Reduction Theory over Quadratic Imaginary Fields
by David Fried

In fond memory of Arnold Ross

Abstract. Hurwitz developed a reduction theory for real binary quadratic forms of positive
discriminant based on least-remainder continued fractions. For each quadratic imaginary
field k, we develop a similar theory for complex binary quadratic forms of nonzero discrim-
inant. This uses a Markov partition for the geodesic flow over the quotient of hyperbolic
3-space by the Bianchi group By. When k has a Euclidean algorithm, our theory is based
on least-remainder continued fractions.

This paper extends a reduction theory due to Hurwitz. To put Hurwitz’s theory in the
proper context, we recall an earlier and better known theory. Gauss’s reduction theory for
integral binary quadratic forms of fixed positive discriminant was expressed by Dirichlet
using simple continued fractions. In this form it was extended by Markov to forms with real
coefficients. One factors a real form with fixed discriminant d > 0 as

Q(z,y) = Vd(z — ay)(z — zy)/(a = 2), (1)

where the roots z, a are assumed to be irrational. If 0 < —a < 1 < z we say @ is G-reduced.
We view @ as a function on R? and define an action of the group Gl (2,Z) on forms by the

rule
A-Q = (det A)(Qo A™h). (2)

For the following result, see [G, Dir, Ma] or [D1, pp. 11-16, 24-25].

Theorem 1 (Gauss, Dirichlet, Markov). Every form @) is equivalent under GI(2,Z) to
a G-reduced form. To a G-reduced form () we associate the terms n; in the simple continued
fraction expansions of z and —1/a, namely we write

z = [ng,n1,...] and —1/a =[n_1,n_9,...]. (3)

If Q' is a G-reduced form of discriminant d and n} are the corresponding terms then @' is
equivalent to ) under G1(2,Z) if and only if there is an integer | such that n} = n;y; for all
integers 1.

If A € Si(2,Z) then @ and A-(Q take the same values on the lattice of integral points. For
this reason the SI(2, Z)-equivalence of forms was of the greatest interest to Gauss, Dirichlet,
and Markov and they found a classification much like Theorem 1. A form () with irrational
roots z,a is called reduced if az < 0 < |a] < 1 < |z|. A reduced form @ is determined
by d, sgn(z), and the terms n; in the simple continued fraction expansions of |z| and 1/|al.
Given such a @, a reduced form @’ of discriminant d with roots 2’,a’ and terms n} is
S1(2, Z)-equivalent to @ if and only if there is an integer [ so that n] 4 = ny for all ¢
and sgn(z') = (—1)'sgn(z). Furthermore, every @) with distinct irrational roots is SI(2, Z)-
equivalent to a reduced form.

A related theory describes the action of Gl(2,Z) on the space of irrational numbers, see
[Se, pp. 34-37.]



Theorem 2 (Serret). Two irrationals a and b are Gl(2, Z)-equivalent if and only if their

simple continued fraction expansions have the same tail, that is a = [ag,a1,...] and b =
[bo, b1, ...] with a; = b;y; for some integer | and all sufficiently large i.

To show a and b have the same tail, it suffices to consider the cases b =a + 1, b = —a,
and b = 1/a since PGI(2,Z) is generated by z + 1, —z, and 1/z. If b = a + 1, one
takes | = 0. For b = —a, one can reduce to the case 0 < a < 1/2 and use the identities
—a = [-1,1,a! — 1] and @ = [0,a7!] to see that | = +1 works. If b = 1/a and a is
negative then one can use b = —1/(—a) to reduce to previously handled cases, and one

finds that [ = +3 or +1 works. This proves Theorem 2. It follows as well that a and b are
S1(2, Z)-equivalent if and only if a; = b;4; for some even [ and all sufficiently large i.

In this paper we will study complex numbers and complex forms ) under the action of
S1(2,Ox), where Oy, is the ring of integers in a quadratic imaginary field k. Our results are
analogous to those just described for SI(2,Z) but are more closely modeled on Hurwitz’s
version of reduction theory.

In section 1 we will describe Hurwitz’s elegant approach to Gauss reduction via the
Farey tiling. This approach generalizes to higher dimensions and a large class of discrete
groups, as in the work of Vulakh [V] and the references cited in that paper. In sections
2 and 3 we will describe Hurwitz’s reduction theory and relate it to hyperbolic geometry.
Section 4 will present a dynamical reduction theory for compact quotients of hyperbolic
n-space that motivates our later results. This reduction theory is based on a finite number
of rectangles. Sections 5 and 6 will describe how Hurwitz reduction extends to a discrete
group I' of isometries of hyperbolic n-space such that the quotient space is noncompact but
has finite volume. We use results of [F3|, which treats a still wider class of discrete groups.
Here we are interested in the case where n = 3 and I' is commensurable with the Bianchi
group By = PSI(2,0y). Sections 7 and 8 derive a reduction theory for Bianchi groups based
on a finite number of rectangles, much like the theory of section 4. Section 9 is devoted to
examples and a discussion of some open problems.

Our results may be viewed as extending the theory of least-remainder continued fractions
to some non-Euclidean number fields. We may describe the situation by an analogy. Over
any number field, the unique factorization of ideals is an algebraic substitute for the unique
factorization of integers. For a quadratic imaginary field, a reduction theory based on a finite
number of rectangles is a geometric substitute for the Euclidean algorithm.

We were first introduced to continued fractions and to quadratic forms in Arnold Ross’s
high school summer program at Ohio State University. His inspiring teaching has given
many of us a lifetime of mathematical interests and we owe him an enormous debt.

Section 1. The Farey tiling and Gauss reduction

We will present here a geometric approach to Gauss reduction due to Hurwitz [H3] (see
also [D1, pp. 42-44]). To begin, we will describe the projective model of hyperbolic geometry
and its relation to quadratic forms.

The discriminant d of a real binary quadratic form uz? + vr129 + w3, d = u? — dvw,
defines a quadratic form in the variables u, v, and w of signature (2,1). In the corresponding
real projective plane one obtains a conic C, an open disc D, and a Moebius strip M by the
conditions d = 0,d < 0, and d > 0, respectively. A point of C' is given by a quadratic form
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with a square factor (t1z1 — t2x2)2 and we identify this point with the extended real number
t2/ti € RU{oo} = R. For a fixed d > 0, a point of M corresponds to a pair of forms
+Q(z1,z2) of discriminant d. The tangents from this point to C' meet C' at the roots z,a
of Q. In this way we identify the forms of discriminant d with open oriented segments @2 in
D, which for brevity we will call rays.

The group GI(2, R) acts linearly on forms as in equation (2), preserving the discriminant.
Since
A- (1‘1 — t$2)2 = (det A)((t as1 + a22)$1 — (t ail + a12)x2)2 (4)

for A = (a;j), we see that A acts on C' by the usual linear fractional transformation of R,
that is by (¢ a11 + a12)/(t a1 + age). It follows that the roots z, a of a quadratic form @ also
transform by the usual action of A.

Let ey denote the open segment 0oco in D and let I' = GI(2,Z). For A € T the segment
A(eg) does not cross eg since A0/Aoo = 1 — (det A)/(a11a22) is not negative. Thus the
images of eg under I', known as Farey edges, do not cross one another and so they divide D
into regions. Note that the endpoints of Farey edges are extended rational numbers, which
we call cusp points.

Let Ty denote the ideal triangle in D with vertices 0, 1, and co. The images of 7Ty under
I', known as Farey triangles, can be built iteratively by a sort of crystallization process with
seed Tp. Each edge of Ty meets another Farey triangle, each of these meets just two more
Farey triangles, and so on. At each stage in the construction, one has covered a convex
subset of D. Since cusp points are dense in C, we see that the Farey triangles cover D
without overlap, forming the Farey tiling.

Now fix a ray s with irrational endpoints. Any Farey triangle T that meets s must
intersect s in a compact interval, since its vertices are not endpoints of s, and the three
vertices of T' are separated by s into a pair and a singleton . We label this interval in s by
the singleton vertex. A given cusp point s can only label finitely many consecutive intervals
in s. We call a Farey edge e principal for s if e crosses s and the intervals of s on either side
of e are labeled by distinct vertices. Now trace s and count the number of intervals between
crossings of principal edges. We obtain a sequence n; of positive integers indexed by 7 € Z,
unique up to an overall shift of indices by some integer [. Since the Farey tiling is invariant
by T, it is clear that this sequence is the same, up to a shift, for s and for As, A € I'. We
will show

Lemma 1. Any sequence n : Z — N arises for some ray s. I'-equivalence classes of s’s
correspond bijectively to shift-equivalence classes of n’s.

To begin, note that the stabilizer of ey in T' is given by the four elements +z, +1/z. If
the edge eg is principal for s then we may apply exactly one of these four elements to obtain
aray s’ so that the vertex label changes from 0 to co as s crosses eg and so that the endpoint
parameters increase from one end of s’ to the other. We say such a ray s’ is G-reduced. In
terms of its endpoints, s’ = a2 is G-reduced if 0 < —a < 1 < z. We see that for any ray s
with irrational endpoints,

(*)G-reduced rays equivalent to s under I' correspond 1-1 to principal edges of s.

Suppose s = aZ is G-reduced. If n = [z] then the next principal edge that s crosses is
e = noo. Applying the transformation 1/(x — n) brings e to eg. Let Ng(s) = Ng(z,a), the
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neighbor of s, be the image of s under 1/(xz — n). Clearly Ng(s) is G-reduced. By (*), the
G-reduced rays equivalent to s are just the images of s under the cyclic group generated by
Ng.

Moreover, in terms of endpoints we have Ng(z,a) = (1/(z — n),1/(a — n)), n = [z].
It follows that if we expand z and —1/a as simple continued fractions, as in (3), we obtain
the same terms n; as in the paragraph preceding Lemma 1. Now given n we can construct
z,a by (3) and hence a G-reduced s with a given sequence n. This proves the first part of
Lemma 1. Now (*) shows that the sequence n determines s up to equivalence and Lemma
1 follows. Theorem 1 is a direct consequence of Lemma 1.

To sum up, a ray with irrational endpoints is determined by its family of principal edges.
Designating one principal edge as a starting point, we can define a sequence n. This sequence
determines our ray up to the action of I'. Changing the principal edge changes the sequence
by a shift.

Section 2. Hurwitz reduction theory

We present Hurwitz’s reduction theory based on least-remainder continued fractions [H2]
(see also [D1, pp. 40-41]). One can expand any irrational number z( in a least-remainder
continued fraction (often called a continued fraction to the nearest integer) as follows. Let
ap = (xo) be the nearest integer to z¢ and write z9 = ag — 1/z1. Then |z1| > 2. We take
the integer a; = (x1) and write x1 = a; — 1/x2 with |z3| > 2, etc. The resulting expansion

.l‘():a()—l/(al—l/(CLQ—...)) =< agp,a1,09,... > (5)

has the following features. The a; are integers, |a;| > 2 for i > 1, and if a; = +2 for some ¢ > 1
then a;a;41 < 0. Conversely, if integers a;,7 > 0, obey these conditions then Hurwitz showed
that < ag, a1, a9, ... > is the least-remainder continued fraction of an irrational number.

Let 't = SI(2, Z). Clearly zg is I'*-equivalent to each tail x; for any I. So g is equivalent
to zfy if 2; = z}, for some [, !’. The converse fails, however. Let r = (3—+/5)/2. Then 29 = r
and z{, = —r are equivalent since —1/(r — 1) = 2 — r, yet their tails are all —r~! and r~!
respectivelvely. Hurwitz proved that this is the only exception, up to equivalence. That is,

Theorem 3 (Hurwitz). If two equivalent irrationals do not share a tail then they are

equivalent to r = (3 — \/5)/2. Moreover one has 7' as a tail and the other has —r~" as a
tail.

Thus the least-remainder analogue of Theorem 2 has a countable dense set of exceptions.
One can prove Theorem 3 by showing directly that z and —1/z have the same tail for z in
certain intervals. One finds that the lag [ becomes unbounded as x approaches 2 — r. This

contrasts with Theorem 2, where our proof shows that the lag is bounded for each element
of T.

Hurwitz defines a reduction theory for forms in which the roots are treated in an asym-
metric fashion. If a; are integers for all i € Z with |a;| > 2 for all 7 and if a;a;41 < 0 for
la;| = 2, we let

z =< ag,ai,as,... > and 1/a =< a_1,a_9,... > (6)

and we say that a form @) with roots z, a is H-reduced. The given continued fraction expansion
for z is a least-remainder expansion whereas that for 1/a is a sort of dual expansion, since
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the terms of absolute value 2 are treated in a backwards fashion. As we will explain in the
next section, the H-reduced forms can be described by inequalities in the roots, namely

|z| >2 and sgn(z)a € [r —1,7] (7)

are the necessary and sufficient conditions for @) to be H-reduced. (We should mention that
our condition “H-reduced” is slightly weaker than Hurwitz’s condition “reduziert” in [H2]).

Theorem 4 (Hurwitz). Every form of positive discriminant is IT't-equivalent to an H-
reduced form. The H-reduced forms corresponding to a; and o are equivalent if for some
integer | and all integers i one has a; = a;y;. The converse holds unless a is equivalent to r.

For instance, the form Q(z,y) = 3zy — 22 — y? has a; = 3 for all i and the form
Q' (z,y) = 3zy + 2?2 + y? has ¢/ = —3 for all i, both are H-reduced forms of discriminant 5,

vet Q' = A-Q for A= (_21 _11).

These exceptions, minor though they may be, are perhaps the reason that Hurwitz’s
theory has received so little notice over the years. It will be seen, however, that this theory
generalizes well to higher dimensions.

One can easily apply Hurwitz’s results to classify I'-equivalence of forms. One just takes
as reduced forms those H-reduced forms with z > 0. We will omit the routine details.

Section 3. The Ford disc packing and Hurwitz reduction

Recall that the disc D of section 1 is the projective model of the hyperbolic plane. We
will now describe the correspondence of this model with the upper halfplane model H? of
the hyperbolic plane, construct the Ford discs, and use them to derive equation (7).

H? is the set of all complex numbers with positive imaginary part, thought of as a
subset of the extended complex numbers C. The extended real numbers R correspond
to the boundary conic C in the manner already described. A ray s = @Z in D becomes an
oriented hyperbolic line in H2. If z or a is co then this line is a Euclidean ray perpendicular to
R at the finite endpoint. If both endpoints of s are finite, this line is a Euclidean semicircle
perpendicular to the real line and approaching it at ¢ and z. We measure the length of
tangent vectors with the hyperbolic metric ds?® = (du? + dv?)/v?,w = u + iv on H2. The
action of GI(2,R) on D corresponds to the usual action by linear fractional transformations
on H?. These are isometries of the hyperbolic metric and, indeed, all the isometries of H?
arise this way. To I" corresponds the triangle group (2,3, 00) generated by reflections in the
3 hyperbolic lines ®(w) =0, R(w) =1/2, and |w| = 1.

Both models of the hyperbolic plane have some advantages. In D, hyperbolic lines
are straight and so hyperbolic convex sets are modeled by Euclidean convex sets. In H?,
hyperbolic angle is modeled by Euclidean angle. We will work henceforth in the model H?
and its higher-dimensional analogues because we will be using horoballs. In H?, a horoball is
either a disc tangent to R or a halfspace defined by an equation I(w) > ¢, for some positive
c. In D, on the other hand, horoballs are awkward to describe. Furthermore, we will often
be fixing a point in the boundary of the hyperbolic plane, so the upper halfspace model is
ideal.



Let B(oco) be the standard horoball defined by S(w) > 1. The images of this horoball
under elements of I' form a family of horoballs known as Ford discs [C, pp. 27-33]. We
label them B(q) where the base ¢ is the cusp point where the horoball touches R. Note that
B(o0) lies in the union of the collection of Farey triangles with oo as a vertex. It follows that
the same holds for all cusp points ¢, and hence a given Farey triangle 7" meets only those
Ford discs B(q) for which ¢ is a vertex of 7. It then follows that the only Ford discs that
meet B(oo) are the B(q) for integer ¢, and hence that the Ford discs do not overlap. They
do not cover the plane but the union of the Ford discs is closed and the components of its
complement are bounded. The family of Ford discs is a geometric object dual to the Farey
tiling in the sense that each Ford disc corresponds to a Farey vertex, each pair of Ford discs
that touch corresponds to a Farey edge, and each region in the complement of the Ford discs
corresponds to a Farey triangle.

The Ford discs give rise to a geometric interpretation of Hurwitz reduction, as follows.
Fix an extended real number z and a cusp point ¢g not equal to z. The ray so = g2 exits
B(qp) and must enter another Ford disc. (Reducing to the case gy = oo, we see that the
Ford discs based at integer points meet every vertical line). If the next Ford disc it enters
is B(q1), we say that ¢; is the z-successor to qo. If g1 does not equal z, we may define its
z-successor ¢z, and so on. If g9 = oo then ¢ = (2). If we expand z as a least-remainder
continued fraction z =< ag, a1, az, ... > then we see that ¢,+1 =< ag, a1, ..., a, > is the nth
least-remainder convergent to z.

We examine the expansion of 1/a in (6) and some similar continued fractions. Consider
a continued fraction < by, bg, ... >, of finite or infinite length, with integer terms b; such that
for j > 1, |bjy1] > 2 and bjbj41 < 0 if [bj41| = 2. Since such expansions were introduced
by Hurwitz as the dual expansions for least-remainder continued fractions, we will call these
H-dual expansions. One may assign to each cusp point ¢ and to the Ford circle B(q) a level
so that oo is in level 0, ¢ is in level 1 if g is an integer, ¢’ is in level 2 if B(¢') meets some Ford
disc B(q) of level 1 but ¢’ is not of level < 1, etc. Each H-dual convergent < by, bo, ..., b; >
lies in level j. This is clear for j = 1 and it is also clear that the level is at most j. The
induction step uses the exclusions b; # 0, £1 to show that one descends from level j — 1 to
level j and neither retreats to level 7 — 2 nor moves to one of the two neighboring Ford discs
of level 7 — 1. Conversely, every cusp point of level j has a unique finite H-dual expansion
consisting of j terms. The uniqueness uses the exclusion b;j11 # 2sgn(b;) to handle those
level 7 + 1 Ford discs that touch two Ford discs of level j.

Thus the H-dual continued fraction expansion of a rational number is unique, unlike its
simple continued fraction expansion or its least-remainder continued fraction expansion.

We plot the discs B(q) for ¢ =< by, ...,b; > where b; = 0. One finds for j = 2 all the
level 2 discs that meet B(0) and for j = 3 all the level 3 discs that meet these level 2 discs,
and so on.

The largest cusp point of level 2 produced this way is 1/2, the next larger cusp point
of level 2 is 2/3, as drawn in Figure 1. The largest cusp point of level 3 produced this way
is 3/5, the next larger cusp point of level 3 is 5/8, and so on. This sequence 1/2,3/5, ...
converges to (v/5 —1)/2 = 1 — r. Using the symmetry with respect to —z, it follows that
H-dual expansions with b5 = 0 fill out the interval [r — 1,1 — r|. Similarly, the H-dual
expansions with a fixed nonzero value by = b fill out the interval [b — r,1+ b — 7] if b is
positive and the interval [b — 1 + 7, b+ r] if b is negative.
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The expansion of 1/a in (6) is an H-dual expansion with b; = a_;. The initial term is
constrained by a_; # 0,%1, (sgn ag)2. This shows that 1/a & (sgn z)(r — 2,3 — r) hence
(sgn 2z)a € [r — 1,7]. This establishes the condition (7) describing H-reduced forms. The
converse, that (7) implies that the form is H-reduced, is proven similarly.

We have shown that the Farey tiling and the Ford discs are dual geometric configurations
that underlie Gauss reduction and Hurwitz reduction, respectively.

Figure 1. Ford discs for some Fibonacci quotients

Section 4. Rectangles and reduction

The model of hyperbolic n-space that we use is the n-dimensional upper halfspace H",
consisting of the points in z € R" with x,, > 0. The hyperbolic metric is (dz? +...+dz2) /z2.
We regard H™ as a subset of the n-sphere R" = R" U 0o and identify the boundary of
hyperbolic n-space with 9H” = R®"!. For n = 3, we identify R? with C and we identify
the isometry group of H 3 with the group of conformal and anticonformal transformations of
C, that is with the semidirect product of PGI(2,C) by {z,Z}.

Consider a discrete group I' of isometries of H™ such that the quotient X = H"/T is
of finite volume. A reduction theory for I' is a certain sort of description of its orbits on
ordered pairs (z,a) of distinct points in the boundary OH™ of hyperbolic n-space. We will
now describe a theory for compact X that will motivate our results for the noncompact case.
This is, in fact, just a special case of a theory of Markov partitions due to Bowen and Ratner
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[B, Ra], see also [F1, section 1].

Let €2 denote the open set of distinct pairs in 0H™ x dH™ so that (z,a) € Q if 2z # a.
A rectangle is just a compact subset of € that is a Cartesian product Z x A in the (z,a)
coordinates.

Suppose X is compact and I" acts freely on H” x 0H™. (The latter condition is presum-
ably not necessary but, as the literature treats manifolds and not orbifolds, it is certainly
convenient.) One finds a certain set S* of symbols on which I' acts freely with finitely many
orbits. There is a ['-equivariant family of rectangles Ry = Z; x Ag, s € §*, whose union is
Q. There is a set T* of transitions, on which I' acts freely with finitely many orbits. There
are two equivariant functions * and f* (for initial and final, respectively) from 7* to S*,
such that

AiCAf and ZfCZ,' (8)
for i = i*(¢),f = f*(t),t € T*. On the disjoint union [] Rs; we define for each t € T*
a relation P consisting of pairs ((z,a), (2,a)) with (z,a) € (Zf x A;). The union of these
relations over all £ € T* defines a relation P* we call the equivariant Poincare correspondence.

Theorem 5 will show that one can choose the rectangles so that for all s € §* and almost
all (z,a) € Rs,

all instances of (z,a) € Ry, s’ € S*, arise by iterating P*. 9)

Now we factor out by I' to get a description of geodesics on X. We select sets of orbit
representatives S and 7 with *(7) C S . Let U be the union of the rectangles R,, s € S.
Since U meets every orbit of I" on €2, it suffices to describe the I'-equivalence of points in
U, which we will do by a reduced Poincare correspondence P. We choose for each ¢t € T the
elements y(t) € T' for which v(¢)f*(t) € S. Let 4, f : T — S,i(t) = i*(t), f(t) = v(t) f*(1).
We define the relation P(t) C Rjy) X Ry to consist of the pairs ((z,a),7(t)(z,a)) for
(z,a) € Zpsp) X Agp)- We let P be the relation on [[Rs, s € S, that is union of these
relations ’P(tS over t € T. Clearly, certain instances of ['-equivalence of points in U arise from
P and its iterates. Conversely, we obtain from equation (9) that for almost all (z,a) € U,

all points of U T'-equivalent to (z,a) arise by iterating P.
This implies

Theorem 5. Suppose X is compact and I acts freely on H™ x OH™. There are finite
sets S, T of symbols and transitions, rectangles Ry = Zs x Ag C Q,s € S, and maps
i, f:T—S8,v:T—T sothat forte T,i=1i(t), f = f(t),y =(t) we have

Z¢ CyZ; and vA; C Ay, (10)
A relation in R; x Ry is defined by the bijection
v ’y_lZf X Aj — Zf X vA;.

Let P be the relation on U = UR, that is the union of these relations over all t € 7. The
iterates of P give I'-equivalent points in U and, conversely, for almost all (z,a) € U,

all points of U T'-equivalent to (z,a) arise by iterating P. (11)
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For each unit tangent vector v on H" there is a unique unit-speed geodesic z(u),u € R
with 2/(0) = u. We let ¢ (v) = 2'(u). Letting Y* = SH" be the space of unit tangent vectors
to H™, we see that ¢;, is a one-parameter group of diffeomorphisms of Y*, or a flow on Y*.
This is the well-known geodesic flow on Y*. Each flowline ¢ (v),v € Y*, traces a ray aZ, so
we may identify the space of flowlines of the geodesic flow ¢;, with €.

Our conditions on I" imply that Y = Y*/I" is a compact manifold. Since the geodesic flow
on Y* commutes with hyperbolic isometries, there is a flow induced on Y that we call the
geodesic flow over H™/T'. The product structure on 2 defines two transverse n-dimensional
foliations on Y* that descend to foliations on Y. These foliations are tangent to the geodesic
flow and invariant by the geodesic flow. One of them, the stable foliation, is contracted for
large positive u and the other, the unstable foliation, is contracted for large negative u, at
least in directions not parallel to the flow. This foliation pair makes ¢, an Anosov flow.
Note that this flow preserves a volume form, namely the Liouville measure.

Recall that any smooth flow without fixed points on a manifold corresponds in local
coordinates to the standard translational flow on R™ given by 7,(x) = z + ue1. A flowbox
is a compact subset that corresponds in some such coordinate system to a set of the form
{zr € R :0 < 21 < f(x2, ..., o), (¥2, ..., Tm) € T}, where T C R™ ! is compact and
f:T — R* is continuous. We call the sets corresponding to r1 = 0 and z1 = f(z2, ..., Tm)
the initial face and final face of this flowbox, respectively. A transversal to a flow is smooth,
codimension-one submanifold Z that is transverse to the flow (that is, the vector field that
generates the flow is nowhere tangent to Z). Note that for our purposes, m = dimY = 2n—1.

Bowen constructs a Markov partition for each volume-preserving Anosov flow on a com-
pact manifold. We will explain this result for the geodesic flow on Y. There is a transversal
T such that every flowline meets 7" in every time interval of some fixed small length. 7" con-
sists of many small connected components Dy, each of which is a smooth disc with smooth
boundary. Each of these discs contains a compact set Ty which is rectangular in the sense
that when D; is lifted and projected to €2, T; maps to a rectangle. Consider a small flowbox
Y; for ¢, that meets T only in its initial and final face. Suppose that its initial face lies in
T; and is rectangular with the same A-factor as T;. Suppose that its final face lies in T and
is rectangular with the same Z-factor as Ty. Bowen’s Markov partition is a finite nonover-
lapping family Y; of such flowboxes that covers Y such that the flowbox index ¢ varies over
certain ordered pairs (i, f) of disc indices, namely those for which there are short flowlines
from T; to Ty sweeping out an open set in Y. Ratner proves a uniqueness result: almost all
flowlines ¢, (v) are determined by the sequence of flowboxes that they pass through. Indeed
the only exception is a flowline that passes through the boundary of some flowbox for some
nontrivial u-interval and the set of such flowlines has measure zero.

We lift the flowboxes Y; to Y* to get a I'-equivariant family of small flowboxes which
we label with an index set 7*. These flowboxes cover SH™ with overlapping. The initial or
final faces of these flowboxes lie in smooth discs that are lifts of the discs D;. We label these
lifted discs and their subsets corresponding to 75 by an index set &* and project each of
these subsets into () to get a rectangle R, s € §*, as in Figure 2. We let 7*, f* be the maps
that assign to each flowbox the transversals containing its initial and final face, respectively.
Then (8) follows from the properties of the initial and final faces of the flowboxes Y; C Y.
Ratner’s uniqueness result implies (9) and Theorem 5 is a consequence of (8) and (9), as
explained above.



in sH'r : in Q:
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Figure 2. A transition (flowbox) between two symbols (transversals)

Note that the rectangles R, s € S, correspond to a finite family of rectangular regions
and the transitions ¢t € 7 correspond to a finite family of flowboxes for the geodesic flow on
the manifold Y. The maps ¢, f describe how flowlines pass from one transversal to another
through the flowboxes. This use of transversals goes back to Poincare, hence our name for
the relation P.

Transversals can also be used to describe Gauss reduction. Referring to section 1, we
form a transversal to the geodesic flow on SH? that consists of the unit tangent vectors to
rays at points where the rays cross principal edges. For the reduced Poincare correspondence,
we take S to consist of one point, so subscripts will be omitted. We define the rectangle
Z x A = [1,00] x [=1,0] to be the completion of the space of root pairs of G-reduced
forms. We take 7 = Z™, the set of terms in simple continued fractions. For n € T we let
Yn(xz) = 1/(x —n). Then equation (10) holds and Theorem 1 shows that (11) holds, where
the set of full measure consists of pairs with z and a irrational.

We may likewise compare Theorem 5 with Hurwitz reduction. We leave the description
of the relevant transversal to section 6, and simply describe the reduced Poincare corre-
spondence. Let & = {+,—}, 71 = £[2,00], and Ay = £[r — 1,7]. Let T consist of the
following pairs in Z x § : (£2,—) and (n,+) where |n| > 3. For t = (n,e) € T, let
Y(z) = —=1/(z —n), f(t) =sgn(n), and i(t) = €f(¢). Then equation (10) holds, and Theorem
4 shows that (11) holds, where the set of full measure consists of pairs with z and « irrational
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and a inequivalent to r.

Thus Gauss and Hurwitz reduction theory have a structure similar to the reduction
theory of Theorem 5.

Section 5. Fans, ridges, shadows, and chains

We now suppose our finite volume quotient X = H"/I' is noncompact and develop a
Hurwitz-style reduction theory. The main difference from Theorem 5 is that 7 must be
infinite. In this section we find a certain I'-invariant tiling of H™. In the next section we
will describe a reduction theory that includes Hurwitz’s theory for PSI(2,Z). In section 8
we will restrict to Bianchi groups and show that we can express this reduction theory using
a finite system of rectangles, as in Theorem 5.

We will need many standard facts concerning I', such as can be found in [R].

Although the topology and singularities of a noncompact X may be complicated, X has
a standard structure near oo that furnishes a starting point for our reduction theory. To
explain this structure, we use the trichotomy for isometries of H" that divides I into elliptic,
parabolic, and hyperbolic elements.

An isometry is elliptic if it fixes a point of H™. In I the elliptic elements have finite order
and nontrivial ones produce orbifold singularities in the quotient. Nonelliptic isometries must
fix a point in 0H™.

A nonelliptic isometry with only one such fixed point is called parabolic and the fixed
point is called a cusp point for I'. The stabilizer I'; of a cusp point g preserves each horoball
based at ¢ where, as for n = 2, a horoball based at oo is a closed halfspace and a horoball
based at any other boundary point ¢ is a Euclidean disc tangent to R" ! at ¢ [R, theorem
5.5.5]. We can find a horoball B(g) based at ¢ such that the quotient N(q) = B(q)/T
embeds in H"/T' = X [R, theorem 12.5.2]. We call N(q) a cusp neighborhood in X. It
is an unbounded region bounded by a complete Euclidean (n — 1)-orbifold (if ¢ = oo, as
we may suppose, the stabilizer I'; acts on R"! by isometries and has compact quotient).
N(q) is isometric to a warped product of this orbifold and (0,00) in which the metric on
the orbifold fibers shrinks exponentially as one approaches co. If B(q) is chosen smaller, the
cusp neighborhood is truncated in an evident fashion.

The set ) of all cusp points for I' consists of finitely many orbits of I'. Selecting one cusp
point ¢(1),...,q(h) from each such orbit and horoballs at these points that are sufficiently
small, the corresponding cusp neighborhoods do not overlap. The complement of these h cusp
neighborhoods has compact closure [R, corollary 4 to theorem 12.6.4]. Thus X has h ends
(that is, the complement in X of a sufficiently large compact set has exactly A unbounded
components) and each end is of a standard form.

An element v € T' of infinite order that fixes two boundary points is called hyperbolic.
If these two points are z, a then 7y stabilizes the hyperbolic line | = @z (as for n = 2, this is
represented by a ray perpendicular to R”~1 if one of a, z is co and otherwise by a semicircle
perpendicular to R"!). v acts on [ by a nontrivial translation. From this it follows that
7 fixes no boundary points except z and a. The elliptic elements in Stab(l) form a normal
subgroup and the quotient is infinite cyclic. The quotient of the ray s = @2 by Stab(l) is
a closed geodesic in X and it is prime (that is, it is not a multiple of some shorter closed
geodesic). Each prime closed geodesic in X arises in this way.
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To sum up, the nontrivial elements of I' are related to orbifold singularities of X, ends
of X, or closed geodesics in X according to their place in the trichotomy.

Suppose now that we choose disjoint cusp neighborhoods N(g¢(i)) as above. The in-
verse images of these neighborhoods in H" form a I'-equivariant system of nonoverlapping
horoballs, or a horoball packing. There is a constant D such that every point of X is dis-
tance < D from some cusp neighborhood. It follows that every point in hyperbolic space is
distance < D from some horoball in our packing, that is our packing is D-dense.

The packing by Ford discs is obtained for n = 2 and I' = PGI(2,Z) by selecting the
horoball B(co) to be the standard horoball (z) > 1. Here X is an orbifold with one end
and the cusp stabilizer [', is generated by —x and 1 — x.

We now use the horoball packing B(q), ¢ € @, to divide hyperbolic space into polyhedra
akin to Dirichlet domains. We let F'(q) consist of all points whose distance to B(q) is no
more than their distance to B(p) for any p € ). Then F(g) is an infinite-sided convex
hyperbolic polyhedron that contains B(g) and the sets F(q),q € Q, cover H™ without
overlap. Moreover, each point of F(q) is distance at most D from B(q) and so F(q) is
contained in some horoball based at q. We call F(q) a fan and the family F(q),q € Q,
the fan tiling associated to our horoball packing. One may regard the nonnegative function
dist(x,UB(q)) as a height function on H™ and a fan F'(q) as a basin for a river with delta
B(q) and mouth g.

Figure 3. A point zin §(q,p) and (r,q)
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Suppose p and ¢ are distinct cusp points. The intersection of F'(p) and F(q) is either
empty or a convex hyperbolic polyhedron of dimension at most n — 1. If the intersection is
nonempty and of dimension n — 1 we say that p and ¢ are adjacent and we define the ridge
R(q,p) to be this intersection of fans. We project R(q,p) from p to OH™ along geodesics
to define a subset S(g,p) of 0H™ that we call the shadow of the ridge R(q,p) as lit from p.
Figure 3 shows some horoballs, fans, and ridges in the Poincare disc model of the hyperbolic
plane. This model is conformally equivalent to the upper halfplane model but does not have
a preferred boundary point.

When we identify 0H™ — p with R®~! (using an isometry g with g(p) = o0), S(g, p) is a
convex Euclidean polyhedron of dimension n — 1. We note that these polyhedra tile R*~!
without overlap, as ¢ varies over all the cusp points adjacent to p.

We define a chain to be a nonempty set S(py, .., pm) = S(1, pi—1) N .. N S(Pm+1,Pm) C
OH™, 1l > m. Note that each shadow in the definition of a chain is a convex set in a different
coordinate system on JH™, so the chain may be nonconvex or even disconnected and may
contain relatively open sets of different dimension.

If p€ Q and z € OH™ — p then the ray pZ meets OF(p) at a unique point which lies in
at least one ridge R(g,p). Thus z € S(g,p). We call each such ¢ (there can only be finitely
many) a z-successor to p.

For example, consider the Ford disc packing of section 4. The fan F(oco) consists of all
points in H? whose Euclidean distance from the set of integers is at least one. Such fans
were studied by Conway [C, p.28]. The ridges form a tree dual to the Farey tiling (Conway’s
“topograph”) that is the prototype for arboreal group theory. The term z-successor in section
4 is consistent with our present usage since for p = oo a z-successor is an integer ¢ with
|z — q| < 1/2, so after 502 exits B(oo) it meets no Ford disc until it touches B(g). The
shadow S(g, 00) is just the interval [¢ — 1/2,q + 1/2].

Consider in a m-sphere S™, m > 1, a nonempty, finite family of (m — 1)-spheres. Take
a connected component of the complement of these subspheres and form its closure C. We
say that C is a conformal polyhedron or conron. For m = 1, a conron is just a closed
interval. For m = 2, a conron is bounded by finitely many circles and it may be called
a conformal polygon or congon. Using stereographic projection, we may identify S™ with
R™ =0H"™,n=m+ 1, and apply the terms congon and conron to subsets of the boundary
of hyperbolic n-space. In particular, each shadow S(p,q) is a conron and each chain is a
finite union of conrons.

We take the standard horoball By, to be the horoball based at oo whose Euclidean distance
from R™~! is one. If g is an isometry with g(oco) # oo, there is a sphere in R™ centered at
g oo called the isometric sphere of g, such that the image of this sphere by g is a sphere
of the same radius [R, p. 117]. Points of H™ on the isometric sphere are just those points
equidistant from B,, and ¢~!B,,. The isometric sphere of g bounds an open disc in H™ that

we denote Dg. The derivative of g is an expansion at points of D,.

We introduce coordinate charts in which our shadows are polyhedra. We choose isome-
tries g(p) for each cusp point p so that g(p)B(p) = By and ¢(p') € g(p)T for p’ equiva-
lent to p. For adjacent cusp points p,q we let P(p,q) be the polyhedron g(q)S(p,q) and
g, 9) = g(»)g(q)~. P(p,q) is the shadow of g(q)R(p,q) as lit from oo, where points
of g(q)R(p,q) are equidistant from B, = ¢(¢)B(q) and ¢(p,q) " *B, = g(q)B(p). Thus
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9(q)R(p, q) lies on the isometric sphere of g(p,q). It follows that g(p,q) is an expansion
at all points of P(p, ¢). These charts and this expansive property will play a role in our proof
of Theorem 11.

Section 6. Reduction theory for finite volume quotients of hyperbolic space

We will describe each pair (z, a) of distinct points in OH™ using a certain family of cusp
points indexed by an interval of integers I. If f: I — X, with X some topological space, we
define the upper limitlim™ f(i) to be f(max I) if I is bounded above and to be lim; o0 f(%)
if I is unbounded above and the limit exists. We define the lower limit lim™ f(i) in a similar
fashion.

We say that p; € @Q,7 € I, is an aimed sequence if I contains at least two elements
and the shadows S(p;+1,p5),% € I,i+ 1 € I, have nonempty intersection. If z lies in this
intersection then p;y1 is a z-successor to p; whenever ¢, 1+ 1 € I and we say that p; is aimed
at z. For p € Q and z € OH™ — {p} we let B(z,p) denote the unique horoball based at z
that touches B(p) at one point.

We can now state two theorems.

Theorem 6. Convergence: If p;,i € I, is an aimed sequence then the limits lim* p; = 2
and lim™ p; = a exist, p; is aimed at z, and a # z. I is bounded above if and only if z € )
and I is bounded below if and only if a € Q).

Continuation: If z € S(p;, ..., pm), m < I, then the sequence py,, ..., p; may be extended to
a sequence p;,i € I, with lim™ p; = 2.

Existence: Given distinct hyperbolic boundary points z, a there is an aimed sequence with
these limits.

Uniqueness: For almost all z, a, this aimed sequence is unique up to a shift by some integer
l, in which I is replaced by I' = I + 1 and p; is replaced by p; = p;_;.

Monotonicity: We have p; # z for i # max([) and B(z,p;) is contained in the interior of
B(z,p;r) for i < i. The distance from B(z,p;) to 0B(z,p;) is bounded below by a positive
constant depending only on D.

Theorem 6 generalizes the results of section 3 concerning the Ford disc packing of H?2.
When py = oo, the cusp points pi, pe, ... are the least-remainder convergents to z and the
cusp points p_1,p—3, ... are the H-dual convergents to a.

Theorem 7. For a set of z € OH™ of full measure and for any two aimed sequences p;,i € I,
and qj,j € J, with lim" p; = z = lim™ q; there is an | € Z and jy € J so that q; = pj; for
all j > jo.

That is, almost every boundary point determines uniquely the tail of the sequences aimed
at it.

Theorems 6 and 7 are special cases of Theorems 1 and 2 in [F3] (in the notation of that
paper, take L = 0H™ and use the standard shadow family) so we will only outline the proofs
here. In proving theorem 6, we may suppose that co belongs to every chain defined by a
finite subinterval of I. We show that the Euclidean diameter h; of B(i) satisfies hjy1 > ch;
for some constant ¢ > 1. This proves Monotonicity and shows that lim™ p; = co when I
is not bounded above. We also bound the ratios (pj+1 — p;i)/(hiy1 — hi). This shows that
lim™ p; exists when [ is not bounded below, proving Convergence. Continuation is proven
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using an inductive construction. Using a diagonal argument, Continuation and the ratio
bound imply Existence.

It remains to prove Uniqueness. We show that there is a ['-equivariant family of horoballs
B'(q) € B(q),q € Q, so that if az meets B(q) then ¢ = p; for some i € I. We say z is generic
if it does not lie in any of the countably many null sets S(q,p) N S(r,p),p,q,7 € Q,q # r. If
z is generic then each p; has a unique z-successor and so p; determines p; for j > 4. If 2 is
generic and @z meets B’(q) for cusp points ¢ arbitrarily close to a then (2, a) is represented
by a unique aimed sequence, up to a shift. This set of pairs has full measure, so Theorem 6
follows.

For Theorem 7, suppose z is generic and some ray aZ meets B’(q) for cusp points ¢
arbitrarily close to z. We show that such z form a set of full measure and that for such a z
the tail of p; is determined by z.

Note that Theorems 6 and 7 do not even mention I'. In fact they are true for any D-dense
horoball packing of H"”. We now take the action of I' into account and derive a reduction
theory for T', as follows.

Fix an adjacent pair of cusp points p, g. For each interval I of integers containing 0 and
1 and each aimed sequence p;, ¢ € I, with pg = ¢ and p; = p we take the limits (z,a) as
in Theorem 6. These pairs (z,a) form a compact subset K(p, q) of Q. The first coordinate
projection of K (p,q) equals S(p, q).

For the Ford disc packing of section 4, we find K (oo,0) is the closure of the set of
H-reduced pairs from equation (7), that is

K(00,0) =[2,00] x [r —1,7] U ][00, —2] X [-1,1 —7]. (12)

Let A denote the set of all ordered pairs of adjacent cusp points. A consists of finitely
many [-orbits, and each pair has a finite stabilizer. We let K = [[ K(p,q) and S = [[ S(p, q),
where the disjoint unions are indexed by A. Our group I' acts on K and on S, permuting the
indices. We let B consist of all ordered triples of cusp points (p, ¢, 7) such that S(p, ¢)NS(q, )
is nonempty. We define a relation P* on K that consists of all ordered pairs ((z, a), (2,a)) €
K(p,q) x K(g,r) and a relation G* on S that consists of all ordered pairs (z,z) € S(p, q) X
S(g,r), where (p,q,7) € B. and (z,a) € K(p,q,7) = K(p,q) N K(q,7),2z € S(p,q) N S(q,7),
respectively. These relations are the Poincare correspondence and the Gauss correspondence,
respectively, associated to our horoball packing. These relations are preserved by I' and so
we obtain relations on K/I" and on S/I" that we denote by P and G, respectively. These are
called the reduced Poincare correspondence and the reduced Gauss correspondence associated
to I' and the chosen system of cusp neighborhoods. (Beware that our notation in [F3] for
the Gauss correspondences is slightly different than that used here.)

We briefly discuss these names. We may identify each point of (z,a) € K(p,q) with the
unit tangent vector v = v(z, p, a) to the ray @ at the point where this ray enters the horoball
B(z,p). The set of such v’s is a compact subset of a transversal to the geodesic flow on SH™.
If (z,a) € K(p,q,r) then the Monotonicity part of Theorem 6 implies that this ray enters
B(z,q) before it enters B(z,p), and we get a closed interval in a flowline for the geodesic
flow on SH™ bounded by v(z,p,a) and v(z,q,a). The union of these closed intervals over
all choices of (z,a) defines a sort of flowbox for each (p,q,r) € B (beware that, unlike in
section 4, this flowbox may be noncompact: this only is due to orbits that meet one face but
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not the other because they diverge to a cusp). The correspondence P* describes the passage
of flowlines from one transversal to another, so we name it for Poincare. The term Gauss
correspondence, on the other hand, comes from the Gauss map on the interval [0, 1], that
sends z to the fractional part of 1/x. This map arises as the first factor of a certain Poincare
correspondence. Indeed in Theorem 1, a shift by [ = 1 defines a Poincare correspondence
(as in section 1) and the first factor of this correspondence is the graph of the Gauss map,
up to a coordinate change by 1/x.

In the charts g(p) given at the end of section 5, we can identify the Gauss correspondence
G* with the system of maps P(q,r) — R"1/T, = UP(p, ¢) induced by g(g, 7).

For the Ford disc packing of section 4 with I' = PSI(2,Z), T acts simply transitively
on the set of adjacent pairs of cusp points. So we may identify K/I" with K (oo, 0). We find
that P is the completion of the relation of Theorem 4 with [ = 1.

The following theorem, a corollary of Theorem 6, is the '-analogue of Theorem 4.

Theorem 8. The sets K(p,q) cover 2. Two points (z,a) € K(p,q) and (2',d") € K(p',q")
are ['-equivalent if their equivalence classes in K/T" are related by an iterate of the reduced
Poincare correspondence. Conversely, if they are not related by such an iterate then, for
almost all (z,a), they are not I'-equivalent.

The T'-analogue of Theorem 3 is the following corollary of Theorem 7.

Theorem 9. The sets S(p,q) cover 9H™. Two points z € S(p,q) and 2’ € S(p',q') are
[-equivalent if their equivalence classes in S/I' have the same image under an iterate of the
reduced Gauss correspondence. Conversely, if they do not have the same images under any
iterate of the reduced Gauss correspondence then, for almost all z, they are not I"-equivalent.

Theorems 9 and 8 constitute a reduction theory for points and pairs of distinct points
in the boundary of hyperbolic space. It is a routine matter to translate Theorem 8 into a
statement about the action of I" on quadratic forms when n is 2 or 3, using equations (1)
and (2). However, such a reformulation will only be of number theoretic interest in the case
of a Bianchi group or similar group.

Section 7. The chain-finite case

If for each (p,q) € A there are only finitely many chains S(p1, po, .-, Pm), With (p1,p9) =
(p,q), we say that the horoball packing B(q),q € @, or the underlying system of cusp
neighborhoods, is chain-finite. In this case we will derive a reduction theory based on a
finite number of rectangles, as in Theorem 5, but an infinite number of transitions. In the
next section we will apply these results to Bianchi groups.

Suppose each shadow S(p, q), (p, q) € A, is the union of a finite family C(p, q) of nonover-
lapping conrons S;(p, q),j € J(p,q), and the stabilizer of each pair (p,¢) € A permutes the
conrons in C(p,q). We call C a T'-partition of S. We will say that C is consistent with the
Gauss correspondence or G-consistent if for each (p,q,r) € B and each Sy (q,7), j' € J(q,7),
that overlaps S(p, ¢), the intersection Sy (gq,7) N S(p,q) is a union of sets S;(p, ¢), for j in
some subset of J(p, q).

For motivation, consider the Ford disc packing of section 3 and let I' = PGI(2,Z).
By equation (12), the shadow S(c0,0) = [2,—2] is the complement of the open interval
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(=2,2) C R, and for any integer n one has S(n,00) = [n — 1/2,n + 1/2]. If we partition
S(00,0) into the intervals [2, oo] and [0o, —2] and partition the other shadows equivariantly,
we get a I'-partition of S. As S(n,00) is partitioned into [n — 1/2,n] and [n,n + 1/2], we
see this partition is G-consistent. Indeed each S(n,occ0) N £[2, 00] is the union of elements
of C(n,00). One can deduce from G-consistency that the only chains S(o0,0, ..., pr) are the
three intervals [2, —2], [2, o0], and |00, —2], from which it follows that the Ford disc packing
is chain-finite.

Suppose we are given a chain-finite horoball packing and (¢,7) € A. Suppose there are
N distinct chains with initial indices ¢, and we enumerate them as S(q,r,...) = Cy,u =
1,...,N. We remove from int S(g,r) the boundaries 0C,,u = 1,..., N, to get an open set
O(q,r) C OH™. Then O(qg,r) has finitely many connected components, each bounded by
(n — 1)-spheres/planes, that we denote O;(q,7),j € J(gq,7). We choose these index sets
J(q,7), (g,7) € A, to be disjoint. O(q,r) is dense in S(g,r) and has full measure. We let
Zj(q,r) be the closure of Oj(q,r), so we get a finite family of nonoverlapping conrons that
we call Z(q,7). The stabilizer of (¢,r) permutes the chains Ci,...,Cy, and so it permutes
these conrons. Thus in the chain-finite case, we have defined a I'-partition of S that we call
the standard partition Z associated to our chain-finite horoball packing B(q),q € Q.

Lemma 2. The standard partition is G-consistent.

For each component of O;(g, )N int S(p, ¢) is one of the sets O;(p,q), j' € J(p,q). Thus
Zji(q,7) N S(p, q) is the union of these Z; (p,q), so Lemma 2 is proved.

For any G-consistent I'-partition C(p, q), every chain S(p,q,...) is a union of congons in
C(p, q). Thus our standard partition is the coarsest such partition in the chain-finite case.

Suppose our horoball packing is chain-finite and (g,r) € A. Suppose that p;,i € I, is
aimed at z, I is bounded above by 1, and (p1,p0) = (¢,7). Let a = lim™ p;. The chains
Cm = S(p1,p0,---,Pm),m < 0, are nested and nonempty, so they stabilize at some chain
Cmin. Suppose 2’ € Cpin. By the Continuation part of Theorem 6, one may extend the
sequence P, ..., po, p1 of indices in Cyy,in to a sequence p;, 7 € I’, where I’ is bounded below
by m and lim* p; = z/. Note that the sequence p;,i € I U I, is aimed at z/. We have
lim* p; = 2/ and lim™ p; = a. Thus Cpin x {a} C K(q,7).

For a fixed chain C, each aimed sequence with Cpn = C gives a slice C' x {a} C K(q,r)
for some a € €. The closure of the union of these slices is a rectangle in K(g,r) whose
first factor is C. This expresses K(g,7) as a finite union of rectangles whose first factor is a
chain. These rectangles overlap. However K (g, r) is a union of nonoverlapping rectangles of
the form Kj(q,r) = Zj(q,r) x Aj(q,7),j € J(g,r). This follows from the section of [F3] on
Markov partitions for chain-finite packings.

Suppose that Z;:(p,q) C Zj(q,7), as in Lemma 2. Then we see that A;(q,7) C Aj(p, q).
For if a € Aj(q,r) then some aimed sequence p;,i € I, has (p2,p1,p0) = (0, ¢, 1), lim* p; =
z € Zj(p,q) and lim™ p; = a. But then the sequence p} = p;y1 is aimed with lim™ p; = a,
(p},p)) = (p,q), and lim* pl = 2, s0 a € Aji(p,q)-

We let 8* = UJ(p,q), (p,q) € A, be our set of symbols. For s = j € J(q,r), we let
Zs = Zj(g,r), As = Aj(q,7), and Ry = Zzx A;. We let T* be the set of all pairs t = (j, j') as
in the last paragraph, for (p,q,7) € B, j € J(q,r), j' € J(p,q) and Zji(p,q) C Z;j(q,7). We
let i*(t) = 4, f*(t) = j'. Then the last paragraph shows that equation (8) holds. Moreover,
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if one examines the discussion leading up to (9) and uses the Uniqueness part of Theorem 6
and the fact that the conron boundaries have measure zero, one finds that (9) holds as well.

Now we are ready to factor out by I' to get a reduction theory for X. We assume, for
simplicity, that I" acts freely on §*, as will be the case in many of our examples below. Then
we follow the procedure we used to derive Theorem 5 from (8) and (9). We take a finite set
of representatives S for the action of I' on §*. We let 7 consist of all ¢t € T* with i(t) € S
and we choose y(t) so that y(t)f*(t) € S. Welet i, f : T — S, i(t) = i*(t), f(t) =v()f*(t).
We obtain the following rectangular version of reduction.

Theorem 10. Suppose X has finite volume and is noncompact. Suppose there is a I'-
equivariant family of horoballs B(q),q € @, that is chain-finite. Then there is a finite set S
of symbols and a countable set T of transitions, rectangles Rs = Zs x As C ), s € §, and
mapsi, f:T =8, v: T — I sothat fort € T,i=i(t), f = f(t),y = (t) we have

Zy CyZ; and yA; C Ay. (13)
A relation in R; x Ry is defined by the bijection
v ’y_lZf X Az — Zf X ’}/A,‘.

Let P be the relation on U = UR, that is the union of these relations over all t € 7. The
iterates of P give I'-equivalent points in U and, conversely, for almost all (z,a) € U,

all points of U I'-equivalent to (z,a) arise by iterating P. (14)

We consider the family of maps v(¢)™! : Z¢(t) — Z;(t). This is an infinite family of
conformal or anticonformal transformations on a finite system of conrons. The union of the
graphs of these maps will be called the inverse Gauss correspondence. This is analogous to
the system of inverse branches to the Gauss map on the [0, 1] given by the family of maps
(x + n)_l, n =1,2,.... From Theorem 7, and the fact that the boundary of any conron is a
null set, we obtain

Corollary 1. For almost all points z € UZg, s € S, the iterates of the inverse Gauss
correspondence give all points in UZ4 that are I'-equivalent to z.

The advantage of this inverse Gauss correspondence over the reduced Gauss correspon-
dence of section 6 is that its branches are defined on only finitely many sets. This makes it
possible to use the inverse Gauss correspondence to calculate dynamical zeta functions for
the geodesic flow. We refer to [M, F2] for a discussion of the use of the inverse Gauss map
to calculate zeta functions for PSI(2,Z) and other triangle groups. Using the results of the
next section, we will have a corresponding tool for Bianchi groups.

Section 8. Rectangles for Bianchi groups

We will find an analogue of equation (12) for each Bianchi group. That is, we will choose
a suitable horoball packing and show that each K(p, ¢) is a finite union of rectangles. In this
sense the reduction theory of section 6 resembles the reduction theory for compact quotients
very closely when I' is a Bianchi group.

The key point is that we can choose our horoball packing to be chain-finite. Proposition
1 below is the technical result needed to prove this. We first need a general lemma. Recall
that two subgroups of some given group are commensurable if their intersection has finite
index in each subgroup.
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Lemma 3. Let G be a Lie group, ¢+ : G — G an involution, and F' the subgroup of fixed
points of «. For any discrete subgroup I' C G such that +(T") is commensurable with ', the
image of T in G/F is discrete.

To see this, let 'g = I' N «(T") and let p : G — G/F be the natural projection. The
coincidence sets C(¢,7) = {9 € G : 1(g9) = vg},v € T, form a disjoint, locally finite family of
closed sets in G. One finds for § € I'g that 6(C(¢,)) = C(1, '), where v/ = 4(6)y6~! € T. So
these sets are permuted by the left action of I'g on G. Taking 7 to be the identity element
e € G, we see that C(t,e) = F. So I'gF is closed in G and has F as a relatively open subset.
Thus p(Tg) is discrete. As 'y has finite index in ', we find that p(T") is also discrete and
Lemma 3 is proven.

The commensurator (or commensurability subgroup) Commg(T') consists of all g € G
such that gT'g~! is commensurable with T'. Any subgroup commensurable with T lies in the
commensurator.

Say G is the group of isometries of H™ and suppose R € Commg(T') is elliptic of order
two. Then we may take ¢ to be the inner automorphism by R and apply Lemma 3. Clearly
F is the stabilizer in G of the hyperbolic subspace Fiz(R) of fixed points of R. Let d be
the dimension of Fiz(R) so 0 < d < n. The homogeneous space G/F may be identified with
the Grassmannian of hyperbolic subspaces of dimension d, with basepoint Fiz(R). When
d > 0, each of these hyperbolic subspaces is determined by its intersection with OH™, which
is a (d — 1)-sphere or (d — 1)-plane. This identifies G/F with the space of such spheres and
planes in JH™. Lemma 3 asserts that the orbit of the basepoint under IT" is discrete.

When H"/T' is noncompact and has finite volume the commensurator preserves the set
Q) of cusp points. We now take n = 3 and fix an imaginary quadratic field k. For the
Bianchi group By we have () = k, whose stabilizer in G contains the semidirect product ¥y
of PGI(2, k) with {z,Z}. Since PGI(2,k) is triply transitive on £, and the only elements of
G that fix 0,1, and oo are {z,%}, we see that the stabilizer of k is . Since both PGI(2, k)
and {z,z} lie in the commensurator of By, we see that this commensurator is also Y. It
follows that Commg (') = L for any I' commensurable with Bj.

We say a line/circle L is k-rational if L = M(R) where M € GI(2, k). For such an L,
R= MozoM~! € Commg(T). So Lemma 3 implies that the set of lines/circles (L), € T,
is discrete.

Let § be a positive constant and C' a compact subset of C. The set of lines/circles that
meet C and have curvature at most 3 is compact. So we find

Proposition 1. Let I' be a group of isometries of H® commensurable with By,. For any
isometry g and any k-rational line/circle L, only finitely many of the images gy(L),v € T,
have bounded curvature and pass through a given bounded region in C.

We originally proved this proposition by a direct method that may be useful in compu-
tations. We briefly sketch this method in the case where ¢ = e, L = R, and I' is given by
matrices with coefficients in 0. By commensurability, one may arrange that each of these
matrices has determinant in some finite set of nonzero elements of Oy. If y(L) is a line, one
can calculate its slope and find the point  on it nearest to the origin. One finds that the
slope is given by a bounded element of Og, so only finitely many slopes are possible. For
a given slope, a certain multiple of ( lies in O and ( is bounded. Thus only finitely many
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lines occur. The case when (L) is a circle behaves similarly. One finds that the curvature
takes only finitely many values. For each value of the curvature, however, the center of the
circle is bounded and a certain multiple of the center lies in Q. Thus only finitely many
circles occur, and the proposition follows.

To exploit Proposition 1, we will need to arrange that various shadows and chains be
bounded by k-rational lines and circles and that these circles have bounded curvature. These
concerns prompt the next two lemmas.

We now define a norm v : ¥, — Q7 /(Q*)2. For an element g of the form ~(z) or (%)
for v € GI(2,k), v(g) is the class modulo rational squares of the norm of det(y). One can
easily see that v is well-defined and a group homomorphism. If I' is commensurable with By
then it is finitely generated and so v(I") is a finite abelian group of exponent 2.

We say a horoball in H3 is k-rational if it is based at a point of k& and its Euclidean
diameter is rational or it is based at infinity and its height (i.e. its Euclidean distance to C)
is rational. It is easily checked that the image of a k-rational horoball by g € Commg(By)
is k-rational if and only if v(g) = 1. One can verify this directly if the horoball and its image
are based at oo, since az + b and az + b lie in the kernel of v if and only if |a| is rational.
To deduce the general case we use the transformations v(z) = (¢ — 2) ™!, ¢ € k. It is enough
to check that v(y) = 1 and that - sends rational horoballs based at ¢ to rational horoballs
based at oo.

We now suppose I' is commensurable with By and v(I') = 1. Shrinking each horoball in
our horoball packing slightly, we may arrange that each horoball B(q) is rational.

Lemma 4. The line or circle L containing a boundary arc S(p,q) N S(p', q) is k-rational.

We may reduce to the case ¢ = oo and B(oo) of height 1, by a change of coordinates
a(g—2)71, a € Q, when ¢ € k. Say that B(p) has Euclidean diameter ¢ < 1. Then R(p, q) lies
on the Euclidean sphere with center p and radius v/¢. Choosing ¢’ the Euclidean diameter of
B(p') we find that these spheres meet C in circles |z—p|? =t and |z —p/|> = #'. If we simplify
and subtract these equations, and use that p,p’ € k and t,t € Q, we get an equation of the
form R(za) = b,a € k,a # 0,b € Q which defines a k-rational line L. As L passes through
the intersection of both spheres and C, it is the projection from ¢ of the intersection of the
ridges R(p,q) and R(p', q). This proves Lemma 4.

The following lemma will be used to bound certain curvatures. We take g an isometry
of H?3 that does not fix co and we define the disc D, as at the end of section 5.

Lemma 5. Let L be a circle or line in C that meets Dy, and let k > 0 be the curvature of
L. Let I' = g(L) and let k' be its curvature. If k < x’ then k' < 2d/(r? — d?), where r is
the radius of Dy and where d < r is the distance from L to the center of D.

For the proof, we may compose ¢ on both sides with Euclidean isometries to reduce to
the case where g is the inversion g(z) = 72/z and L, L' are both perpendicular to R. By
continuity, we may suppose that L and L’ are circles. Say that L crosses R at z and y with
|z| < |y|. Then |z| =d <.

We simplify the inequality x = 2/|z — y| < &' = 2/|g(x) — g(y)| = 2|zy|/(r*z — y|) to
find |zy| > r2. This implies in turn that |zy~!| < d?/r? and |1 — zy~!| > 1 — (d%/r?). But
then k' = 2|z|/(r?|1 — zy~!|) < 2d/(r? — d?), and Lemma 5 is proved.
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We can now prove a rectangular version of reduction for Bianchi groups.

Theorem 11. Let k be an imaginary quadratic field and Oy, the ring of integers in k. Let
[' be commensurable with the Bianchi group By, = PSI1(2,Oy,) and suppose v(I') = 1. There
is a D-invariant packing B(q),q € k, of H® by rational horoballs. FEach such packing is
chain-finite and gives a reduction theory for I' based on a finite number of rectangles.

For each cusp point p, we may choose charts g(p) as in section 5 with g(p) € PGI(2, k).
Since I has only finitely many orbits on @, the transformations g(p, q¢) = g(»)g(q) ™%, p,q €
@, lie in a finite number of double cosets of I' in ¥, hence in a finite number of left cosets
of groups commensurable with By.

Suppose C = S(p1,p0, ---;Pm), m < 0, is a chain and define fy, ..., f, € PGI(2,k) by
fi = g(po, pi)- Fori =m, ..., 0, let P; = P(p;t+1,pi)- Then a fixed boundary arc of g(pg)C lies
for some ¢ = m, ..., 0, in the image by f; of a line L; that bounds F;. We will find a bound for
the curvature of this arc. Proposition 1 then shows that there are only finitely many circles
of the form f;(L;) since they have bounded curvature and pass through Py. Hence there are
only finitely many choices for g(pg)C. This shows chain-finiteness and Theorem 10 gives the
desired rectangles.

Let Ljy1,..., Ly be the lines and circles obtained from L; by successively applying the
transformations g; = g(pj+1,p;) for j =¢,..., —1. Suppose that the greatest curvature in this
sequence occurs for L 1, ¢ < j < —1. In Lemma 5, we take L = L; and g = g;. As shown
in section 5, Pj C Dy. Since L meets Pj, L crosses Dy. As L' = Lj11, we have k < /. Thus
Lemma 5 gives a bound on «/, hence on the curvatures of L; 1, ..., Lg.

Because I" acts with only finitely many orbits on A, the transformations g(p, q), (p, q) € A,
take only finitely many values. Thus in Lemma, 5, r takes only finitely many possible values
and the ratio d/r is uniformly bounded by some constant less than one. Suppose p is the
minimum value of 7 and p < 1 is the supremum of the ratios d/p,. Then Lemma 5 gives the
uniform bound 2/(p (u~! — p)) for the curvature of a boundary arc of g(pg)C. This finishes
the proof of Theorem 11.

The preceding proof relies on the fact that each transformation g(p, ¢) in the local coor-
dinate form of the Gauss correspondence is an expansion on the polygon P(p,q). It is this
expansion that bounds the curvature.

The method of proof used in this section yields the following generalization of Theorem
11.

Theorem 12. Let G be the isometry group of H" and ' a discrete subgroup such that
X = H™/T has finite volume but is not compact. Suppose that cusp neighborhoods for X
can be chosen so that for each adjacent pair of cusp points p,q, each smooth component
of dS(p,q) is fixed by a hyperbolic reflection R € Commg(T'). Then this system of cusp
neighborhoods is chain-finite and gives a reduction theory for I' based on a finite number of
rectangles.

For the proof, note that Lemma 5 generalizes to any n > 2. To include the case n = 2,
we take the curvature of an interval to be twice the reciprocal of its diameter.
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Section 9. Examples and open problems

Theorem 11 applies to various I' of number-theoretic interest. Suppose J is an ideal in
Op. Consider transformations (az +b)/(cz +d),a,d € Og,c € J,b € J~!, ad — bc = 1. These
form a group PSI(Oy,J) commensurable to By. Since it is a subgroup of PSI(2, k), it lies
in the kernel of v. Thus Theorem 11 applies to PSI(Og, J).

Following [EGM, chapter 7, section 4], we construct a discrete subgroup Hy, of PGI(2, k)
and describe its properties. Hy consists of isometries g(z) = (az + b)/(cz + d), where
a,b,c,d € Op, and the nonzero principal ideal < ad — bc > is the square of the ideal
< a,b,c,d > . Since the norm of ad — bc is a square in k, |ad — bc| is rational and so v(g) = 1.

Hj, is maximal among the discrete subgroups of PGl(2,C) containing By. Let Uy be the

group of units in O and let Iy be the ideal class group of O. Let I ,g2) be the subgroup of

I}, consisting of those ideal classes whose square is principal. Considering the ideal class of
< a,b,c,d >, one can describe Hy/By as an extension of Uy /U2 by I,(f) and prove its order

is 2!, where ¢ is the number of prime factors in the discriminant of k.

Let the extended Bianchi group Ej be the semidirect product of Hy by {z,Zz}. Clearly
v(Er) = 1. Knowing that ¥y is the commensurator of By it follows that Fj is maximal
among discrete isometry groups of H3 containing By.

We can interpret Ej as the semidirect product of By, and the isometry group Isom(Xy)
of the orbifold X} = H3/By. For by [R, corollary 2 to Theorem 12.6.3], this isometry group
has finite order. Lifting these isometries to H3 in all possible ways gives a finite extension
of By, hence a subgroup of EFj. Conversely, since By is normal in Ej we see that elements
of E}, define isometries of X. Thus Ej /By = Isom(X}), proving our assertion. This proof
also shows that Ej, is just the normalizer of By, in the isometry group of H3.

When calculating examples, the reduction theory for Hy or E}, uses fewer symbols and
transitions than that for the Bianchi group By itself. It is not hard, on the other hand, to
recover the results for By from those for Hy or E;. We will restrict ourselves to some k of
small discriminant.

The cusp point a/b, a,b € Og, determines the ideal class of < a,b > . This gives a
well-known bijection between the Bg-equivalence classes of cusp points and I.

Suppose k has a Euclidean algorithm. Then X has only one end and so all cusp
neighborhoods define the same fan tiling. The cusp points adjacent to oo are just the
elements of Oy, and all adjacent pairs are equivalent to (0, 00). The shadow S(0, 00) is just
the Dirichlet domain D for the translation group O acting on C, that is the polygon of points
of C closer to 0 than to any other point of Oy. To calculate (or approximate) the standard
partition of D for Bj, we apply to all lines through 0D all elements g € By that take 0
to 0o. Some of these lines/circles cross D, and we call these curves of generation one. To
each of these curves we again apply these transformations g, leading perhaps to new curves
that cross D that we say are of generation two. This process may lead to new curves for
a number of generations, but Theorem 10 implies that this system of curves must stabilize.
These curves divide D into finitely many congons. These congons form a refinement of
the standard partition (in our calculations, we typically find that they give the standard
partition itself).

If £ has no Euclidean algorithm then more than one polygon is needed. In this case,
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one sets up the charts g(p) as at the end of section 5 and uses the local coordinate version
g(p,q) of the Gauss correspondence to transform curves in the polygon P(p,q). We may
call the bounding lines curves of generation zero, their images under vg(p,q), v € (Bg)oo,
that cross one of our polygons are curves of generation one, etc. It is convenient to take
hr = |Ix| distinct copies of the upper halfspace model, one for each equivalence class of
cusp points, and tile the ith copy by the polygons P(p,q(7)), where ¢(i),i = 1, ..., hg, are
representatives for the orbits of By on k. Then each of these polygons is equipped with
an expanding mapping with values in one of the hj copies of C. Applying these mappings
repeatedly, one eventually finds a refinement of the standard partition of these polygons.
We call the sets in this partition tiles for a curvilinear tiling that refines our initial tiling by
polygons. The crucial property is G-consistency: the image of a tile in P(p, q) by g(p, q) is,
except possibly for oo, a union of tiles.

Figure 4. The standard partition for the Eisenstein field

We first take & = Q(v/—3), the Eisenstein field. Then D is a regular hexagon with
vertices z/2, where 2® = —1. We apply the inversion 1/Z to the righthand edge R(z) = 1/2
of D and obtain the circle |z — 1| = 1. Circles equivalent to it by Uy C (Hy)eo form the
first generation of curves. Applying the inversion once more and translating back leads to a
second generation of curves, namely the three lines through the origin satisfying $(23) = 0.
Together these circular arcs and segments yield the standard partition of D into 18 regions,
as drawn in Figure 4.
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The stabilizer Uy of D in Hj acts freely on these regions with only three orbits. We
may select as representative regions the three regions with |arg(z)| < 7/6. This leads to a
reduction theory for Hy = PGI(2, k) with three rectangles, or one for By, with six rectangles.
A reduction theory for Ej, with two rectangles can be found from that for Hy by refining the
standard partition by adding the three segments 3(23) = 0. This yields 24 regions and we
may select as representative regions the two regions for which 0 < arg(z) < 7/6.

For £ = Q(i), the Gauss field, the results are quite similar. Now D is the unit square
centered at 0 and the circle [z — 1| = 1 has 8 images that cross D, namely the unit circles
centered at +1,+¢, +1 £ 2. These 8 circles divide D into 12 congons, forming the standard
partition of D, as drawn in Figure 5.

Figure 5. The standard partition for the Gauss field

The stabilizer of D in Hy = PGI(2, k) is U, and it acts freely on these regions with only
three orbits. We may take as representative regions the convex region in D defined by

z—1—-14 <1
and two nonconvex regions. One of these resembles a shield
z—1|<1, [z—i4 <1, |z—1—4|>1
and the other resembles a thorn
z—1|<1, [z—1]>1, |[z+1i| > 1L
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This leads to a reduction theory for H; with three rectangles, or one for By with six rectan-
gles. A reduction theory for E}, with three rectangles can be found from that for Hy by just
bisecting our three regions by intersecting them with the sector 0 < arg(z) < /4.

In [H1], Hurwitz studied least-remainder continued fractions over the Gauss and Eisen-
stein fields. From his calculations it is clear that the sequence of terms in a least-remainder
continued fraction satisfies constraints involving arbitrarily long sequences of terms. This
is unlike Hurwitz’s theory over Z where, as noted in section 2, the only constraint involves
consecutive pairs of terms. This difficulty is resolved by our use of the standard partition.
We cannot change the sequences of terms, but we add a bit of information to each term,
namely which congon in the standard partition of D contains the remainder. This restores
G-consistency and leads to a better description of these continued fractions.

In all cases with £ Euclidean, our results can be described using least-remainder continued
fraction expansions and the dual continued fraction expansions, both with terms in Ok.
For other k, however, the continued fraction description breaks down since more than one
remainder region must be used.

For a non-Euclidean example, let £ = Q(1/—15) and let s = (1 + /—15)/4. We have
ss =1,s+35=1/2 or, equivalently, s- s = 1,5 -1 = 1/4. Since Uy, and I} have order two,
we find that Hy/By is of order four. Generators can be taken to be —z, from the term
Ui /UE = Uy, and the involution R(z) = s + s/(2z — 2s), from the term IISZ) = Ij. Oy is
generated by 1 and 2s and the stabilizer (Hj)oo is the semidirect product of O and +z.
The action of Hj on cusp points is transitive, so we may again use oo as our sole cusp point
representative for this group. The set of highest points of orbits of By, is known [S], and this
set does not change when we pass to PGI(2, Oy). Taking into account the action of R(z) on
X}, one finds the following description of the highest points of the orbits of Hj, that is of
the fan F'(oo) for Hy

z—m2>1,z—m—s?>1/2,|z —m+3> >1/2

for all m € Oy. It follows that the action of Hy, on adjacent pairs has three orbits, represented
by (0,00), (s,00), and (—3,00). The corresponding shadows are a hexagon H = S(0, c0)
defined by

R(2)| <1/2, |z-s| <3/4, |z-5] <3/4

and two parallelograms that are mirror images under reflection in the imaginary axis. One
of these is P = S(s,00), given by

R(z— )| < 1/4, [(z—s)-1 < 1.

Each of these pairs/shadows is stabilized in (H)s by a subgroup of order two generated
by an element of the form 2¢c — z, where ¢ is the center of the shadow. Under the action of
(Ex) oo, the two parallelograms become equivalent and the stabilizer of the hexagon increases
to a group of order four {£z,4+z}. We may choose our charts so that g(co) = id, g(s) = R,
and g(0) = T, where T'(z) = 1/z. So we use the inversion T'(z) on H and the involution R(z)
on P.

We find in this example that three generations of curves are needed. We can enumerate
the curves as follows. We denote the line through a point b perpendicular to the nonzero

25



vector a by at +b. We denote the circle with center ¢ and radius r by ¢/ /r. We will only write
one circle/line from each orbit under (Ej)c. Then the curves occurring in the boundary of
the standard partition are the following four lines

1t +1/2, 14 1t +1/4, st
and the following five circles
0//1, 0//2, (25/3)//(2/3), s//1, s//(1/2).

For example, the line L = s+ +3 contains the common boundary of H and P. Applying
R to this line gives s//1. Half of this circle crosses P — 1, H — 1, H, and H + 1. We obtain a
second generation curve 0//2 by transforming from H + 1. Applying 7T to a circle crossing
H equivalent to 0//2 gives a vertical line 1+ 4 1/4 in the third generation.

This standard partition is permuted freely by the pair stabilizers in H. We have not
enumerated the regions in this partition as this seems a task best left to a computer.

For an extensive number of choices of k, the fundamental domain for By on H3 has
been tabulated by Robert Riley, whose methods are explained in [Ri] along with several
examples. With such a domain, and a knowledge of Ij, one can find the standard partition
by a mechanical procedure.

We conclude with some problems that bear further inquiry. One is the nature of the dual
factors A, for the factors Z of a standard partition. Our calculations for & = Q(%) suggest
that these factors have fractal boundary, much like the Koch snowflake curve. We do not
know the fractal dimension of these boundaries. To those familiar with Markov partitions
for Anosov flows on compact manifolds, fractal boundaries are what one expects for factors
of dimension two or more [Ca] and it is the smoothness of the conron factors Zs in Theorem
10 that is surprising. [F3] gives a recursive procedure for approximating the dual factors As.

It is worth exploring other reduction theories to try to avoid fractals. The thesis of J.
Hurwitz [H] (see also [D, pp. 200-201]) gives a reduction theory for a finite index subgroup of
the By, k = Q(7), based on a special class of continued fractions. In this theory, both factors
Zs and Ag are congons. We are developing a geometric method, suggested by this example,
that applies to a certain geometrically defined class of finite volume, noncompact quotients
of H™. At present we know this class includes a subgroup of By, for k = Q(v/—d), d =1,2,3.

It is feasible to calculate dynamical zeta functions for Bianchi groups using the reduction
theory of this paper. This uses the fact that every periodic sequence of transitions defines a
closed orbit of the geodesic flow. As in the compact case [F1], it is necessary to understand
the intersections of elements in the Markov partition and to introduce compensating terms
to keep orbits that meet the boundary of our flowboxes from being overcounted. Although
the flowbox boundaries are fractal, they can be approximated sufficiently well by small open
neighborhoods that an exact calculation of the zeta functions can be made. For related work
for n = 2, see [M, F2]. Tt is not so clear that the reduction theory mentioned in the preceding
paragraph is adequate for zeta function computations, however, since a periodic sequence of
transitions may define a parabolic element of I" instead of a closed orbit of the geodesic flow.

The complexity of our example for £ = Q(1/—15) suggests the problem of choosing cusp
neighborhoods to minimize the number of lines and circles in the standard partition. One
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could try instead some perturbed version of a fan tiling (the theory of sections 5 and 6 would
still go through, as shown in [F3], Theorems 1 and 2) in hopes of obtaining as few rectangles
as possible.

The results of this paper apply to many hyperbolic knot/link complements, since they
are hyperbolic quotients by finite index subgroups of Bianchi groups. Indeed, by [MR,
chapter 9] any noncocompact arithmetic Kleinian group is, up to conjugacy, commensurable
with a Bianchi group. A large list of examples is given that includes the figure-eight knot
complement, the Borromean rings complement, and the hex-link complement, corresponding
respectively to the three choices of k£ in our examples above [MR, pp. 436-439]. It remains
to examine some nonarithmetic cases to see if Theorem 12 applies or if a reduction theory
with finitely many rectangles can be found by some other means.

In a more speculative vein, we might ask whether the geometric methods of this paper
could be extended to include a reduction theory for real quadratic fields. It seems at present
that “horoballs” in H? x H? used in studying the Hilbert modular group [Hi| are not suitable
for a description of pairs of boundary points along the lines of Theorem 6.

The relation between our Gauss correspondence and Diophantine approximation should
be explored. [Mau,V] may be helpful here. Simple continued fractions were used to study
minima of real quadratic forms in Markov’s thesis, which is thoroughly developed in [D2,
Chapter 7]. As a first step, one might attempt to recover this deep theory via least-remainder
continued fractions.
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