Assignment 1

MA557
Thu, Sep 28 2006. To be returned two weeks later.

1) Warming up: compute the coproduct and antipode for all rooted trees up to four vertices.
2) We introduced two ways of writing the coproduct for $T=B_{+}(X)$:

$$
\Delta\left(B_{+}(X)\right)=B_{+}(X) \otimes 1+\left(\mathrm{id} \otimes B_{+}\right) \Delta(X)
$$

and

$$
\Delta(T)=T \otimes 1+1 \otimes T+\sum_{C} P^{C}(T) \otimes R^{C}(T)
$$

where the sum is over admissible subsets of edges C as explained in class. Prove that the two notions agree.
3) Define the tree factorial T ! by the vertex weights

$$
T!=\prod_{v \in T^{[0]}} w(v) .
$$

Prove:

$$
\frac{|T|}{T!}=\sum_{T^{\prime} \in \mathcal{F}} \frac{1}{T^{\prime}!}
$$

4) For Feynman rules

$$
\phi\left(B_{+}(X)\right)(a ; \rho)=\int_{0}^{\infty} \frac{y^{-\rho}}{y+a} \phi(X)(y ; \rho) d y
$$

prove:

$$
\phi(T)=a^{-|T| \rho} \prod_{v \in T^{[0]}} B_{w(v)},
$$

where $B_{k}=\Gamma(k \rho) \Gamma(1-k \rho)$.

