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The polylog as a Hodge structure

Iterated integrals: obvious Hopf algebra structure
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Var(SLix(z) — In|z| SLi(z)) =0

Hodge sructure from Hopf algebra structure: branch cut
ambiguities columnwise
Griffith transversality < differential equation
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Hopf algebra of graphs H = Q1 & @2, H/

» The coproduct
A'(T)

AN =Tel+ial+ > yal/y

y=U;vi,wa(7i)>0
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The antipode
MN=-r-> S(y/y=-mS®P)A
The character group
G20 d:H—= V,0(hUh) = d(h)d(h)

v

» The counterterm
SR = —R(®(h) =D SEM®(/7))
= —R® (m(SR P P)A(F))

v

The renormalized Feynman rules

dr = m(SE @ d)A
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An Example

» The co-product

(4T AARGP) = 320 =
42 Q5 4+ 0 Q&

» The counterterm
53(@‘@%@%%@?@)=—Rm[sﬁg®w} X
A (G0
:—R{¢<“<§“§“§“€“%?§“@)+
+R[P(B s +2 e + 0 )] (=)}
» The renormalized result
b = (id — R)m(SE @ OP)A (4T 4~ )
= (id = RY{& (04000

+R[P(B = +2 o + o )]P (=)}
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sub-Hopf algebras
» summing order by order

1
cf = lrlk%:g(r)r Aut(0)] = A(c) ZPOI )@ ¢y (8)

» Hochschild closedness

X =12) ol =12 3 B Q). (9)
J j
= X' .
Q= Moagee o oo X Evaluates to invariant charge.
> bBJ’FJ =0.
ABY(X) = BY(X) @1+ (id © BI)A(X). (10)

Implies locality of counterterms upon application of Feynman rules
OB (X) = [ dpury®(X):

R(N) =m(S§ CDP))ABQJ = /d/br;jCDR(X). (11)



Symmetry
» Ward and Slavnov—Taylor ids
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Symmetry
» Ward and Slavnov—Taylor ids

i 1=V 4 R (12)
span Hopf (co-)ideal I:
A(l)CH®I+1®H. (13)

. . . 1p2
AlR)=h®1+1® i+ (¢f +c{M¢+ll)®/1+/1® oA

> Feynman rules vanish on / < Feynman rules respect

quantized symmetry:
ROH/I— V.

> ldeals for Slavnov—Taylor ids generated by equality of
renormalized charges, also for the master equation in
Batalin-Vilkovisky (see Walter van Suijlekom’s lectures)

» Similar ideals for the core Hopf algebra are respected by the
BCFW recursion, and fit naturally with the structure of
perturbative quantum gravity
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Kinematics and Cohomology
» Exact co-cycles _ _ .
(B8] = B + bp"™
with ¢/ : H— C

» Variation of momenta
GR({g},Ins,{0}) = 1 £ O, (0}(X"({g}))
with X" =1+3", g/BY(X"Qi(g)), bB}Y = 0. Also,

j=1

r - j /r\
G"=|> vller.{@NIs| + G
Then, for MOM and similar schemes (not MS!):
{@} - {9} & B” — B” + b,

OF ooy = OF {@}*“’L (o}

(14)

(15)

(16)



Leading log expansions and the RGE

» The invariant charge QY
For each vertex v, a charge QV:
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Leading log expansions and the RGE

» The invariant charge QY
For each vertex v, a charge QV:

LV i)

e adjacent to v.

(8L+6 8)— Y, 71) "(g,L)=0 (18)

eadjr

rewrites in terms of the Dynkin operator

(7i(g) = S* Y(X"(g))):

Vi(g) =

x|

(vi(g) - Zsjﬂgag> vioi(g)  (19)

JER



Ordinary differential equations vs DSE

» RGE+DSE
the iterated integral structure
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Ordinary differential equations vs DSE

» RGE+DSE
the iterated integral structure

SR(E(X) = [ " (X)dry (20)
allows to combine X" =1+, B, (X" @) with RGE to

W=PE)-@P+> s7igderi(e).  (21)
JER

> massless gauge theories
B(g) = gv1(g)/2 for 1 anomalous dim of gauge propagator

71(8) = Plg)  —m(g)(1—gdg)nlg) (22)

(Ward Id QED, background field gauge (Abbott) QCD)
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The set of all such flags Fr > f determines Hopf algebra
structure, |Fr| is the length of the flag.



Limiting mixed Hodge structures

» Hopf algebra from flags

The set of all such flags Fr > f determines Hopf algebra
structure, |Fr| is the length of the flag.

» It also determines a column vector v = v(Fr) and a nilpotent
matrix (N) = (N(|Fr|)), (N)**! =0, k = corad(I") such that

lim (e " Mg (v(Fr)) = (¢ (©) Ins, &S (©). [(©) In*5) T (24)
-

where k is determined from the co-radical filtration and t is a

regulator say for the lower boundary in the parametric
representation.



The Feynman graph as a Hodge structure

Hopf algebra structure as above

1 0 0 0 0

— X {I} 0 0 0
\Q ’ \\@ ’ " =(C1, G, G3, Ca, Gs)
@ 0 0 @ 0
{4 < 4 A

- 34_{%4.%@%.

Hodge sructure: cut-reconstructability: from Hopf algebra structure:
branch cut ambiguities columnwise

Griffith transversality < differential equation?
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QED

» sub Hopf algebra for vacuum polarization suffices

> n(x) = P(x)
P(x) twice
differentiable
71(%0) =7 >0

different solutions

distinguished by
behaviour
;i,:; =y - -
da —*n
L= f;;(L) zwﬁl)

—(x)? + N (x)xx71(x) with P(x)

niz)

_1
e x

>0

PY

> separatrix exists and might have no Landau pole'

D(P) _ foo P(z dz

X0

_ 2dz

00, [ig AP T



QCD

» sub Hopf algebra for gluon polarization suffices in background
field gauge
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» sub Hopf algebra for gluon polarization suffices in background
field gauge

> v1(g) = P(g) — 11(8)? +11(g)gd71(g) with P(g) <0



QCD

» sub Hopf algebra for gluon polarization suffices in background
field gauge

> 11(8) = P(g) —11(8)* + 11(8)gdg11(g) with P(g) <0
P(g) twice differentiable
and concave near 0
unique solution which
flows into (0, 0) at large ,
2

| = fg(l-) dz

zm1(z

dz
== o) 7o
Ly =1n @/Aqco
oo G(f(o))do
fdisp(Q2) = Jo 0'(+(Q2)3i77
and ODE | . ) ) o
> separatrix exists and gives asymptotic free solution, with finite mass

gap for inverse propagator iff v1(x) < —1 for some x > 0.
ID(P)| < 0o = 71(x) ~ sx, x = oo. That allows for dispersive
methods as introduced by Shirkov et.al. in field theory.
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