℓ)i(k − ℓ)

vanishes for k = 2ℓ as stated above. The first and the third line, and the second and
the fourth line cancel.

Hence, we have shown (74).

3.7 Long wave form

We now verify that as we claimed just after (51), the terms in the third line of the equation for
R0
j are O(ε2), and hence can be ignored. First, we address the terms ε2ϑ−1P 0Bj,0,n(Ψ0, ϑR

r
n)

for j, n = 1, 2, 3 and r = 0, 1. We split Bj,0,n(Ψ0, ϑR
r
n) in the components

Bj,0,n(Ψ0, ϑR
r
n) =

∑

i=1,2,3

Bi
j,0,n(ψ0i, ϑR

r
n) .

By applying the same methods as we used to bound b̂3,±1,3 as well as the inequality |ℓ| ≤
|k|+ |k − ℓ| we get

sup
|ℓ|=O(1)

∣∣∣(P̂ 0b̂ij,0,n)(k, k − ℓ, ℓ)
∣∣∣ ≤ C(|k|+ |k − ℓ|) (75)

for i = 1, 2, 3, where b̂ij,0,n(k, k− ℓ, ℓ) is the kernel of Bi
j,0,n. This estimate is a consequence of

the fact that each summand in Bj,0,n contains at least one α-derivative. Using this estimate
and the bound |k|/(ε + |k|) ≤ 1 we obtain

∣∣∣∣
∫
P̂ 0(k)ϑ̂−1(k)b̂ij,0,n(k, k − ℓ, ℓ)ϑ̂(ℓ)ψ̂0i(k − ℓ)R̂rn(ℓ)dℓ

∣∣∣∣

≤ C

(∫
|P̂ 0(k)||kϑ̂−1(k)||ψ̂0i(k − ℓ)||R̂rn(ℓ)|dℓ+

∫
|P̂ 0(k)||k−ℓε ||ψ̂0i(k − ℓ)||R̂rn(ℓ)|dℓ

)

≤ C

(∫
|P̂ 0(k)||ψ̂0i(k − ℓ)||R̂rn(ℓ)|dℓ+

∫
|P̂ 0(k)||∂̂Xψ0i(k − ℓ)||R̂rn(ℓ)|dℓ

)

for i = 1, 2, 3. This implies that for any σ′, s′ we have

‖ε2ϑ−1P 0Bj,0,n(Ψ0, ϑR
r
n)‖Yσ′,s′

≤ ε2Cσ′,s′(Ψ0)‖Rrn‖Yσ,s , (76)

where the constant Cσ′,s′(Ψ0) is independent of ε due to the fact that Ψ0 is long wave-length,
i.e., the Fourier transform of Ψ0 is strongly concentrated near k = 0. Hence, the terms
ε2ϑ−1P 0Bj,0,n(Ψ0, ϑR

r
n) are of order O(ε2) and need not to be eliminated.

Finally, we turn to the consideration of the trilinear terms ε2ϑ−1P 0Tj,1,−1,n(ψ1, ψ−1, ϑR
r
n)

for j, n = 1, 2, 3 and r = 0, 1. Using [Cr85, Lemma 3.7] and [SW00, Corollary 3.16] as well as
the inequality |p| ≤ |k|+ |k − p| we get

sup
|p|=O(1)

∣∣∣(P̂ 0T̂j,1,−1,n)(k, k − ℓ, ℓ− p, p)
∣∣∣ ≤ C(|k|+ |k − p|) , (77)
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where T̂j,1,−1,n(k, k−ℓ, ℓ−p, p) is the kernel of Tj,1,−1,n. This estimate is a consequence of the
fact that each summand in Tj,1,−1,n contains at least one α-derivative. Using this estimate
and the bound |k|/(ε + |k|) ≤ 1 we obtain

∣∣∣∣
∫
P̂ 0(k)ϑ̂−1(k)T̂j,n(k, k − ℓ, ℓ− p, p)ϑ̂(p)ψ̂1(k − ℓ)ψ̂−1(ℓ− p)R̂rn(p)dℓdp

∣∣∣∣

≤ C

∫
|P̂ 0(k)| |ψ̂1(k − ℓ)| |ψ̂−1(ℓ− p)| |R̂rn(p)| dℓdp

+C

∫
|P̂ 0(k)| |k−pε | |ψ̂1(k − ℓ)| |ψ̂−1(ℓ− p)| |R̂rn(p)| dℓdp .

This implies that for any σ′, s′ we have

‖ε2ϑ−1P 0Tj,1,−1,n(ψ1, ψ−1, ϑR
r
n)‖Yσ′,s′

≤ ε2Cσ′,s′(ψ1, ψ−1)‖Rrn‖Yσ,s , (78)

where the constant Cσ′,s′(ψ0) is independent of ε due to the fact that the Fourier transform
of ψ1ψ−1 is strongly concentrated near 0. Hence, the terms ε2ϑ−1P 0Tj,1,−1,n(ψ1, ψ−1, ϑR

r
n)

are also of order O(ε2) and need not to be eliminated.

3.8 The second normal-form transform

We now construct a second normal-form transformation to remove the remaining terms of
O(ε) from (73). Before doing so we analyze the offending terms in more detail. The terms
can be written as

εN̂0,1
j,l1,m

(ψl1 , εϑ
−1P 1Bm,l2,n(ψl2 , ϑR̃

1
n))(k) (79)

= ε2
∫
n̂0,1j,l1,m(k, k − ℓ, ℓ)ψ̂l1(k − ℓ)

×ϑ−1(ℓ)P̂ 1(ℓ)

(∫
b̂m,l2,n(ℓ, ℓ− p, p)ψ̂l2(ℓ− p)ϑ̂(p) ˆ̃R1

n(p)dp

)
dℓ ,

where we recall that

n̂0,1j,l1,m(k, k − ℓ, ℓ) =
iP̂ 0(k)b̂j,l1,m(k, k − ℓ, ℓ)

(−ωj(k)− ω(k − ℓ) + ωn(ℓ))

ϑ̂(ℓ)

ϑ̂(k)
.

We now apply Lemma 3.5 to simplify this expression as we did for N1,r (r = 0, 1). If we
do so we obtain the expression

εN̂0,1
j,l1,m

(ψl1 , εϑ
−1(· − l1k0)P

1Bm,l2,n(ψl2 , ϑ(· − l2k0)R̃
1
n))(k) (80)

= ε2
∫

ˆ̃n0,1j,l1,m(k)ψ̂l1(k − ℓ)P̂ 1(k − l1k0)

×
(∫

b̂m,l2,n(k − l1k0, k − l1k0 − p, p)ψ̂l2(ℓ− p)ϑ̂(k − (l1 + l2)k0)
ˆ̃R1
n(p)dp

)
dℓ

+ε2E0,1
j ,

where ε2E0,1 = ε2(E0,1
1 , E0,1

2 , E0,1
3 ) denotes a collection of terms whose Y R

σ,s−1-norms are

bounded by Cε2 for (R̃0, R̃1) in some fixed ball in Y R
σ,s × Y R

σ,s.
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Moreover, we use the abbreviation

ˆ̃n0,1j,l1,m(k) =
iP̂ 0(k)b̂j,l1,m(k, l1k0, k − l1k0)

(−ωj(k)− ω(l1k0) + ωm(k − l1k0))

1

ϑ̂(k)
.

With these modifications we can now prove that all terms of the form (79) with l1 = −l2
are O(ε2) and hence can be included in the ε2Erj terms in (73):

Lemma 3.12. There exists C > 0 such that

‖εN0,1
j,1,m(ψ1, εϑ

−1P 1Bm,−1,n(ψ−1, ϑR̃
1
n))‖Yσ,s ≤ Cε2‖R̃1

n‖Yσ,s ,
‖εN0,1

j,−1,m(ψ−1, εϑ
−1P 1Bm,1,n(ψ1, ϑR̃

1
n))‖Yσ,s ≤ Cε2‖R̃1

n‖Yσ,s .

Proof. Since N0,1
j,±1,m contains the factor P̂ 0(k) means that the integral over k which occurs

in the Yσ,s-norm runs only over the integral |k| < δ. Thus, we can bound the Yσ,s-norm by
bounding the maximum of the kernel. The first term in Lemma 3.12 has the modified kernel

ε2 ˆ̃nj,1,m(k)P̂
1(k − k0)b̂m,−1,n(k − k0, k − k0 − p, p)ϑ̂(k). (81)

Since ϑ(k)ˆ̃nj,1,m(k) is O(1) bounded and all other terms in (81) are O(1) bounded for |k| < δ
we have an O(ε2) bound for the kernel (81). The second term in Lemma 3.12 can be estimated
similarly.

Lemma 3.12 implies that the terms of the form (79) with l1 = −l2 need not be eliminated
by the normal-form transformation. Thus we now turn to the terms of the form (79) with
l1 = l2. If we simplify the kernels of these terms with the aid of Lemma 3.5, we find the
kernels have the form:

ε2 ˆ̃nj,±1,m(k)P̂
1(k ∓ k0)b̂m,±1,n(k ∓ k0, k ∓ k0 − p, p)ϑ̂(k ∓ 2k0) (82)

plus errors that are of size O(ε2). Note that in contrast to the terms considered in Lemma
3.12 this expression does not contain a factor of ϑ̂(k) to offset the ϑ̂(k) in the denominator
of ˆ̃nj,±1,m(k) and thus they must be eliminated by a second normal-form transformation.

We look for a transformation of the form

R0
j = R̃0

j + εD0,1,+
j (ψ1, ψ1, R̃

1) + εD0,1,−
j (ψ−1, ψ−1, R̃

1)

R1
j = R̃1

j . (83)

Differentiating the expression for R0
j we find, just as in Subsection 3.2, that the terms of O(ε)

in (73) will be eliminated if D0,1,+
j satisfies

{
−iωjD0,1,+

j (ψ1, ψ1, R̃
1)−D0,1,+

j (iωψ1, ψ1, R̃
1)−D0,1,+

j (ψ1, iωψ1, R̃
1)

+D0,1,+
j (ψ1, ψ1,ΛR̃

1) +N0,1
j (ψ1, εϑ

−1P 1B(ψ1, ϑR̃
1))

}
= 0 , (84)

where Λ̂(k) is a diagonal matrix with entries iωj(k), j = 1, 2, 3. We find that we have to
choose

εD0,1,+
j (ψ1, ψ1, R̃

1) (85)

= ε2
∑

m=1,2,3

∫
ˆ̃nj,1,m(k)ψ̂1(k − ℓ)P̂ 1(k − k0)

×


 ∑

n=1,2,3

∫
b̂m,1,n(k − k0, k − k0 − p, p)ψ̂1(ℓ− p)ϑ̂(k − 2k0)

ˆ̃R1
n(p)

−ωj(k)− 2ω(k0) + ωn(k − 2k0)
dp


 dℓ ,
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where we used as above in the kernel that k− ℓ ≈ ℓ− p ≈ k0 due to the localization of ψ̂1 so
we have p ≈ −2k0 which is made rigorous with Lemma 3.5. According to Young’s inequality
we have to estimate the kernel w.r.t. the sup norm. We already know that the numerator
in this expression in O(ε). In order to estimate the denominator note that in this expression
k ≈ 0 due to the factor of P̂ 0 in ˆ̃nj,1,m(k). Hence

(−ωj(k)− 2ω(k0) + ωn(k − 2k0)) ≈ −2ω(k0)− ωn(2k0) 6= 0.

Regardless of the value of j and n this expression is bounded strictly away from zero. Hence
the mapping εD0,1,+ is O(ε)-bounded. We can construct and estimate an analogous expres-
sion for D0,1,− in a very similar fashion. Therefore, the normal-form transform is well defined
and invertible. We find

Lemma 3.13. If

R0 = R̃0 + εD0,1,+(ψ1, ψ1, R̃
1) + εD0,1,−(ψ−1, ψ−1, R̃

1)

with εD0,1,± defined as in (85), then for any σ ≥ 0 and s > 1 there exists C > 0 such that

‖εD0,1,±(ψ±1, ψ±1, R̃
1)‖Y R

σ,s
≤ Cε‖R̃1‖Y R

σ,s
.

Remark 3.14. Note that there is no loss of smoothness in this transformation due to the
factor of P̂ 0 in (85) via ˆ̃nj,±1,m(k).

Now, just as in Proposition 3.10 we have:

Proposition 3.15. Fix σ ≥ 0 and s ≥ 1. Suppose (R̃0, R̃1) satisfy the equations (73). Define
(R0,R1) via the transformations (83). Then for any ρ > 0, there exists ερ > 0 such that
for all |ε| < ερ the transformation (83) is invertible on the ball of radius ρ in Y R

σ,s × Y R
σ,s.

Furthermore, (R0,R1) satisfy the equations

∂tR0 = ΛR0 + ε2E0 , (86)

∂tR1 = ΛR1 + ε2E1 ,

where Λ̂(k) is a diagonal matrix with entries iωj(k), j = 1, 2, 3 and ε2Er, r = 0, 1, denotes a
collection of terms whose Y R

σ,s−1 norms are bounded by Cε2.

Proof. The invertibility of the transformation in this case results from a simple application
of the Neumann series since there is no loss of smoothness. The equation for R0 and R1

follow in the same way the equations for R̃0 and R̃1 were derived in the proof of Proposition
3.10.

Finally, we consider the composition of the two normal-form transformations, namely

R0 = R̃0 + εD0,1,+(ψ1, ψ1, R̃
1) + εD0,1,−(ψ−1, ψ−1, R̃

1)

= R0 + εN0,1(Ψ, R1) + εD0,1,+(ψ1, ψ1, R
1 + εN1,0(Ψ, R0) + εN1,1(Ψ, R1))

+εD0,1,−(ψ−1, ψ−1, R
1 + εN1,0(Ψ, R0) + εN1,1(Ψ, R1))

≡ R0 + εF 0(R) , (87)

with a similar expression for R1 ≡ R1+εF 1(R). From Proposition 3.10 and Proposition 3.15
we see that

1. F 0 and F 1 are linear functions of R, and
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2. The (composite) normal-form transformation loses at most half a derivative, i.e., there
exists a constant CF such that

‖εF 1(R)‖Y R
σ,s−1/2

≤ CF ε‖R‖Y R
σ,s

.

There is no loss of regularity in F 0 due to its compact support in Fourier space.

If we now insert the information we have derived on the equations satisfied by the trans-
formed variables we find the following proposition:

Proposition 3.16. There exists a (linear) change of variables,

R = R+ εF (R)

defined for R ∈ Y R
σ,s and invertible on its range such that in terms of the transformed variables

the equation for the evolution of the error in our approximation takes the form

∂tR = ΛR+ ε2ℓ(R) + ε3G(R) + ε−3ϑ−1Res(εΨ) . (88)

Furthermore the linear term ε2ℓ(R) and the bilinear term ε3G(R) satisfy the estimates

‖ε2ℓ(R)‖Y R
σ,s−1

≤ CLε
2‖R‖Y R

σ,s
,

and
‖ε3G(R)‖Y R

σ,s−1
≤ CGε

3‖R‖Y R
σ,s

‖R‖Y R
σ,s−1

.

Proof. The proof follows from the estimates in Proposition 3.10 and Proposition 3.15. The
last estimate also relies on the estimates in [SW00, Lemma 3.14, Lemma 3.15 and Corollary
3.16] which exclude the occurrence of terms quadratic in ‖R‖Y R

σ,s
.

4 Inverting the normal-form transform

To complete the derivation of the evolution equation for (R0,R1) in Proposition 3.15 we now
prove the invertibility of the first normal-form transform asserted in Proposition 3.10. There
is a serious problem due to fact that N1,1 loses half a derivative, i.e., is a mapping from
Y R
σ,s into Y

R
σ,s− 1

2

. Therefore, inverting the normal-form transform with the help of Neumann’s

series is not possible.
The basic idea behind the inversion is the use of energy estimates to invert the trans-

formation. In the following we explain this strategy by reviewing the handling of a model
problem from [SW11, Section 5].

We consider a linear transformation v 7→ u which can be written in Fourier variables as:

û(k) = v̂(k) + ε

∫
b̂(k)â(k −m)v̂(m)dm.

We assume that:

• b̂(k) is pure imaginary.

• b̂(k) is Lipschitz as a function of k with a Lipschitz constant which is independent of
0 < ε≪ 1.
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• b̂(k) ∼ ik for |k| → ∞

Furthermore, a is assumed to be smooth and real-valued.
Then we find
∫
v̂(k)û(k) + v̂(k)û(k) = 2

∫
v̂(k)v̂(k) + ε

∫
v̂(k)b̂(k)â(k −m)v̂(m)dmdk

+ε

∫
v̂(k)b̂(k) â(k −m) v̂(m)dmdk

= 2

∫
v̂(k)v̂(k) + ε

∫
v̂(k)b̂(k)â(k −m)v̂(m)dmdk

+ε

∫
v̂(m)b̂(m) â(m− k) v̂(k)dk dm

= 2

∫
v̂(k)v̂(k) + ε

∫
v̂(k)â(k −m)v̂(m)(b̂(k) + b̂(m))dk dm

where we used â(ℓ) = â(−ℓ) due to the fact that a is real-valued.
Hence

2‖v̂‖2L2 ≤ 2‖v̂‖L2‖û‖L2 + εs1 ,

where with the Gagliardo-Nirenberg inequality

s1 = |
∫
v̂(k)v̂(m)â(k −m)(b̂(k) + b̂(m))dk dm|

≤
∫

|v̂(k)v̂(m)||â(k −m)|C|k −m|dmdk

≤ ‖v‖2L2

∫
|â(ℓ−m)|C|(ℓ−m)|dℓ

since |b̂(k)+b̂(m)| = |b̂(k)−b̂(m)| ≤ C|k−m| if b̂ is Lipschitz-continuous and purely imaginary,
and this last integral will be finite if the kernel a is sufficiently smooth.

If instead of inverting the transformation in the Sobolev spaces Hs, we work in the expo-
nentially weighted spaces, Yσ,s, the observation that eσ|k| ≤ eσ|k−m|eσ|m|, plus an argument
very similar to that just above yields the estimates

‖u‖Yσ,s ≤ C‖v‖Yσ,s+1 and ‖v‖Yσ,s ≤ C‖u‖Yσ,s .

Now, we consider the first normal-form transformation constructed in the previous section:

R̃0
j = R0

j + εN0,1
j (Ψ, R1)

R̃1
j = R1

j + εN1,1
j (Ψ, R1) + εN1,0

j (Ψ, R0)

for j = 1, 2, 3. Recall that only the terms N1,1
j lose smoothness. Both N0,1

j and N1,0
j are

bounded transformations from Yσ,s to Yσ,s . Thus, we first consider just

R̃1
j = R1

j + εN1,1
j (Ψ, R1) + εN1,0

j (Ψ, R0) . (89)

From the previous section we know that

N̂1,1
j (Ψ, R1)(k) =

∑

l=−1,1
n=1,2,3

∫
n̂1,1j,l,n(k)ψ̂l(k −m)R̂1

n(m)dm ,
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where from the explicit formula (63) one can verify that n̂1,1j,l,j satisfies the hypotheses on the

kernel assumed in the above model problem whereas the components n̂1,1j,l,n for j 6= n do not

cause a loss of regularity. Furthermore, ψ̂ℓ plays the role of â in the model problem and
hence has the necessary smoothness properties. Thus, we multiply both sides of (89) by R1

j ,

add together the cases for j = 1, 2, 3 and take the Y R
σ,s norm of both sides. Then we find

analogously to the above model problem that

‖R1‖2Y R
σ,s

≤ ‖R1‖Y R
σ,s

‖R̃1‖Y R
σ,s

+ C1ε‖R1‖2Y R
σ,s

+ C2ε(‖R1‖2Y R
σ,s

+ ‖R0‖2Y R
σ,s

) , (90)

where ‖R1‖2
Y R
σ,s

= ‖R1
1‖2Y R

σ,s
+ ‖R1

2‖2Y R
σ,s

, and similarly for ‖R̃1‖Y R
σ,s

and ‖R0‖Y R
σ,s
.

This inequality implies that the transformation R1 → R̃1 is 1–1, hence invertible and
satisfies the estimate

‖R1‖2Y R
σ,s

≤
(

1

1− C3ε

)(
‖R̃1‖2Y R

σ,s
+ εC4‖R0‖2Y R

σ,s

)
(91)

so that we can write
R1
j = R̃1

j + εF (R̃1, R0). (92)

We now consider the transformation for R0
j , which with the help of (91). We can write

R̃0
j = R0

j + εN0,1
j (Ψ, R1) (93)

= R0
j + εN0,1

j (Ψ, R̃1) + ε2N0,1
j (Ψ, F (R̃1, R0)),

or
R0
j = (R̃0

j − εN0,1
j (Ψ, R̃1))− ε2N0,1

j (Ψ, F (R̃1, R0)) . (94)

Recall that N0,1 is smoothing as we remarked in (57) and the extra power of ε insures that
ε2N0,1(Ψ, F (R̃1, R0)) is also small. Thus (94) can be inverted by a Neumann series and we
see that the normal-form transformation (52) is invertible and satisfies the estimates claimed
in Proposition 3.10.

5 The error estimates

In this final section, we verify that the difference between the true solution of the water wave
problem and the (improved) NLS approximation remains small over the relevant time scale.

In order to solve and control the error equation (88), we use energy estimates in a scale
of Banach spaces of analytic functions. Because we cut-off the Fourier transforms of our
approximation functions in Fourier space (see (37)) the approximation functions and the
residual term computed from them are analytic in a strip of width O(1) in the complex
plane, even though our original solutions of the NLS equation were only in HsA.

We now use this analyticity to allow us to apply results on optimal regularity for parabolic
equations. We do this by allowing the width of the domain of analyticity to shrink with time.
This adds an “artificial” smoothing to the equation (88).

To see how rapidly we can allow the width of the analyticity strip to shrink note that it is
initially of width 2σ = O(1) and we need to control solutions of the error equation for times
of O(ε−2) so we can shrink the width of the analyticity strip with a velocity of order O(ε2).

Hence, we define

R̂(k, t) = Ŝ(k, t)ŵ(k, t) = ŵ(k, t)e−|k|(a−bε2t)
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with constants a, b > 0 chosen below. If w(t) ∈ L2, then R(t) is analytic in a strip of width
a− bε2t, i.e., t ∈ [0, a/(bε2)]. Computing the equation for w we find

∂tw = Λw − |k|bε2w + ε2ℓ̃(w) + ε3G̃(w) + ε−3ϑ−1R̃es(εΨ), (95)

where ℓ̃(w) = S−1(t)ℓ(S(t)w), G̃(w) = S−1(t)G(S(t)w), and R̃es(εΨ) = S−1(t)Res(εΨ).
If we use the estimates on ℓ and G from Proposition 3.16, along with the fact that the

support of Res(εΨ) is bounded in Fourier space, then we immediately obtain the following
estimates for the terms in (95).

Corollary 5.1. For any r ≥ 3, there exist constants C̃L, C̃G and C̃R such that

‖ℓ̃(w)‖Hr−1
R

≤ C̃L‖w‖Hr
R
,

‖G̃(w)‖Hr−1
R

≤ C̃G‖w‖Hr
R
‖w‖Hr−1

R
,

‖ε−3ϑ−1R̃es(εΨ)‖Hr
R

≤ C̃Rε
2,

where Hr
R = Hr ×Hr−1/2 ×Hr−1/2.

We control the solutions of equation (95) using energy estimates and Gronwall’s inequality.
Fix some index s ≥ 6 and define

‖f‖2Hs = ‖f‖2L2 + ‖f‖2
H̊s (96)

where

‖f‖2
H̊s =

∫
|k|2s|f̂(k)|2dk. (97)

We have

1

2
∂t‖wj‖2L2 = −bε2

∫
|k||ŵj(k)|2dk + ε2

∫
|ŵj(k)||( ̂̃ℓ(w))j(k)|dk (98)

+εβ
∫

|ŵj(k)||(̂̃G(w))j(k)|dk +

∫
|ŵj(k)||ε−3ϑ̂−1(k)(

̂̃
Res(w))j(k)|dk

for j = 1, 2, 3. Applying the Cauchy-Schwarz inequality and the estimates of Corollary 5.1,
we find

1

2
∂t‖wj‖2L2 ≤ −bε2‖wj‖2H̊1/2 + ‖wj‖L2(C̃Lε

2‖w‖H3
R
+ C̃Gε

3‖w‖H2
R
‖w‖H3

R
+ C̃Rε

2)

≤ −bε2‖wj‖2H̊1/2 + ε2(C̃L + C̃R)‖w‖2H3
R
+ C̃Gε

3‖w‖3H3
R
+ C̃Rε

2.

Now consider

1

2
∂t‖wj‖2H̊s = −bε2

∫
|k|2s+1|ŵj(k)|2dk + ε2

∫
|k|2s|ŵj(k)||( ̂̃ℓ(w))j(k)|dk (99)

+εβ
∫

|k|2s|ŵj(k)||(̂̃G(w))j(k)|dk +

∫
|k|2s|ŵj(k)||ε−3ϑ̂−1(k)(

̂̃
Res(w))j(k)|dk.

If we once again apply the Cauchy-Schwarz inequality and the estimates in Corollary 5.1 we
can bound the last three integrals in (99) by

‖wj‖H̊s+1/2

{
C̃Lε

2‖w‖
H

s+1/2
R

+ C̃Gε
3‖w‖

H
s−1/2
R

‖w‖
H

s+1/2
R

+ C̃Rε
2
}
. (100)
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Combining (99) and (100) gives

1

2
∂t‖wj‖2H̊s ≤ −ε2(b− (C̃L + C̃R)− C̃Gε‖w‖Hs−1/2

R

)‖wj‖2Hs+1/2 + C̃Rε
2. (101)

Combining this with the estimate on the L2-norm of w and using ‖f‖H3 ≤ 2‖f‖Hr for all
r ≥ 3 we obtain the inequality

1

2
∂t‖w‖2Hs

R
≤ −ε2(b− 3(C̃L + C̃R)− 3C̃Gε‖w‖Hs−1/2

R

)‖w‖2
H

s+1/2
R

+ 2C̃Rε
2. (102)

Applying Gronwall’s inequality to (102) we obtain:

Proposition 5.2. If b− 3(C̃L + C̃R)− 3C̃Gε sup0≤t≤t0 ‖w(t)‖Hs−1/2
R

≥ 0, then

sup
0≤t≤t0

‖w(t)‖2Hs
R
≤ (‖w(0)‖2Hs

R
+ 2C̃Rε

2t0).

Take t0 = ε−2T̃0 and ‖w(0)‖2Hs
R

≤ 2C̃RT̃0. Then choose b such that b − 3(C̃L + C̃R) −
24C̃GC̃RT̃0ε ≥ 0. The Proposition 5.2 implies

Corollary 5.3. For all 0 ≤ ε2t ≤ T̃0,

‖w(t)‖2Hs
R
≤ 4C̃RT̃0.

Finally we must check that the smoothing operator S(t) is well defined. We require
that the constants a and b in its definition be such that σ > a and a − bε2t > a/2 for all
0 ≤ ε2t ≤ T̂0. In this case S(t) is well defined. (Note that this means in particular that
T̂0 < σ/(2b).) Finally, we have

Corollary 5.4. Choose T1 = min(T̃0, T̂0). Then

sup
0≤ε2t≤T1

‖R(t)‖Y R
a/2,s

≤ sup
0≤ε2t≤T1

‖R(t)‖Y R
a−bε2t,s

≤ sup
0≤ε2t≤T̃0

‖R(t)‖Y R
a−bε2t,s

(103)

= sup
0≤ε2t≤T̃0

‖S(t)w(t)‖Y R
a−bε2 t,s

= sup
0≤ε2t≤T̃0

‖w(t)‖Hs
R
≤ 4C̃RT̃0.

Since the Y 2
a/2,s-norm controls any Sobolev norm, we obtain

Corollary 5.5. Choose T1 = min(T̃0, T̂0). Then

sup
0≤ε2t≤T1

‖R(t)‖2Hs
R
≤ 4C̃RT̃0.

Combining this estimate with Proposition 3.10, Proposition 3.15, and Lemma 2.6 implies
Theorem 2.8.
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A Appendix

A.1 Some estimates on the operator K(X)

In this appendix we prove the statements about the analyticity of the operater K used in
previous sections. Note that as described in Section 2 the value of K(X1,X2)U1 is obtained
by solving the boundary value problem

∆φ = 0, in Ω(t), (104)

∂x2φ = 0, for x2 = −1, (105)

∂x1φ = U1, on Γ(t), (106)

where Ω(t) is the domain {(x1, x2) | − ∞ < x1 < ∞ , −1 < x2 < η(x1, t)} and Γ(t) =
{(x1, η(x1, t))| x1 ∈ IR} is the upper surface of the fluid, specified in Lagrangian variables
by the curve (α+X1(α, t),X2(α, t)). If φ(x1, x2) is the solution of this problem (for fixed t)
then ∂x2φ|Γ(t) = K(X1,X2)U1.

We now solve this boundary value problem in the spaces Yσ,s to analyze the analyticity
of K(X). We will reduce the problem on Ω(t) to a problem on the fixed rectangular domain
R = {(x, y) | − ∞ < x < ∞ , 0 < y < 1} and with this in mind we introduce the Banach
spaces

Kr
σ,s = Hr((0, 1), Yσ,s) .

Before treating the full problem that defines K(X) we derive a pair of simple lemmas that
we will use later.

Let u(x, y) = ∂xφ(x, y) and v(x, y) = ∂yφ(x, y). Consider the homogeneous boundary
value problem

∂xu+ ∂yv = 0 ,
∂yu− ∂xv = 0 ,

}
(x, y) ∈ R ,

v|y=0 = 0 , u(x, 1) = U(x) . (107)

Lemma A.1. If U ∈ Yσ,s then u ∈ K0
σ,s+(1/2) ∩K1

σ,s−(1/2).

Proof. Taking Fourier transforms with respect to x we find

û(k, y) =
Û(k) cosh(ky)

cosh(k)
.

Then

‖u‖2
K0

σ,s+(1/2)
=

∫ ∞

k=−∞

∫ 1

y=0
e2σ|k|(1 + k2)s+(1/2)

∣∣∣∣∣
Û(k) cosh(ky)

cosh(k)

∣∣∣∣∣

2

dydk .

Performing the integral with respect to y the integrand becomes

e2σ|k|(1 + k2)s+(1/2)|Û(k)|2
∣∣∣∣
cosh(k) sinh(k) + k

2k cosh(k)

∣∣∣∣
2

≤ Ce2σ|k|
(1 + k2)s+(1/2)

(1 + |k|)2 |Û (k)|2

and the integral over k is finite since U ∈ Yσ,s. A similar calculation shows u ∈ K1
σ,s−(1/2).

Next consider the inhomogeneous system of equations

∂xu+ ∂yv = f ,
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∂yu− ∂xv = g ,
v|y=0 = u|y=1 = 0 . (108)

If we represent u(x, y) as a series in cos((2m+1)πy/2) and v(x, y) as a series in sin((2m+
1)πx/2) then a computation similar to that above yields:

Lemma A.2. Suppose f and g are elements of K0
σ,s ∩K1

σ,s−1. Then the solutions u and v of

the inhomogeneous system are elements of K0
σ,s+1 ∩K1

σ,s.

With these preliminaries in hand we now turn to a consideration of the operator K(X).
We map the variables (x1, x2) in the original fluid domain onto a rectangle via the change of
variables

x1 = α+X1(α) , x2 = z(1 +X2(α)) .

If u(x1, x2) = ũ(α, z) and v(x1, x2) = ṽ(α, z) then

∂αũ+ ∂z ṽ = R1 ,
∂zũ− ∂αṽ = R2 , (109)

where R1 and R2 are given by

R1 = −
(
∂αX1

1 +X2

)
∂z ṽ +

(
X2

1 +X2

)
∂z ṽ +

(
z∂αX2∂zũ

(1 +X2)

)
,

and

R2 =

(
∂αX1

1 +X2

)
∂zũ+

(
X2

1 +X2

)
∂z ũ−

(
z∂αX2∂z ṽ

(1 +X2)

)
,

subject to the boundary conditions ũ(α, 1) = ∂tX1 and ṽ = 0.
Let (uh, vh) be the solution of the homogeneous equations:

∂αu
h + ∂zv

h = 0 ,
∂zu

h − ∂αv
h = 0 (110)

with boundary conditions uh(α, 1) = U1 and vh = 0.
We can solve this problem with the aid of Lemma A.1 and we find:

Lemma A.3. If U1 ∈ Yσ,s−(1/2) the u
h and vh are in K0

σ,s ∩K1
σ,s−1.

Remark A.4. Note that the boundary value of vh|z=1 gives us the value of the linearized
operator K0U1. Applying the trace theorem we see that Lemma A.3 implies that K0 is a
bounded operator from Yσ,s−(1/2) to itself.

Now set u = ũ− uh, v = v − vh and we find that

∂αū+ ∂z v̄ = R̄1 ,
∂zū− ∂αv̄ = R̄2 , (111)

where R1 and R2 are given by

R̄1 = −
(
∂αX1

1 +X2

)
∂z v̄ +

(
X2

1 +X2

)
∂z v̄ +

(
z∂αX2∂zū

(1 +X2)

)
+ ∂αu

h + ∂zv
h

−
(
∂αX1

1 +X2

)
∂zv

h +

(
X2

1 +X2

)
∂zv

h +

(
z∂αX2∂zu

h

(1 +X2)

)
, (112)
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and

R̄2 =

(
∂αX1

1 +X2

)
∂zū+

(
X2

1 +X2

)
∂zū−

(
z∂αX2∂z v̄

(1 +X2)

)
+ ∂zu

h − ∂αv
h+

(
∂αX1

1 +X2

)
∂zu

h +

(
X2

1 +X2

)
∂zu

h −
(
z∂αX2∂zv

h

(1 +X2)

)
, (113)

where now we have zero boundary conditions u(α, 1) = 0 and v(α, 0) = 0.
Define

F(ū, v̄; ∂αX1,X2) = (F1(ū, v̄; ∂αX1,X2), F2(ū, v̄; ∂αX1,X2)) ,

where F1 = ∂αū+ ∂z v̄ − R̄1 and F2 = ∂zū− ∂αv̄ = R̄2.
Note that a solution (ū, v̄) of our partial differential equations is a zero of F. We will

solve the PDE’s by applying the implicit function theorem to find zeros of F.
Define the Banach spaces E = (K0

σ,s ∩K1
σ,s−1)

2 with boundary conditions ū(α, 1) = 0 and

v̄(α, 0) = 0, F = Yσ,s−1×Yσ,s and G = (K0
σ,s−1)

2. (In fact we consider the complex extensions
of these spaces so that we can work with complex Banach spaces.)

Note that F is an analytic function from E × F into G.
If we take X1 = X2 = 0, then we can find (u0, v0) such that

F(u0, v0; 0, 0) = (0, 0)

since this is just the solution of the inhomogeneous, partial differential equations. More
precisely, this can be rewritten as

∂αu
0 + ∂zv

0 = ∂zu
h − ∂αv

h +

(
∂αX1

1 +X2

)
∂zu

h +

(
X2

1 +X2

)
∂zu

h

−
(
z∂αX2∂zv

h

(1 +X2)

)
,

∂zu
0 − ∂αv

0 = ∂zu
h − ∂αv

h +

(
∂αX1

1 +X2

)
∂zu

h +

(
X2

1 +X2

)
∂zu

h (114)

−
(
z∂αX2∂zv

h

(1 +X2)

)
.

Note that the right hand side of this system of equations is an element of the Banach
space G and using Fourier transform we can solve for (u0, v0) ∈ E.

Next observe that if we linearize F at (u0, v0; 0, 0) we have

(
D(u,v)F(u

0, v0; 0, 0)
) (U

V

)
=

(
∂αU + ∂zV

∂zU − ∂αV

)
.

But then, for any (f, g) ∈ G, we see that

(
D(u,v)F(u

0, v0; 0, 0)
) (U

V

)
=

(
∂αU + ∂zV

∂zU − ∂αV

)
=

(
f

g

)

again just requires us to solve a the same linear, constant coefficient partial differential
equation. Again, for any (f, g) ∈ G we can find (U, V ) ∈ E by Fourier transform and hence
D(u,v)F(u

0, v0; 0, 0) has a bounded inverse.
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Thus, we can apply the analytic implicit function theorem and we find that for any
(∂αX1,X2) in a sufficiently small neighborhood of the origin in F there exist solutions (ū, v̄) ∈
E depend analytically on ∂αX1, X2.

Since the trace operator is a bounded linear operator from E into Yσ,s−(1/2) we see that
v(α, 1) = K(X1,X2)(∂tX1) depends analytically on (∂αX1,X2) in a sufficiently small neigh-
borhood of the origin in F .

Thus, we have proven:

Proposition A.5. K(X1,X2) is a linear operator from Yσ,s−(1/2) to itself which depends
analytically on (∂αX1,X2) ∈ Yσ,s × Yσ,s.

One other operator which we used in Section 2 was M1. Recall that to avoid the secular
growth in the variable X1, we introduced the variable Z1 = K0X1 and we associated to Z1

the operator
M1(Z1, ·) = [X1,K0]·

which satisfies

Lemma A.6. Let r ≥ 0, q > 1/2 and 0 ≤ p ≤ q. Then there exists a C > 0 such that

‖M1(a, u)‖Hr ≤ C‖a‖Hr+p‖u‖Hq−p ,

‖M1(a, u)‖Hr ≤ C‖â‖L1(r+p)‖u‖Hq−p .

Proof. See [SW00, Corollary 3.13] and [SW03, Remark A.6] .

Remark A.7. M1 is well defined, even though K0 is not invertible in general, due to the
commutator in its definition.

In order to express the term ∂αX1 in terms of Z1 we defined additionally the operator

M2· = −∂α(K0)
−1·

which is a map from Hs+1 to Hs.

Remark A.8. Finally, the operator (1 +K2
0)· is infinitely smoothing due to the fact that in

Fourier space its symbol (1 + K̂0(k)
2) vanishes with some exponential rate for |k| → ∞.

A.2 Some properties of our function spaces.

It is more or less obvious that the spaces Yσ,s are Banach spaces. For s > 1/2 something
stronger is true.

Lemma A.9. The spaces Yσ,s are Banach algebras for all σ ≥ 0 and all s > 1
2 .

Proof. Suppose that u and v are in Yσ,s. Then

‖uv‖2σ,s =

∫
(1 + k2)se2σ|k|

(∫
û(k − ℓ)v̂(ℓ)dℓ

)2

dk

≤ C

∫ (∫
[(1 + |k − ℓ|2)s/2 + (1 + ℓ2)s/2]eσ(|k|+|k−ℓ|)|û(k − ℓ)||v̂(ℓ)|dℓ

)2

dk

≤ C

∫ (∫
(1 + |k − ℓ|2)s/2eσ(|k|+|k−ℓ|)|û(k − ℓ)||v̂(ℓ)|dℓ

)2

dk

+C

∫ (∫
(1 + |k|2)s/2eσ(|k|+|k−ℓ|)|û(k − ℓ)||v̂(ℓ)|dℓ

)2

dk (115)
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Each of the two terms in the last line of this inequality can be interpreted as the square
of the L2-norm of a convolution and hence we use Young’s inequality to bound each of them
in turn. For instance the first is bounded by

C

(∫
(1 + |ℓ|2)se2σ|ℓ||v̂(ℓ)|2dℓ

)(∫
e2σ|k||û(k)dk

)

= C‖v‖σ,s
(∫

(1 + |k|2)−s/2(1 + |k|2)s/2e2σ|k||û(k)|dk
)

(116)

If we now apply the Cauchy-Schwarz inequality to this last integral we find that it is bounded
by a constant times ‖u‖σ,s provided s > 1/2. Applying a similar argument to the second
term in the last expression in (115) completes the proof of the lemma.

A.3 Explicit form of the bilinear terms in our equations.

In this appendix we give explicit formulas for the bilinear terms appearing in the equations
of motion (and which are important for analyzing the normal-form transformation):

B1(c1, c2) = −M1(c1, ∂αc2) , (117)

B2(c1, c3) = −M1(c1, ∂αc3) , (118)

B3(c2, c3) = M1(sc3, ∂αc2)−M1(sc2, ∂αc3) (119)

−[sc3 +K0(sc3)K0]∂αc2 + [sc2 +K0(sc2)K0]∂αc3 ,

B4(f, g) = −M1(sf, ∂αg) + [sf +K0(sf)K0]∂αg , (120)

B5(c3, c3) = M1(sc3, ∂αc3)− [sc3 +K0(sc3)K0]∂αc3 , (121)

B6(c1, c2) =
1

2s
M1(c1, ∂αc2)−

1

2
M2(c1)∂α(sc2) , (122)

B7(c1, c3) =
1

2s
M1(c1, ∂αc3) +

1

2
M2(c1)∂α(sc3) , (123)

B8(c2, c3) =
1

2s
M1(sc2, ∂αc3)−

1

2s
M1(sc3, ∂αc2) (124)

−[sc2 +K0(sc2)K0]∂αc3 + [sc3 +K0(sc3)K0]∂αc2

+
1

2
M2(sc2)∂α(sc3) +

1

2
M2(sc3)∂α(sc2)

−1

2
(∂α(sc2))K0∂α(sc3)−

1

2
(∂α(sc3))K0∂α(sc2) ,

B9(f, g) =
1

2s
M1(sf, ∂αg) − [sf +K0(sf)K0]∂αg (125)

−1

2
M2(sf)∂α(sg) +

1

2
(∂α(sf))K0∂α(sg) ,

49



B10(c3, c3) = − 1

2s
M1(sc3, ∂αc3) + [sc3 +K0(sc3)K0]∂αc3 (126)

−1

2
M2(sc3)∂α(sc3) +

1

2
(∂α(sc3))K0∂α(sc3) ,

B11(c1, c2) = − 1

2s
M1(c1, ∂αc2)−

1

2
M2(c1)∂α(sc2) , (127)

B12(c1, c3) = − 1

2s
M1(c1, ∂αc3) +

1

2
M2(c1)∂α(sc3) , (128)

B13(c2, c3) = − 1

2s
M1(sc2, ∂αc3) +

1

2s
M1(sc3, ∂αc2) (129)

−[sc2 +K0(sc2)K0]∂αc3 + [sc3 +K0(sc3)K0]∂αc2

+
1

2
M2(sc2)∂α(sc3) +

1

2
M2(sc3)∂α(sc2)

−1

2
(∂α(sc2))K0∂α(sc3)−

1

2
(∂α(sc3))K0∂α(sc2) ,

B14(f, g) = − 1

2s
M1(sf, ∂αg)− [sf +K0(sf)K0]∂αg (130)

−1

2
M2(sf)∂α(sg) +

1

2
(∂α(sf))K0∂α(sg) ,

B15(c3, c3) =
1

2s
M1(sc3, ∂αc3) + [sc3 +K0(sc3)K0]∂αc3 (131)

−1

2
M2(sc3)∂α(sc3) +

1

2
(∂α(sc3))K0∂α(sc3) .
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