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Abstract. The problem of determining the number of points of graph hyper-
surfaces over a finite field Fq goes back to a question raised by Kontsevich in
1997, and is related to Feynman integral computations in quantum field the-
ory. Stembridge showed that the point-count is polynomial in q for all graphs
with ≤ 12 edges, but Belkale and Brosnan showed in 2003 that the counting
functions are of general type for very large graphs. In this paper, we give a suf-
ficient combinatorial criterion (vertex width ≤ 3) for polynomial point-counts,
and compute this polynomial explicitly for some infinite families of physical
graphs. We then exhibit some small counter-examples with vertex width 4,
whose point counts are related to a singular K3 surface, and expressible in
terms of a certain modular form of weight 3 and CM by Q(

√
−7).

1. Introduction

We first recall the definition of graph hypersurfaces and the history of the point-
counting problem, before explaining its relevance to Feynman integral calculations
in perturbative Quantum Field theory.

1.1. Points on graph hypersurfaces. Let G be a connected graph, which may
have multiple edges. The graph polynomial of G is defined by associating a variable
αe to every edge e of G and setting

(1) ΨG =
∑

T⊆G

∏

e/∈T

αe ∈ Z[αe]

where the sum is over all spanning trees T of G (connected subgraphs meeting every
vertex of G but which have no loops). These polynomials go back to the work of
Kirchhoff in relation to the resistance of electrical circuits.

The graph hypersurface XG is defined to be the zero locus of ΨG in projective
space PNG−1, where NG is the number of edges of G. It is highly singular in general.
For any prime power q, let Fq denote the field with q elements, and consider the
point-counting function:

[XG] : q 7→ |XG(Fq)| ∈ N .

In 1997, Kontsevich informally conjectured that this function might be polynomial
in q for all graphs. This question was studied by Stanley, Stembridge and others,
and in particular was proved for all graphs with at most twelve edges [21], and
various families of graphs obtained by deleting trees in complete graphs [20], [8].
But in [2], Belkale and Brosnan used Mnëv’s universality theorem to prove the
surprising result that the [XG] are very general in the following precise sense.
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Theorem 1. (Belkale-Brosnan). For every scheme Y of finite type over Spec Z,
there exist finitely many polynomials pi ∈ Z[q], and graphs Gi such that

s[Y ] =
∑

i

pi[XGi
] ,

where Y denotes the point-counting function on Y , and s is a product of terms of
the form qn − q, where n > 1. In particular, [XG] is not always polynomial.

This does not imply, however, that the point-counting functions [XGi
] themselves

are arbitrary. The methods of [4] §4 in particular, imply strong constraints on
[XG]. Unfortunately, Belkale and Brosnan’s method constructs graphs Gi with very
large numbers of edges, and no explicit counter-example was known until recently,
when Doryn [11] and Schnetz [15] independently constructed graphs which are
quasi-polynomial (i.e., which become polynomial only after a finite extension of the
base field). It was also hoped that various ‘physicality’ constraints on G might be
sufficient to ensure the validity of Kontsevich’s conjecture in this weaker sense.

However, the counter-examples we construct below show that this hope is false,
in the strongest possible way.

1.2. Feynman integrals and motives. The point-counting problem has its origin
in the question of determining the arithmetic content of perturbative quantum field
theories. For this, some convergency conditions are required on the graphs. A
connected graph G is said to be primitively divergent if:

NG = 2hG

Nγ > 2hγ for all strict subgraphs γ ( G ,

where hγ denotes the number of loops (first Betti number) and Nγ the number
of edges in a graph. In this case, the residue of G is defined by the absolutely
convergent projective integral [5]

(2) IG =

∫

σ

ΩN

Ψ2
G

,

where σ = {(α1 : . . . : αN ) ⊂ PN−1(R) : αi ≥ 0} is the real coordinate simplex

in projective space, and ΩN =
∑N

i=1(−1)idα1 . . . d̂αi . . . dαN . This defines a map
from the set of primitive divergent graphs to positive real numbers. It is important
to note that the quantities IG are renormalization-scheme independent. We say
that G is in φ4 theory if every vertex of G has degree at most four. Even in this
case, the numbers IG are very hard to evaluate, and only known analytically for
a handful of graphs. Despite the difficulties in computation, the remarkable fact
has been observed by Broadhurst, Kreimer, and Schnetz that every graph whose
period is computable (either analytically or numerically) is consistent with being a
multiple zeta value. This was the original motivation for Kontsevich’s question.

The algebraic approach to this problem comes from the observation that the
numbers IG are periods in the sense of algebraic geometry. To make this precise,
the integrand of (2) defines a cohomology class in HNG−1(PNG−1\XG), and the

integrand a relative homology class in HNG−1(P
NG−1, B) where B = V (

∏NG

i=1 αi),
which contains the boundary of the simplex σ. Thus as a first approximation, one
could consider the relative mixed Hodge structure

(3) HN−1(PN\XG, B\(B ∩ XG)) .
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For technical reasons related to the fact that σ meets XG non-trivially, the integral
IG is not in fact a period of (3). However, one of the main constructions of [5] is
to blow up boundary components of B to obtain a slightly different relative mixed
Hodge structure called the graph motive MG. The integral IG is now a period of
MG. The general conjectures on mixed Tate motives would then say that if MG is
of mixed Tate type (its weight graded pieces are of type (p, p)) and satisfies some
ramification conditions, then conjecturally it should follow that the period IG is a
multiple zeta value.

Although not explicitly stated in [5], it follows from the geometry underlying
their construction and the relative cohomology spectral sequence that MG is con-
trolled by the absolute mixed Hodge structures Hi(Pi\Xγ), where γ ranges over all
minors (subquotients) of G. Thus the simplest way in which the period IG could be
a multiple zeta value is if the mixed Hodge structure Mγ were entirely of Tate type,
or, even stronger, if H•(Pi\Xγ) were of Tate type in all cohomological dimensions,
for all minors γ of G. To simplify matters further, one can ask the somewhat easier
question of whether the Euler characteristics of the Xγ ’s are of Tate type. In this
way, one is led to consider the class of XG in the Grothendieck ring of varieties
K0(Vark) and ask if it is a polynomial in the Lefschetz motive L = [A1

k]. This is
surely the reasoning behind Kontsevich’s original question, although it was formu-
lated almost ten years before MG was defined. Note, however, that there is a priori
no way to construe information about IG from the Grothendieck class [XG].

1.3. Results and contents of the paper. We begin in §2 by reviewing some alge-
braic and combinatorial properties of graph and related polynomials and invariants.
In §3, we discuss implications for the class of the affine graph hypersurface [XG]
in the Grothendieck ring of varieties K0(Vark). The first observation is that for
primitive-divergent graphs, there is an invariant c2(G) of a graph G such that

[XG] ≡ c2(G)L2 mod L3 ,

and c2(G) is given explicitly by the class of an intersection of two affine hyper-
surfaces whenever G has a 3-valent vertex. This intersection satisfies a Calabi-Yau
property in the sense that, after projectifying, the total degree is exactly one greater
than the dimension of the ambient projective space.

The class c2(G) mod L has many combinatorial properties not satisfied by the
full class [XG], and is therefore much more tractable. However, at some point in §3
we are forced to use the Chevalley-Warning theorem on the point-counts modulo
q of polynomials of small degree. Since this result is apparently not known on the
level of the Grothendieck ring we make the following conjecture:

Conjecture 1. Consider ℓ polynomials P1, . . . , Pℓ ∈ Z[α1, . . . , αN ] which satisfy∑ℓ
i=1 deg Pi < N . Then [V (P1, . . . , Pℓ)] ≡ 0 mod L in K0(Vark) for any field k.

Because this conjecture is unavailable, we are then forced to pass to point-counts
modulo q. Denoting the corresponding counting functions by [.]q, we write

[XG]q ≡ c2(G)q2 mod q3 ,

and view c2(G) as a map from prime powers q to Fq. The main observation of §3,
proved in [15] under certain conditions, is that

[XG]q ≡ [5ΨG(e1, . . . , e5)]qq
2 mod q3
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where 5ΨG(e1, . . . , e5) is the 5-invariant of any set of five edges e1, . . . , e5 of a graph,
defined in [7]. Using the Chevalley-Warning theorem to cut out parasite terms, this
enables one to compute the point-counts of c2(G) modulo q by taking iterated
resultants (the ‘denominator reduction’ of [7, 9]), which reduces the problem to
counting points on hypersurfaces of smaller and smaller dimension. This is the key
to constructing non-Tate counter-examples.

Some of the known properties of c2(G) mod q are given in §4. We summarize
some of these properties for primitive-divergent graphs in φ4 theory here:

• If G is two-vertex reducible then c2(G) ≡ 0 mod q.
• If G has weight-drop (in the sense of [9]), then c2(G) ≡ 0 mod q.
• If G has vertex-width ≤ 3, then c2(G) ≡ −1 mod q.
• c2(G) is invariant under double triangle reduction.

A further property is conjectural:

Conjecture 2. c2(G) is invariant under the completion relation ([14], [15]).

In short, the invariant c2(G) detects many of the main qualitative features of
the residue IG that one is interested in, but is more malleable. We expect c2(G)
to be invariant under many more combinatorial operations than those listed above.
Intuitively, c2(G) should be closely related to the action of Frobenius on the smallest
subquotient motive of MG which is spanned by the Feynman differential form ΩN

Ψ2

G

.

In §5 we review the notion of vertex-width and prove the first positive result.
Note that this result is valid in the Grothendieck ring K0(Vark).

Theorem 2. Let G have vertex-width at most 3. Then [ΨG] is a polynomial in L.

It was proved in [7] that a variant of the motive MG is mixed Tate in this
case, but the proof we give here is totally elementary and gives an effective way to
compute the polynomial [ΨG] by induction over the minors of G. It also enables
one to compute the Grothendieck classes of any infinite family of graphs obtained
by inserting triangles into a known graph (see §13.2 of [5]). In §5.4 and §5.5, we
carry this out for the wheels and zig-zag graphs, which have vertex width 3.

Wn Zn

Figure 1. The wheels with spokes (left), and zig-zags (right).

These two families are interesting because they are the only families for which
a conjectural formula for the residue IG is known. The family of wheels was ob-
tained independently by Doryn in [11]. To our knowledge, the zig-zags give the
first explicit computation of [ΨG] for a non-trivial family of physically interesting
(i.e., primitively divergent in φ4 theory) graphs. The recurrence relations used
to deduce the polynomial for the zig-zags are surprisingly involved (as expected
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since the conjectural formula for their residue depends on the parity of n), and re-
quire solving simultaneous equations for counting functions of generating series of
some associated infinite families of graphs. We hope that this will lead to insights
for computing the full relative cohomology group MG, and ultimately the motivic
coproduct, which is currently not known for a single non-trivial example.

In §6 we turn to non-Tate counter-examples, which are accessed via their c2

invariants. The idea is to find a graph G = G1 ∪ G2, where the subgraph G1 has
small vertex width, and G2 has vertex width > 3 but few edges. The denominator
reduction for G then reduces c2(G) down to a determinant of graph polynomials
of small degree derived from G2. By a series of manipulations one can extract a
polynomial which defines a surface of degree 4 in P3, whose minimal desingular-
ization X is a K3 surface. In §7, we study this surface in more detail, and exhibit
sufficiently many lines in X to show that its Néron-Severi group is of maximal rank
20, and that its Picard lattice has discriminant −7. This proves that X is a singular
K3 surface, which have been classified by Shioda and Inose [18]. The modularity
of such surfaces is known by [12], and in this case H2

tr(X) is a submotive of the
symmetric square of the first cohomology group of the elliptic curve:

E49A1 : y2 + xy = x3 − x2 − 2x − 1 ,

which has complex-multiplication by Q(
√
−7). In §7.2 we write down the modular

form of weight 2 and level 49 whose coefficients give the point counts on E49A1.

Theorem 3. There exists a non-planar primitive-divergent graph in φ4 with 8 loops
and vertex width 4 such that, for some constant c0 ∈ N,

c2(G) ≡ c0 + a2
q mod q

where q + 1 − aq = [E49A1]q is the number of points on E49A1. In particular,

[XG] ≡ (c0 + a2
q)q

2 mod q3

cannot be a polynomial in q. There exists a planar primitive-divergent graph in φ4

theory with 9 loops with the same property.

The fact that this counter-example has vertex width 4 shows that theorem 2
cannot be improved. Finally, in §7.4 we give a second 8-loop example which exper-
imentally yields a singular K3 with CM by Q(

√
−8) by similar methods.

1.4. Discussion. Despite Belkale and Brosnan’s cautionary result, for a while there
remained several optimistic hopes about the nature of φ4 theory:

(1) Even though general graphs have non-Tate Euler characteristics, it could
be that graphs coming from physically relevant theories are still of Tate
type (the counter-examples have unphysical numbers of edges).

(2) It could be that the counter-examples occur at such high loop orders as to
be irrelevant from the point of view of resummable series.

(3) Failing (1) and (2), it could still be the case that planar graphs have Tate
Euler characteristics, i.e., all non-Tate counter-examples can be character-
ized by having a high genus or crossing number.

(4) Even though the Euler characteristics are non-Tate, it could be that the
piece of the graph motive which carries the period is always mixed Tate.

The previous theorem shows that (1), (2) and (3) are false. Point (4) is more subtle.
However, it follows from the original interpretation of the denominator reduction
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in [7] that the c2-invariant of a graph should correspond to the ‘framing’ on MG,
i.e., the smallest submotive of MG which is spanned by the integrand of (2). In
any case, this makes it very probable that (4) is false too. A likely candidate for
the periods of the graphs of the previous theorem might therefore come from the
periods of the motivic fundamental group of the punctured elliptic curve E.

It should be emphasized that the residues IG of primitive graphs in φ4 are
renormalization-scheme independent, and universal in the sense that any quan-
tum field theory in 4 space-time dimensions will only affect the numerator, and not
the denominator, of the corresponding parametric integral representation (barring
infra-red divergences). Since the motive MG only depends on the denominators,
one can reasonably expect that such non-mixed Tate phenomena will propagate
into most, if not all, renormalizable massless quantum field theories at sufficiently
high loop orders.

Both authors wish to thank D. Broadhurst, D. Kreimer, M. Schütt, K. Yeats
and especially S. Bloch for interest and crucial optimism.

2. Graph polynomials

Throughout this paper, G will denote a connected graph. In this section, we
make no assumptions about the primitive-divergence or otherwise of G.

2.1. Matrix representation. We recall some basic results from [7]. We will use
the following matrix representation for the graph polynomial.

Definition 4. Choose an orientation on the edges of G, and for every edge e and
vertex v of G, define the incidence matrix:

(EG)e,v =





1, if the edge e begins at v,
−1, if the edge e ends at v,
0, otherwise.

Let A be the diagonal matrix with entries αe, for e ∈ E(G), and set

M̃G =

(
A EG

−ET
G 0

)

where the first eG rows and columns are indexed by the set of edges of G, and the
remaining vG rows and columns are indexed by the set of vertices of G, in some

order. The matrix M̃G has zero determinant. Choose any vertex of G and let MG

denote the square (eG +vG −1)× (eG +vG −1) matrix obtained from it by deleting
the row and column indexed by this vertex.

It follows from the matrix-tree theorem that the graph polynomial satisfies

ΨG = det(MG) .

Definition 5. Let I, J, K be subsets of the set of edges of G which satisfy |I| = |J |.
Let MG(I, J)K denote the matrix obtained from MG by removing the rows (resp.
columns) indexed by the set I (resp. J) and setting αe = 0 for all e ∈ K. Let

ΨI,J
G,K = detMG(I, J)K .
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It is clear that Ψ∅,∅
G,∅ = ΨG, and ΨI,J

G,K = ΨJ,I
G,K . If K = ∅, we will often drop it

from the notation. We also write ΨI
G,K as a shorthand for ΨI,I

G,K .

Since the matrix MG depends on various choices, the polynomials ΨI,J
G,K are only

well-defined up to sign. In what follows, for any graph G, we shall fix a particular

matrix MG and this will fix all the signs in the polynomials ΨI,J
G,K too.

Proposition 6. The monomials which occur in ΨI,J
G,K have coefficient ±1, and are

precisely the monomials which occur in both ΨI,I
G,J∪K and ΨJ,J

G,I∪K.

Definition 7. If f = f0 + fxx and g = g0 + gxx are polynomials of degree one in
x, recall that their resultant is defined by:

(4) [f, g]x = fxg0 − g0fx .

We now state some identites between Dodgson polynomials which will be used
in the sequel. The proofs can be found in ([7], §2.4-2.6).

2.2. General identities. The first set of identities only use the fact that ΨG is
the determinant of a symmetric matrix, and therefore hold for any graph G.

(1) The Contraction-Deletion formula. It is clear from its definition that ΨI,J
G,K

is linear in every Schwinger variable αe, and can be written:

ΨI,J
G,K = ΨIe,Je

G,K αe + ΨI,J
G,Ke .

The contraction-deletion relations state that

ΨIe,Je
G,K = ΨI,J

G\e,K and ΨI,J
G,Ke = ΨI,J

G//e,K ,

where G\e is the graph obtained by deleting the edge e, and G//e denotes
the graph obtained by contracting the edge e.

(2) Dodgson-type identities. Let I, J be two subsets of edges of G such that
|I| = |J | and let a, b, x /∈ I ∪ J . Then the first Dodgson identity is:

[
ΨI,J

G,K , ΨIa,Jb
G,K

]
x

= ΨIx,Jb
G,K ΨIa,Jx

G,K

Let I, J be two subsets of edges of G such that |J | = |I| + 1 and let
a, b, x /∈ I ∪ J . Then the second identity is:

[
ΨIa,J

G,K , ΨI,Jb
G,K

]
x

= ΨIx,J
G,KΨIab,Jx

G,K

(3) Plücker formula. Let i, j, k, l denote any 4 distinct edges of G. Then

Ψij,kl
G − Ψik,jl

G + Ψil,jk
G = 0 .

2.3. Graph-specific identities. The second set of identities depend on the par-
ticular combinatorics of a graph G, and mostly follow from the fact that ΨG\I = 0
if I contains all the edges surrounding a vertex, and ΨG//K = 0 if h1(K) > 0.

(1) Vanishing property for vertices. Suppose that E = {e1, . . . , ek} are the set
of edges which are adjacent to a given vertex of G. Then

ΨI,J
G,K = 0 if E ⊂ I or E ⊂ J .

(2) Vanishing property for loops. Suppose that E = {e1, . . . , ek} are a set of
edges in G which contain a loop. Then

ΨI,J
G,K = 0 if (E ⊂ I ∪ K or E ⊂ J ∪ K) and E ∩ I ∩ J = ∅ .
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2.4. Local structure. We use these to deduce the local structure of ΨG in some
simple circumstances. Many more identities are derived in [7].

(1) Local 2-valent vertex. Suppose that G contains a 2-valent vertex, whose
neighbouring edges are labelled 1, 2. Then

Ψ12
G = 0 and Ψ1,2

G = Ψ1
G,2 = Ψ2

G,1

which imply that ΨG = ΨG\1//2(α1 + α2) + ΨG//12. In general, if |I| = |J |
are sets of edges such that {1, 2} /∈ I ∪ J ∪ K, then

Ψ1I,2J
G,K = ΨI,J

G\1//2,K = ΨI,J
G\2//1,K .

(2) Doubled edge. Suppose that G contains doubled edges 1, 2. Then

ΨG,12 = 0 and Ψ1,2
G = Ψ1

G,2 = Ψ2
G,1

which imply that ΨG = ΨG\{1,2}α1α2 + ΨG\1//2(α1 + α2). In general, if
|I| = |J | are sets of edges such that {1, 2} /∈ I ∪ J ∪ K, then

Ψ1I,2J
G,K = ΨI,J

G\1//2,K = ΨI,J
G\2//1,K .

(3) Local star. Suppose that G contains a 3-valent vertex, whose neighbouring
edges are labelled 1, 2, 3. Then we have ([7], Example 32)

Ψ123
G = 0 and Ψ12

G,3 = Ψ13
G,2 = Ψ23

G,1

which follow from contraction-deletion. Furthermore, for {a, b, c} = {1, 2, 3}
we have the identities

Ψab,bc = Ψab
c = . . . = Ψbc

a and Ψa
bc = Ψa,c

b + Ψa,b
c

These identities propagate to higher order Dodgson polynomials. Let i, j /∈
{1, 2, 3}. Then for all {a, b, c} = {a′, b′, c′} = {1, 2, 3}, we have ([7], §7.4):

Ψabc,aij = 0 and Ψaci,bcj = ±Ψi,j
G\{a′,b′}//c′ .

(4) Local triangle. Suppose that G contains a triangle, with edges 1, 2, 3. Then

Ψ123 = 0 and Ψ1
23 = Ψ2

13 = Ψ3
12

which follow from contraction-deletion. Furthermore, for {a, b, c} = {1, 2, 3}
we have the identities

Ψa,b
c = Ψa

bc = . . . = Ψb
ac and Ψab

c = Ψab,ac + Ψab,bc

Now let i, j /∈ {1, 2, 3}. For all {a, b, c} = {a′, b′, c′} = {1, 2, 3}, we have

Ψab,ij
c = 0 and Ψai,bj

c = ±Ψi,j
G\a′//{b′,c′} .

2.5. The five-invariant.

Definition 8. Let i, j, k, l, m denote any five distinct edges in a graph G. The five-
invariant of these edges, denoted 5ΨG(i, j, k, l, m) is defined to be the determinant

5ΨG(i, j, k, l, m) = ± det

(
Ψij,kl

G,m Ψik,jl
G,m

Ψijm,klm
G Ψikm,jlm

G

)
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It can be shown that the five-invariant is well-defined, i.e., permuting the five
indices i, j, k, l, m only modifies the right-hand determinant by a sign. In general,
the 5-invariant is irreducible of degree 2 in each Schwinger variable. However, in
the case when three of the five edges i, j, k, l, m form a star or a triangle, it splits,
i.e., factorizes into a product of Dodgson polynomials.

Example 9. Suppose that G contains a triangle a, b, c. Then

5ΨG(a, b, c, i, j) = ± det

(
Ψab,ij

G,c Ψai,bj
G,c

Ψabc,cij
G Ψaci,bcj

G

)
= ±Ψi,j

G\a//{b,c}Ψ
abc,cij
G .

It factorizes because Ψab,ij
G,c = 0 by the vanishing property for loops. By contraction-

deletion, Ψai,bj
G,c = Ψai,bj

G//c , and this is Ψi,j
G\a//{b,c}, by the last equation of §2.3, (4),

since the edges a, b now form a 2-loop in the quotient graph G//c.

2.6. Denominator reduction. Given a graph G and an ordering on its edges, we
can extract a sequence of higher invariants, as follows.

Definition 10. Define D5
G(e1, . . . , e5) = 5ΨG(e1, . . . , e5). Let n ≥ 5 and suppose

that we have defined Dn
G(e1, . . . , en). Suppose furthermore that Dn

G(e1, . . . , en)
factorizes into a product of linear factors in αn+1, i.e., it is of the form (aαn+1 +
b)(cαn+1 + d). Then we define

Dn+1
G (e1, . . . , en+1) = ±(ad − bc) ,

to be the resultant of the two factors of Dn
G(e1, . . . , en). A graph G for which the

polynomials Dn
G(e1, . . . , en) can be defined for all n is called denominator-reducible.

It can happen that Dn
G(e1, . . . , en) vanishes. Then G is said to have weight-drop.

For general graphs above a certain loop order and any ordering on their edges,
there will come a point where Dn

G(e1, . . . , en) is irreducible (typically for n = 5).
Thus the generic graph is not denominator reducible. One can prove, as for the
5-invariant, that Dn

G(e1, . . . , en) does not depend on the order of reduction of the
variables, although it may happen that the intermediate terms Dk

G(ei1 , . . . , eik
) may

factorize for some choices of orderings and not others.

3. The class of XG in the Grothendieck Ring of Varieties

Let k be a field. The Grothendieck ring of varieties K0(Vark) is the free abelian
group generated by isomorphism classes [X ], where X is a separated scheme of
finite type over k, modulo the inclusion-exclusion relation [X ] = [X\Z]+[Z], where
Z ⊂ X is a closed subscheme. It has the structure of a commutative ring induced
by the product relation [X ×k Y ] = [X ] × [Y ], with unit 1 = [Spec k]. One defines
the Lefschetz motive [L] to be the class of the affine line [A1].

Remark 11. We only consider affine varieties here. If f1, . . . , fℓ ∈ k[α1, . . . , αn]
are polynomials, we denote by [f1, . . . , fℓ] the class in K0(Vark) of the intersection
of the hypersurfaces V (f1) ∩ . . . ∩ V (fℓ) in affine space An(k). The dimension of
the ambient affine space will usually be clear from the context.

Let G be a graph. Since the graph polynomial ΨG (and, more generally, all

Dodgson polynomials ΨI,J
G,K) is defined over Z, we can view the element [ΨG] in

K0(Vark) for any field k. Most of the results below are valid in this generality. But
at a certain point, we are obliged to switch to point-counting functions since we
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require the use of the Chevalley-Warning theorem (theorem 22). Recall that if k is
a finite field, the point-counting map:

# : K0(Vark) → Z

[X ] 7→ #X(k)

is well-defined, so results about the point-counts can be deduced from results in
the Grothendieck ring, but not conversely (for example, it is not known if L is
a zero-divisor). In this case, we shall denote by [X ]q the point-counting function
which associates to all prime powers q the integers #X(Fq).

3.1. Linear reductions. The main observation of [21] is that the class in the
Grothendieck ring of polynomials which are linear in many of their variables can
be computed inductively by some simple reductions.

Lemma 12. Let f1, f1, g
1, g1 ∈ k[α2, . . . , αn] denote polynomials of degree ≥ 1.

i). [f1α1 + f1] = [f1, f1] L + Ln−1 − [f1]
ii). [f1α1 + f1, g

1α1 + g1] = [f1, f1, g
1, g1] L + [f1g1 − g1f1] − [f1, g1]

Various proofs of this lemma can be found in ([15], [5] §8, [21] lemma 2.3, or §3.4
of [1]). Note that the quantity f1g1 − g1f1 is nothing other than the resultant with
respect to α1 of the polynomials f1α1 + f1 and g1α1 + g1.

Henceforth we assume that G is a connected graph which is one-particle ir-
reducible, and has no tadpoles (self-edges). We call a graph simple if it has no
two-valent vertices (below left) or multiple edges (below right).

e1 e2
e1

e2

Lemma 13. Let G be a graph with a subdivided edge e1, e2 (left). Then

(5) [ΨG] = L[ΨG//e1
] .

Let G be a graph with a doubled edge e1, e2 (right). Then

(6) [ΨG] = (L − 2)[ΨG\e1
] + (L − 1)[ΨG\{e1,e2}] + L[ΨG\e1//e2

] + L|NG|−2 .

Proof. These identities follow from the determination of the corresponding graph
polynomials §2.4 (1), (2) and two applications of lemma 12 (see also [1], §4). �

In [1], Aluffi and Marcolli give some general formulae for the classes of graphs
obtained by successively subdividing or multiplying edges by (5) and (6).

Lemma 14. Let G be a connected graph such that hG ≤ NG − 2. Then

[ΨG] ≡ 0 mod L2 .

Proof. First observe that if F ∈ k[α1, . . . , αn] is of degree < n and is linear in every
variable αi, then [F ] ≡ 0 mod L. This follows immediately from lemma 12 (i) and
induction on the degree, since [F ] ≡ [ ∂

∂α1
F ] mod L (compare theorem 22).

Now lemma 12 implies that [ΨG] ≡ [Ψ1
G, ΨG,1]L − [Ψ1

G] mod L2, and

[Ψ1
G, ΨG,1] ≡ [Ψ1,2

G ] − [Ψ1
G\2, ΨG\2,1] mod L ,
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which follows from the Dodgson identity Ψ1
G,2Ψ

2
G,1 − Ψ12

G ΨG,12 = (Ψ1,2
G )2. By the

remark above, [Ψ1,2
G ] vanishes mod L since it is of degree hG − 1 in ANG−2, and so

we can successively remove edges to deduce that

(7) [Ψ1
G, ΨG,1] ≡ . . . ≡ [Ψ1

G\{2,...,k}, ΨG\{2,...,k},1] ≡ . . . ≡ 0 mod L .

Thus we have shown that [ΨG] ≡ [ΨG\1] mod L2. Again by an induction removing

edges we conclude that [ΨG] ≡ 0 mod L2. �

Definition 15. Let G be as above. It follows from the proof of the previous lemma
that there exists c2(G) ∈ K0(Vark) which is well-defined modulo L, such that

[ΨG] ≡ c2(G)L2 mod L3 .

Below we give some simple formulae for c2(G) under various assumptions on G.

Corollary 16. Suppose that G has a 2-valent vertex. Then c2(G) ≡ 0 mod L.

Proof. By lemma 13, we can write [ΨG] ≡ L[ΨG\e] ≡ 0 mod L3. �

3.2. 3-valent vertices. Our approach to studying [ΨG] uses the existence of a
3-valent vertex to simplify the calculations. If G is simple (it suffices that G has
no two-valent vertices), then such a vertex exists whenever

(8) NG > 2hG − 2 ,

which holds for all primitively-divergent graphs. To see this, note that Euler’s
formula for a connected graph implies that NG − VG = hG − 1. If α denotes the
average degree of the vertices of G, then NG = α

2 VG, and (8) implies that α < 4.

3
1

v1

2

v2

v3

Figure 2. A three-valent vertex

The existence of a 3-valent vertex implies that ΨG has a simple structure.

Definition 17. Let v1, v2, v3 be any three vertices in G which form a three-valent
vertex as shown above. Following [7], we will use the notation:

f123 = ΨG//{123} , f1 = Ψ2,3
G,1 , f2 = Ψ1,3

G,2 , f3 = Ψ1,2
G,3 , f0 = ΨG\{1,2}//3 .

Lemma 18. In this case, the graph polynomial of G has the following structure:

ΨG = f0(α1α2 + α1α3 + α2α3) + (f1 + f2)α3 + (f1 + f3)α2 + (f2 + f3)α1 + f123

where the polynomials fi satisfy the equation

(9) f0f123 = f1f2 + f1f3 + f2f3 .

Proof. The general shape of the polynomial comes from the contraction-deletion
relations, and §2.4 (3) (or ex. 32 in [7]). Equation (9) is merely a restatement of the

first Dodgson identity for G//3 which gives (Ψ1,2
G,3)

2 = Ψ12,12
G,3 ΨG,123 − Ψ1,1

G,23Ψ
2,2
G,13.

Using the definitions of fi this translates as f2
3 = f0f123 − (f1 + f3)(f2 + f3). �
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Proposition 19. Suppose that G contains a three-valent vertex, and let fi be given
by definition 17. Then

[ΨG] = Ln−1 + L3[f0, f1, f2, f3, f123] − L2[f0, f1, f2, f3]

Proof. Let βi = f0αi + fi, for i = 1, 2, 3. It follows from (9) that

f0ΨG = β1β2 + β1β3 + β2β3 .

The right-hand side is the graph polynomial of a sunset diagram (graph with 2
vertices and 3 edges connecting both vertices). It defines a singular quadric in A3

whose class is [A2]. It follows that if U denotes the open set f0 6= 0, we have
[XG ∩ U ] = L2[U ]. On the complement V (f0), the graph polynomial ΨG reduces
to the equation

(f1 + f2)α3 + (f1 + f3)α2 + (f2 + f3)α1 + f123

which defines a family of hyperplanes in A3. Thus, consider the fiber of the projec-
tion XG ∩ V (f0) → An−3 ∩ V (f0). In the generic case this is a hyperplane whose
class is [A2]. Otherwise, there are only two possibilities: either all the coefficients
f1, f2, f3, f123 vanish and the fiber is isomorphic to A3, or f123 is non-vanishing but
the other coefficients vanish and the fiber is empty. We have

[XG ∩ V (f0)] = L2[f0] + L3[f0, f1, f2, f3, f123] − L2[f0, f1, f2, f3]

Writing [XG] = [XG ∩ U ] + [XG ∩ V (f0)] gives the result. �

Corollary 20. Suppose that G has a 3-valent vertex. Then

c2(G) ≡ −[f0, f1, f2, f3] mod L .

Lemma 21. Let G satisfy 2hG ≤ NG and contain a 3-valent vertex as above. Then

(10) c2(G) ≡ [Ψ1,2
G,3, Ψ

13,23
G ] mod L .

Proof. Using the explicit expression for ΨG in lemma 18, we have Ψ1,2
G,3 = f3 and

Ψ13,23
G = f0. It follows from (9) and inclusion-exclusion that:

[f0, f3] = [f0, f1f2, f3] = [f0, f1, f3] + [f0, f2, f3] − [f0, f1, f2, f3]

On the other hand [f0, f1 + f3] = [f0, f1, f3] as can be seen by writing (9) in the
form f0f123 = (f1 + f3)f2 + f1f3. By definition, [f0, f1 + f3] = [Ψ12

G,3, Ψ
2
G,13], which

by contraction-deletion is just [Ψ1
G′ , ΨG′,1], where G′ = G\2//3. By the identical

argument as (7), this vanishes modulo L. The same is true for [f0, f1 + f2] by
symmetry. We have therefore shown that

[f0, f1, f2, f3] ≡ [Ψ1,2
G,3, Ψ

13,23
G ] mod L .

�

3.3. Counting points over finite fields. For any prime power q, let Fq denote
the field with q elements. Given polynomials P1, . . . , Pℓ ∈ Z[α1, . . . , αn], let

[P1, . . . , Pℓ]q ∈ N

denote the number of points on the affine variety V (P1, . . . , Pℓ) ⊂ Fn
q , where P i

denotes the reduction of Pi modulo q. Recall the Chevalley-Warning theorem (e.g.,
[19]) on the point counts of polynomials of small degrees.
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Theorem 22. Let P1, . . . , Pℓ ∈ Z[α1, . . . , αn] such that
∑ℓ

i=1 deg Pi < n. Then

[P1, . . . , Pℓ]q ≡ 0 mod q .

It is natural to ask if there exists a lifting of the Chevalley-Warning theorem
to the Grothendieck ring of varieties. We were unable to find such a result in the
literature so we state this as a conjecture.

Conjecture 3. Let P1, . . . , Pℓ be polynomials satisfying the above condition on
their degrees. Then [V (P1, . . . , Pℓ)] ≡ 0 mod L in K0(Vark) for any field k.

Since this conjecture is unavailable, we henceforth work with point-counting
functions rather than elements in the Grothendieck ring of varieties. It turns out
that for many of the results below, one can in fact circumvent this conjecture by
elementary arguments. In any case, we now set

c2(G)q = [Ψ13,23
G , Ψ1,2

3 ]q mod q

viewed as a map from all prime powers q to Fq, where 1, 2, 3 forms a 3-valent vertex.
The same formula is also valid when 1, 2, 3 forms a triangle (see remark 25 below).
We have [ΨG]q ≡ q2c2(G)q mod q3.

Lemma 23. Suppose that f = f1x + f1 and g = g1x + g1 are polynomials in
Z[α1, . . . , αn] such that deg f + deg g = n, which are linear in a variable x, and
such that the resultant has a non-trivial factorization f1g1 − f1g

1 = ab. Then

[f, g]q ≡ −[a, b]q mod q

Proof. It follows from lemma 12 that [f, g]q = q[f1, f1, g
1, g1]q + [ab]q − [f1, g1]q.

Since f1, g1 ∈ Z[α1, . . . , αn−1] of degree deg(f1)+deg(g1) = n−2, this is congruent
to [ab]q mod q by theorem 22. By inclusion-exclusion this is [ab]q = [a]q+[b]q−[a, b]q,
and again by theorem 22, [a]q and [b]q vanish mod q, giving the statement. �

Corollary 24. Let G be a graph. If 2hG < NG then c2(G)q ≡ 0 mod q. Otherwise,
suppose that Dn

G(e1, . . . , en) is the result of the denominator reduction after n steps,
where the {ei} contain the 3 edges meeting some 3-valent vertex. Then

c2(G)q ≡ (−1)n−1[Dn
G(e1, . . . , en)]q mod q .

If G has weight drop then c2(G)q ≡ 0 mod q.

Proof. Suppose that 2hG < NG. The terms in (10) satisfy deg(Ψ1,2
G,3) = hG − 1 and

deg Ψ13,23
G = hG − 2 giving total degree 2hG − 3, whereas the ambient affine space

has dimension NG − 3. The first statement therefore follows from theorem 22.
Applying the previous lemma to equation (10) gives

c2(G)q ≡ [Ψ1,2
G,3, Ψ

13,23
G ]q ≡ −[Ψ13,24

G , Ψ14,23
G ]q mod q

by the Dodgson identities. Applying the previous lemma one more time gives

c2(G)q ≡ [5ΨG(1, 2, 3, 4, 5)]q mod q

by definition of the five-invariant as a resultant. The result then follows immediately
from the previous lemma and the definition of the denominator reduction, noting
that [f, g]q and [fg]q are equivalent modulo q by the degrees and theorem 22. �
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Notice that the proofs rely on the fact that the terms Dn
G(e1, . . . , en) in the

denominator reduction are of degree exactly equal to the dimension of the ambient
space, and therefore lie on the limit of the Chevalley-Warning theorem (the Calabi-
Yau condition for the associated projective varieties).

Remark 25. The previous corollary probably holds without any restriction on the
edges {e1, . . . , en}, but certainly can be proved when three of the edges e1, . . . , en

form a triangle. This follows from star-triangle duality (see [7], example 35) since,
with the notations therein, ΨG△

is obtained from ΨGY
(α−1

1 , α−1
2 , α−1

3 )α1α2α3 by

setting f0 = f123 and f123 = f0. By inclusion-exclusion (see, e.g., [21] proposition
3.1), we can write [ΨY ] as an alternating sum of classes [ΨK ] where K is a subgraph
of G obtained by contracting/deleting edges 1, 2, 3. Working modulo q3, and using
the assumptions on the degrees, only the term [ΨG△

] survives.

4. Properties of the c2-invariant

We state some known and conjectural properties of the c2-invariant of a graph.

4.1. Triviality of c2(G). The following results follow from corollary 24.

Lemma 26. If G is not simple then c2(G)q ≡ 0 mod q.

Proof. If G has a split edge e1, e2 or a doubled edge e1, e2, then any five-invariant
5ΨG(i1, . . . , i5) where e1, e2 ∈ {i1, . . . , i5} necessarily vanishes ([7] lemma 90). �

Recall that G is called 2-vertex reducible if there is a pair of distinct vertices
such that removing them (and their incident edges) causes the graph to disconnect.

Proposition 27. Let G be 2-vertex reducible. Then c2(G)q ≡ 0 mod q.

Proof. It is proved in [9], proposition 36, that such a graph has weight drop. �

Proposition 28. If G is denominator reducible, and non-weight drop, then c2(G) ≡
(−1)NG mod q. If G has weight drop then c2(G) ≡ 0 mod q.

4.2. Double triangle reduction. Consider a graph G which contains seven edges
e1, . . . , e7 arranged in the configuration shown below on the left (where anything
may be attached to vertices A-D). The double triangle reduction of G is the graph
G′ obtained by replacing these seven edges with the configuration of five edges
e′1, . . . , e

′
5 as shown below on the right. The following theorem was proved in [9].

G G′

A

B

C

D

A

D

B

C

Theorem 29. Let G′ be a double triangle reduction of G. Then

D7
G(e1, . . . , e7) = ±D5

G′(e′1, . . . , e
′
5) .
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Corollary 30. Let G, G′ be as above. Then c2(G)q ≡ c2(G
′)q mod q.

Since the double-triangle reduction violates planarity, this is the first hint that
the genus of a graph is not the right invariant for understanding its periods.

4.3. The completion relation. It follows from a simple application of Euler’s
formula that a primitive-divergent graph G in φ4 with more than 2 loops has exactly
four 3-valent vertices v1, . . . , v4, and all remaining vertices have valency 4. The

completion of G is defined to be the graph Ĝ obtained by adding a new vertex v to
G and connecting it to v1, . . . , v4 [14]. The resulting graph is 4-regular.

Conjecture 4. Let G1, G2 be two primitive divergent graphs in φ4 and suppose

that Ĝ1
∼= Ĝ2. Then c2(G1)q ≡ c2(G2)q mod q .

The motivation for this conjecture comes from the result [14] that the corre-
sponding residues are the same: IG1

= IG2
. Once again, the completion relation

does not respect the genus of a graph.

5. Tate examples: Graphs of Vertex width 3

In the case when G contains many triangles and three-valent vertices, we can
find recurrence relations relating the class [ΨG] ∈ K0(Vark) to that of its minors.

5.1. The vertex-width of a graph. Throughout, G is a connected graph.

Definition 31. Let O be an ordering on the edges of G. It gives rise to a filtration

∅ = G0 ⊂ G1 . . . ⊂ GN−1 ⊂ GN = G

of subgraphs of G, where Gi has exactly i edges. To any such sequence we obtain
a sequence of integers vOi = number of vertices of Gi ∩ (G\Gi). We say that G has
vertex-width at most n if there exists an ordering O such that vOi ≤ n for all i [7].

For example, a row of boxes with vertices a1, . . . , an, b1, . . . , bn and edges {ai, bi},
{ai, ai+1}, {bi, bi+1}, has vertex width two. The wheels and zig-zag graphs have
vertex width 3. Bounding the vertex width is a very strong constraint on a graph,
and one can show that the set of planar graphs have arbitrarily high vertex width.

Consider the local structure of a graph of vertex width 3 by choosing a pair Gi,
G\Gi, and choosing a minor of Gi which has 5 edges. The trivial case is when the
five edges are not simple (i.e., there is a two-valent vertex or doubled edge as in
lemma 13). The only two cases which are simple are pictured below:

3

4

5

2

3

1

1 2 4 5

We refer to the left-hand side as a split triangle, the right as a split vertex. The
two situations are dual to each other in a certain sense. The reason that these
figures are interesting is that they force the corresponding five-invariants to be
‘trivially’ split. We claim the following criterion is sufficient for G to be Tate.
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Theorem 32. If G has vertex width at most 3, then [ΨG] is a polynomial in L.

In [7] it was shown by a geometric argument that the relative cohomology of the
graph hypersurface for such (and slightly more general) classes of graphs gives rise
to mixed Tate motives, and that the periods evaluate to multiple polylogarithms.
The aim here is to show how the polynomial in L can be computed via explicit
recurrence relations. There are two situations to study: the case of split vertices
and split triangles. We shall only consider the former in detail, and this is enough
to derive formulae for the wheels and zig-zags explicitly.

5.2. Split Vertices. We first recall the terminology and introduce some notations
relating to 3-valent vertices §3.2 .

Definition 33. Let e1, e2, e3 be any three edges in G which form a three-valent
vertex. If f0, f1, f2, f3, f123 are given by definition 17, we set

(11) 〈G〉e1,e2,e3
= [f0, f1, f2, f3, f123] .

1 2 3

v1 v2 v3 v1 v2 v3

4 1 3 5

2

v4 v5

G G′

Figure 3. If G is any graph containing a 3-valent vertex (left),
G′ is the graph obtained by splitting that vertex in two (right).

Now let us consider the graph G′ obtained by splitting a 3-valent vertex G in
two, with the numbering of its edges as pictured above.

Theorem 34. The class of the graph polynomial of G′ can be written explicitly in
terms of the invariant 〈G〉1,2,3, and the classes of minors of G′:

[ΨG′ ]+(L−L2)
(
[Ψ2

G′,45]−[Ψ13
G,2]
)
+(L−1)[ΨG] = (L5−L4)〈G〉1,2,3+L|G|−2(L3+L−1)

Proof. The structure of the graph polynomial of G′ can be obtained as follows.
Since v4 is a three-valent vertex in G′, it follows that ΨG′ must be of the shape
given in lemma 18, for some polynomials f ′

0, f
′
1, f

′
2, f

′
4, f

′
124 relative to the edges

1, 2, 4. By contraction-deletion relations, one easily sees that

f ′
0 = f0(α3 + α5) + (f2 + f3) , f ′

124 = f123α3 + (f1 + f2)α3α5

f ′
1 = f2α3 , f ′

2 = f3α3 + f0α3α5 , f ′
4 = f123 + f1α3 + (f1 + f2)α5 ,

where f0, f1, f2, f3, f123 satisfy (9). By proposition 19 we know that [ΨG′ ] is given
by L3[f ′

0, f
′
1, f

′
2, f

′
4, f

′
124] + Ln−1 − L2[f ′

0, f
′
1, f

′
2, f

′
4]. The conclusion of the theorem

follows by a brute force calculation by exploiting the inclusion-exclusion relations,
identities (9), and reducing out the linear variables α3, α5 using lemma 12 (ii). �

Any inductive procedure to compute the class of a split-vertex graph G′ is blocked
by the presence of the invariant 〈G〉. However, it satisfies a recurrence of its own.
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Proposition 35. Let G′ be as above. Then

L3〈G′〉1,2,4 = (L5 − L4)〈G〉1,2,3 + L2[Ψ2
G′,45] + L2[Ψ12

G′,45] − L|G′|−2

Proof. The proof is as in the previous theorem: compute the reduction with respect
to α3, α5 of L3[f ′

0, f
′
1, f

′
2, f

′
4, f

′
124] in terms of f0, f1, f2, f3, f123, giving:

L5[f0, f1, f2, f3, f123] − L3[f0, f1, f2] + L3[f2]

This is exactly what one obtains from the right-hand side. Alternatively, the proof
also follows from lemmas 38 and 13. �

Modulo L4, the invariant 〈G〉 drops out altogether.

Corollary 36. Suppose that |G| ≥ 6, and write [ΨG] ≡ c3(G)L3 + c2(G)L2

mod L4. Then c2(G
′) ≡ c2(G) mod L and

c3(G
′) − c3(G) ≡ c2(G\{13}//2)− c2(G

′\2//{45})− c2(G) mod L

Proof. This follows from theorem 34 and lemma 14. �

Iterating this corollary, we see that if the minors G\{13}//2 and G′\2//{45}
are denominator reducible, then by proposition 28 we deduce a simple recurrence
relation relating c3(G

′) and c3(G). Thus, loosely speaking, c3 is related to the
number of split vertices (or triangles) for a certain class of denominator-reducible
graphs (see in particular the wheels and zig-zag examples below).

5.3. Split triangles. By similar considerations one can also write down relations
for the case of a split triangle. These can also be deduced from the case of a split
triangle above by duality. Since the formulae are rather more complicated1, we do
not write them down.

Proposition 37. Let G′ be a split triangle as depicted earlier, with marked edges
1, 2, 3, 4, 5, where 2, 3, 4 forms a 3-valent vertex and 1, 2, 3 and 3, 4, 5 are triangles.
Let G = G′\{1, 5}. Then [ΨG′ ] is a linear expression in [ΨH ] where H are non-
trivial minors of G′, and 〈G〉2,3,4, with coefficients which are polynomials in L.

Thus the classes [ΨG] can always be computed in terms of smaller graphs, pro-
vided that the same is true of 〈G〉. This is guaranteed by the following lemma,
which covers the split triangle and split vertex cases simultaneously.

3

2

4

1

G′

Lemma 38. Let G′ be as indicated above, with edges 1, 2, 3 forming a 3-valent
vertex and edges 1, 2, 4 forming a triangle, and let G = G′\{4}. Then

L〈G′〉1,2,3 = (L2 − L)〈G〉1,2,3 + [Ψ3
G,2] + [Ψ13

G,2] − L|G|−2 .

1The reason for this apparent asymmetry is due to the choice of ambient space for the point-
counts: a more symmetric approach would involve counting in (A1\0)n since this is invariant
under inversions of variables α 7→ α−1 and puts sub and quotient graphs on an equal footing.
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Proof. Since G′ has a 3-valent vertex, ΨG′ has the general shape given by lemma
18 with coefficients f ′

0, f
′
1, f

′
2, f

′
3, f

′
123 where, by contraction-deletion:

f ′
0 = f0α4 , f ′

1 = f1α4 , f ′
2 = f2α4 , f ′

3 = f0+f3α4 , f ′
123 = (f1+f2)+f123α4 ,

and f0, f1, f2, f3, f123 are the corresponding structure constants for G. Obviously:

[f ′
0, f

′
1, f

′
2, f

′
3, f

′
123] = (L − 1)[f0, f1, f2, f3, f123] + [f0, f1 + f2]

which is immediate on considering the two cases α4 = 0 and α4 6= 0. By definition
17, [f0, f1 + f2] = [Ψ1

H , ΨH,1] where H = G\3//2. Conclude by lemma 12 (i). �

Corollary 39. For any graph of vertex width ≤ 3, the class [ΨG] is a polynomial
in L which can be computed inductively using the previous results.

Proof. By the discussion in §5.1, the local structure of a 5-edge minor in a graph of
vertex width 3 is either non-simple, or is a split-vertex or split-triangle. In the latter
cases the invariants [ΨG] and 〈G〉e1,e2,e3

, where e1, e2, e3 form a 3-valent vertex, are
expressible in terms of [ΨH ] or 〈H〉e′

1
,e′

2
,e′

3
, where H is a strict minor of G. In the

non-simple case, the same is true by lemma 13 and §2.4. Since the vertex width is
minor-monotone, the result is true by induction. �

5.4. Example 1: wheels with n spokes. We use the previous results to compute
the classes [Wn] for all n, where Wn denotes the wheel with n spokes graph pictured
below (left). Let Bn denote the family of graphs obtained by contracting a spoke
of Wn, which have exactly n vertices on the outer circle (right).

4 2

5
1

3

e1 e2

v1

v2

v3

v4

v5

Wn Bn

Figure 4. The wheels with spokes graphs Wn, and a related fam-
ily Bn of series-parallel graphs.

The graphs Bn are series-parallel reducible, so the classes [Bn] can be computed
using lemma 13. This also follows from the results of [1], theorem 5.10.

Lemma 40. Let us set b0 = 0, b1 = 1, and bn = [Bn] for n ≥ 2. If B(t) =∑
n≥0 bntn is the generating series for the family of graphs Bn, then we have

(12) B(t) =
t(1 + Lt

1−L2t )

1 − (L − 1)(Lt + L2t2)
.

Proof. We refer to the two edges e1, e2 indicated on the diagram above. Since e1, e2

form a doubled edge, we have by (6):

[Bn] = (L − 2)[Bn\e1] + (L − 1)[Bn\{e1, e2}] + L[Bn\e1//e2] + L2n−3
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since Bn has 2n − 1 edges. Now Bn\e1 is isomorphic to the graph obtained from
Bn−1 by subdividing an outer edge, so [Bn\e1] = L[Bn−1] by (5). The graph
Bn\{e1, e2} has an external leg, which can be supressed, leaving, as before, a copy
of Bn−2 with a subdivided outer edge. Thus [Bn\{e1, e2}] = L2[Bn−2]. Finally, we
have Bn\e1//e2

∼= Bn−1, so we obtain

[Bn] = L(L − 2)[Bn−1] + L2(L − 1)[Bn−2] + L[Bn−1] + L2n−3

We deduce that for all n ≥ 4 we have:

(13) bn = L(L − 1)bn−1 + L2(L − 1)bn−2 + L2n−3 .

The constants b0, b1 are chosen such that the equation is valid for n = 2, 3, where
b2 = L2 and b3 = L2(L − 1 + L2) by direct computation. The formula for the
generating series then follows immediately from the recurrence relation (13). �

One has b2 = L2, and

b3 = L
2(L2 + L − 1) , b4 = L

3(L3 + 2L
2
− 3L + 1)

b5 = L
5(L3 + 3L

2
− 5L + 2) , b6 = L

5(L5 + 4L
4
− 7L

3 + 2L
2 + 2L − 1) .

Let v1, v2, v5 denote any three vertices on Wn, joined by a 3-valent vertex (v4)
as shown in the diagram above. Let us write 〈Wn〉 = 〈Wn〉v1,v2,v5

.

Lemma 41. Let ŵn = 0 for n ≤ 2 and set ŵn = 〈Wn〉 for n ≥ 3. Denote the

corresponding ordinary generating series by Ŵ (t) =
∑

n≥0 ŵntn. Then

(14) Ŵ (t) =
t(1 + Lt)B(t) + t2

L2t−1

L − L2(L − 1)t
.

Proof. We use proposition 35, applied to the graphs G′ = Wn with the edge and
vertex labels on G′ as shown above. Then G ∼= G′\1//2 ∼= Wn−1. We have

L3 ŵn = (L5 − L4) ŵn−1 + L2[Ψ2
G′,45] + L2[Ψ12

G′,45] − L2n−2

since Wn has 2n edges. Now G′\2//{4, 5} is isomorphic to Bn−1 and G′\{1, 2}//{4, 5}
gives the graph obtained from Bn−2 by subdividing one outer edge. Therefore
[Ψ12

G′,45] = L[Bn−2] by lemma 13. We deduce that for all n ≥ 4,

(15) L3 ŵn = (L5 − L4) ŵn−1 + L2bn−1 + L3bn−2 − L2n−2 .

Using the fact that ŵ3 = 1 determines ŵn for n = 0, 1, 2. The formula for the

generating series Ŵ (t) then follows immediately from (15). �

Proposition 42. Let w1 = q, w2 = L3, and wn = [Wn] for n ≥ 3. Let W (t) =∑
n≥0 wntn be the generating function for the wheels with spokes graphs. Then

(16) W (t) = Lt
(L4 − L3) Ŵ (t) + (L − 1)(1 − L2t2)B(t) + (L2t2−Lt2+1)

(1−L2t)

1 + (L − 1)t

where B(t), Ŵ (t) are defined above.

Proof. We apply theorem 34 to the graph G′ = Wn with the labelling on its edges
depicted above. Since G ∼= Wn−1, we deduce for all n ≥ 4 that

[Wn]+(L−L2)
(
[Ψ2

G′,45]−[Ψ123
G′,45]

)
+(L−1)[Wn−1] = (L5−L4)〈Wn−1〉+L2n−4(L3+L−1)
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As before, G′\2//{4, 5} ∼= Bn−1, and G\{1, 3}//2 is isomorphic to the graph obtained
from Bn−3 by subdividing two outer edges. It follows that [Ψ13

G,2] = L2[Bn−3],
giving

wn +(L−1)wn−1 +(L−L2)
(
bn−1−L2bn−3

)
= (L5 −L4)ŵn−1 +L2n−4(L3 +L−1)

The formula for the generating function follows from this. �

Corollary 43. Let ci(Wn) denote the coefficient of Li in [Wn]. Then c2(Wn) = −1,
c2n−1(Wn) = 1 and c2n−2(Wn) = 0 for all n. The outermost non-trivial coefficients
are c3(W3) = 1, and c3(Wn) = n for all n ≥ 4, and c2n−3(Wn) =

(
n
2

)
for all n ≥ 3.

The following curious identity follows from the explicit description of W (t):

[Wn] − [Wn\O] − [Wn//O] + [Wn//I] = −L2(L − 1)n−2 ,

where O denotes any outer edge of Wn (on the rim of the wheel), and I denotes
any internal edge or spoke. The combinatorial reason for this is not clear.

Remark 44. The polynomials wn should have explicit equivariant versions with
respect to the symmetry group of Wn. This would be relevant to computing the full
cohomology of the graph hypersurface complement of Wn and its motivic coproduct.

The first few values of the polynomials wn are as follows:

w3 = L
2(L3 + L − 1)

w4 = L
2(L5 + 3L

3
− 6L

2 + 4L − 1)

w5 = L
2(L7 + 6L

5
− 15L

4 + 16L
3
− 11L

2 + 5L − 1)

w6 = L2(L9 + 10L7
− 29L6 + 37L5

− 33L4 + 26L3
− 16L2 + 6L − 1)

w7 = L
2(L11 + 15L

9
− 49L

8 + 71L
7
− 70L

6 + 64L
5
− 57L

4 + 42L
3
− 22L

2 + 7L − 1)

Note that the wheels Wn are the unique infinitely family of graphs whose residue
is known explicitly, namely: IWn

=
(
2n−1
n−1

)
ζ(2n − 3) for n ≥ 3. One of the main

results of [5] is that

(17) H2n−1
c (P2n−1\XWn

) ∼= Q(−2)

and that H2n−1(P2n−1\XWn
) is generated by the integrand of IG. It would be

interesting to relate their proof to the above computation which gives c2(Wn) = −1.

5.5. Example 2: Zig-zag graphs. The second application of the previous results
is to compute the classes [Zn] for all n, where Zn denotes the family of zig-zag graphs
with n loops pictured below (left). Let Zn denote the family of graphs obtained by
doubling the edge ‘2’ as shown on the right. Note that Z3 = W3.

Z5

2 3

1

4

5

v4

v5 v3

v2

Z5

v1

Figure 5. The zig-zag graphs Zn.
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The graphs Zn are primitive-divergent graphs in φ4 theory for all n ≥ 3. Let
z0 = 0, z1 = L + 1, z2 = L3, and zn = [Zn] for all n ≥ 3. Likewise, set z0 = 1,
z1 = L2, z2 = L4 + L3 −L2, and zn = [Zn] for all n ≥ 3. Denote the corresponding
generating series by Z(t) and Z(t).

Lemma 45. A straightforward application of the series-parallel operations gives

(18) zn = (L − 2)zn + (L − 1)L2zn−2 + Lzn−1 + L2n−1 n ≥ 1

Proof. If e1, e2 denote the two doubled edges, then this follows from the parallel
reduction (6) on noting that Zn\e1

∼= Zn, Zn\e1//e2
∼= Zn−1, and that Zn\{e1, e2}

is isomorphic to the graph obtained from Zn−2 by subdividing two edges, whose
class is L2zn−2 by two applications of (5). �

We next want to compute recursion relations for the numbers zn by considering
the split vertex shown above in the figure (left). Let us set ẑn = 0 for n < 3,

ẑn = 〈Zn〉v1,v2,v5
for all n ≥ 3, and let Ẑ(t) be the corresponding generating series.

Let ZBn denote the family of graphs obtained from Zn−1 by deleting the edge 4
indicated in the figure above, and doubling edges 1 and 2. A trivial argument along
the lines of lemma 40 shows that 〈ZBn〉 = bn, with generating series B.

Lemma 46. The recurrence relation given in theorem 34 translates as:

(19) zn+(L−L2)(zn−2−L2bn−3)+(L−1)zn−1 = (L5−L4)ẑn−1+L2n−4(L3+L−1)

for n ≥ 2. The recurrence relation of proposition 35 yields the relation

(20) L3ẑn = (L5 − L4)ẑn−1 + L2zn−2 + L3bn−2 − L2n−2 , n ≥ 2

Proof. Let G′ = Zn, and apply theorem 34 to G′ with the edge numbering shown
above. Then G ∼= Zn−1, G′\2//{4, 5} ∼= Zn−2, and G\{1, 3}//2 is isomorphic to
the graph obtained from ZBn−3 by subdividing two edges. It follows from (5) that
[ΨG\{1,3}//2] = L2bn−3, which yields the first equation. The second equation follows
from proposition 35, since G′\{1, 2}//{4, 5} is isomorphic to the graph obtained from
ZBn−2 by subdividing one edge, whose polynomial is Lbn−2 by (5). �

Equations (18), (19), (20) imply the following identities of generating series:

[1 − Lt + L2(1−L)t2] Z − (L − 2)Z − tR = 1 + (2−L)t

[L3 − (L5 − L4)t] Ẑ − L2t2
(
Z + LB

)
+ R = t

[1 + (L−1)t]Z − (L5−L4)tẐ + (L−L2)t2(Z − L2tB) − (L3+L − 1)tR = (L+1)t

in three unknowns, Z, Z, and Ẑ, where R = R(t) = t
(1−L2t) . These equations are

easily solved using the expression for B (12). In particular, we obtain an explicit
formula for the generating series Z(t) for the zig-zag graphs, which we omit. This
is to our knowledge the only explicit formula for the class in the Grothendieck ring
of a family of primitive-divergent graphs in φ4. From this formula one obtains:

Corollary 47. Let ci(Zn) denote the coefficient of Li in [Zn]. Then c2(Zn) = −1,
c2n−1(Zn) = 1 and c2n−2(Zn) = 0 for all n. The outermost non-trivial terms are
c3(Z3) = 1, and c3(Zn) = 8 − n for all n ≥ 4, and c2n−3(Wn) = 2n− 5 for n ≥ 3.

In the case of the zig-zags, the analogous result to (17) was proved by Doryn in
his thesis [10], and states that

H2n−1
c (P2n−1\XZn

) ∼= Q(−2) .
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For small n, we have:

z3 = L
2(L3 + L − 1)

z4 = L
2(L5 + 3L

3
− 6L

2 + 4L − 1)

z5 = L
2(L7 + 5L

5
− 10L

4 + 7L
3
− 4L

2 + 3L − 1)

z6 = L
2(L9 + 7L

7
− 12L

6
− 2L

5 + 16L
4
− 12L

3 + 2L
2 + 2L − 1)

z7 = L
2(L11 + 9L

9
− 13L

8
− 18L

7 + 55L
6
− 58L

5 + 41L
4
− 23L

3 + 7L
2 + L − 1)

6. Non-Tate counter-examples at 8 loops

We use the denominator-reduction method to derive some non-Tate counter-
examples to Kontsevich’s conjecture at 8 and 9 loops.

6.1. Combinatorial reductions. In order to compute the c2 invariant of an 8-
loop graph G, we proceed in two simpler steps.

Suppose that G is any connected graph with the shape depicted below, where
the white vertices A, B, C, D may have anything attached to them. Let H be the
minor obtained from G by deleting the edges 2 and 4, and contracting 3 and 6.

A B C D

G

1

23

4

5 6

DCBA 1 5H

Lemma 48. Let G, H be as above. Then D6
G(1, 2, 3, 4, 5, 6) = ±Ψ1,5

H Ψ5
H,1.

Proof. The proof is by direct computation of resultants, using the identities between
Dodgson polynomials which follow from the existence of local stars and triangles.
Since the edges {1, 2, 3} form a triangle, we know from example 9 that

5ΨG(1, 2, 3, 4, 5) = ±Ψ123,245Ψ4,5
G\2//13 .

Since {2, 3, 4} forms a 3-valent vertex, we have Ψ123,245 = Ψ1,5
G\{2,4}//3 by the last

equation in §2.3, (3). By contraction-deletion, this last term is also Ψ14,45
G\2//3, giving

5ΨG(1, 2, 3, 4, 5) = ±Ψ14,45
G2

Ψ4,5
G2,1 ,

where G2 is the minor G\2//3 with the induced numbering of its edges. Now take
the resultant with respect to edge 6. Since {4, 5, 6} forms a 3-valent vertex in G2,

it follows that Ψ146,456
G2

= 0 by the vanishing property for vertices. Thus we have

[Ψ14,45
G2

, Ψ4,5
G2,1]6 = ±Ψ14,45

G2,6 Ψ46,56
G2,1 .
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Again, since {4, 5, 6} is a 3-valent vertex, Ψ46,56
G2,1 = Ψ46,56

G2//1 = Ψ45
G2//1,6 = Ψ5

G2\4//6,1,

where the first and third equality are contraction-deletion relations. We have:

[Ψ14,45
G2

, Ψ4,5
G2,1]6 = ±Ψ1,5

G2\4//6Ψ
5
G2\4//6,1

The left-hand side is equal to ±D6
G(1, 2, 3, 4, 5) by definition, and the minor G2\4//6

is exactly H , which completes the proof. �

5

1

8 7 10

9
H

Lemma 49. Let H be a graph with the general shape depicted above. The denom-
inator reduction, applied five times to Ψ1,5

H Ψ1
H,5 with respect to the edges 7, 8, 9, 10

is Ψ15,78
A ΨB, where A = H\{10}//9 and B = G\{1, 9, 7}//{5, 8, 10}.

Proof. By the second Dodgson identity, [Ψ1,5
H , Ψ1

H,5]7 = Ψ17,15
H Ψ1,7

H,5. Applying the

first Dodgson identity, we then get [Ψ17,15
H Ψ1,7

H,5]8 = Ψ15,78
H Ψ18,17

H,5 . Now,

[Ψ15,78
H , Ψ18,17

H,5 ]9 = Ψ15,78
H,9 Ψ179,189

H,5 ,

by definition of the resultant, using the fact that Ψ159,789
H = 0, by the vanishing

property for vertices applied to the 3-valent vertex 7,8,9. Once more, by the vanish-
ing property applied to the triangle 7, 9, 10, we have (Ψ15,78

H,9 )10 = 0, and therefore

[Ψ15,78
H,9 Ψ179,189

H,5 ]10 = Ψ15X,78X
H,9 Ψ179,189

H,5X

where X denotes the edge 10. By contraction-deletion, the first factor is Ψ15,78
A , and

the second is Ψ7,8
H′ where H ′ = H\{1, 9}//{5, 10}. In this latter graph, 7, 8 forms a

2-valent vertex, and so Ψ7,8
H′ = Ψ7

H,8 = ΨH′\7//8 = ΨB. �

6.2. An 8-loop counter-example. Let G be the eight-loop primitive-divergent
φ4 graph with vertices numbered 1, . . . , 9 and (ordered) edges e1, . . . , e16 defined by

(21) 12, 13, 14, 25, 27, 34, 58, 78, 89, 59, 49, 47, 35, 36, 67, 69 ,

where ij denotes an edge connecting vertices i and j. This graph is isomorphic
to P8,37 minus vertex 3 or 5 in the census [14]. It has 3785 spanning trees. The
first six edges form precisely the configuration depicted in lemma 48, and we can
subsequently apply lemma 49 to reduce the next four edges. A further reduction
with respect to edge 11 gives the following corollary.

Corollary 50. Let G be the 8-loop graph above. Then

D11
G (e1, . . . , e11) = det

(
Ψ15,78

A\11 ΨB\11

Ψ15,78
A//11 ΨB//11

)
,

where A, B are depicted below.
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14 13

12
15

16 8 7

1

5

11

16

13 11

15

14

12

A B

The polynomial D11
G (e1, . . . , e11) is irreducible, so to proceed further in the re-

duction, observe that A and B have a common minor γ = B\{11}//{12, 13} which
is the sunset graph on 2 vertices and 3 edges 14, 15, 16. Its graph polynomial is

Ψγ = α14α15 + α15α16 + α14α16 .

By direct computation, one verifies that

Ψ15,78
A\11 = −α13α15(22)

Ψ15,78
A//11 = α12(Ψγ + α13α16)

ΨB\11 = Ψγ + α12α13 + α16α12 + α14α12 + α15α13 + α14α13

ΨB//11 = α13(Ψγ + α16α12 + α14α12)

At this point we can eliminate a further variable by exploiting the homogeneity of
D11

G (or ΨG). The affine complement of the zero locus of a homogenous polynomial
F admits a Gm action by scalar diagonal multiplication of the coordinates. For any
coordinate αe, we therefore have

[F ]q = [F, αe]q + (q − 1)[F, αe − 1]q

Lemma 51. [D11
G , α16]q is a polynomial in q.

Proof. By inspection of (22), setting α16 = 0 in the definition of D11
G causes the

terms α14α15 to factor out. The other factor is of degree at most one in α14 and
α15, and by a simple application of lemma 12 is therefore Tate. �

We will henceforth work on the hyperplane α16 = 1. Now we may scale α12 and

α13 by Ψγ , which has the effect of replacing D11
G with D̃ given by formally setting

Ψγ to be 1 in the previous equations. We have

[D11
G ]q ≡ [D̃]q + [Ψγ , D̃]q mod q

Lemma 52. [D̃]q is constant modulo q.

Proof. By inspection of (22), it is clear that the determinant D̃ is of degree one in
the variables α14 and α15. Applying lemma 12 (i) twice, it follows that the class of

D̃ modulo q is equal to the class modulo q of its coefficient of α14α15, and this is
α12α13(α13α12 + α13 + α12), which is clearly of Tate type. �
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It remains to compute [Ψγ , D̃]q, which is given mod q by the resultant [Ψγ , D̃]14.
Explicitly, it is the polynomial:

(23) α12 + α12α15 + α13α
2
12 + α2

12 + α13α12 + α15α13α12

+α2
13α15 + α2

13α
2
15 + α2

13α15α12 + α2
13α

2
15α12 + α2

15α13α12

A final innocuous change of variables α13 7→ α13/(α12 +1) reduces this equation to
degree 4, and setting a = α13 + 1, b = α12 + 1, c = α15 leads to the equation

J = a2bc − ab − ac2 − ac + b2c + ab2 + abc2 − abc

which defines a singular surface in A3. In conclusion, c2(G) ≡ c0 + [J ]q mod q
for some constant c0 ∈ N. Chasing the various constant terms in the above gives
c0 = 3. Note that this graph has vertex width 4.

6.3. A planar counter-example. Consider the planar graph G9 with nine loops
and eighteen edges below. It is primitive-divergent and in φ4 theory.

It contains a double triangle (t1 and t2), bounded by the 4 vertices in the top-left
hand corner. By applying a double-triangle reduction, the c2 invariant of this graph
is equal to the c2 invariant of a non-planar graph at 8 loops. One verifies that the
completion class of this 8 loop graph is the same as the previous example. Thus,
accepting the completion conjecture, we have c2(G9)q ≡ 3 + [J ]q mod q also. In
any case, all graphs in the completion class of this 8 loop graph have been calculated
by computer [15] which confirms this prediction.

G9

t1

t2

7. A singular K3 surface

Consider the homogeneous polynomial of degree four

F = b(a + c)(ac + bd) − ad(b + c)(c + d)

which satisfies F |d=1 = J . One easily checks that it has six singular points

e1 = (0 : 0 : 0 : 1) e2 = (0 : 1 : 0 : 0) e3 = (1 : 0 : 0 : 0)

e4 = (0 : 0 : 1 : 0) e5 = (0 : 0 : −1 : 1) e6 = (1 : 1 : −1 : 1)

which are all of du Val type. Its minimal desingularization is obtained by blowing
up the six points e1, . . . , e6 and is therefore a K3 surface X . Since the Hodge
numbers of a K3 satisfy h1,1 = 20, and h0,2 = h2,0 = 1, both X and V (F ) ⊂ P3 are
not of Tate type and we can already conclude that the graph G is a counter-example
to Kontsevich’s conjecture.
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7.1. The Picard lattice. We determine the Picard lattice of X as follows. It
follows by inspection of F that the following lines lie on X .

ℓ1 : c = d = 0 ℓ8 : c = b + d = 0(24)

ℓ2 : b = d = 0 ℓ9 : b = c + d = 0

ℓ3 : a = d = 0 ℓ10 : a − b = c + d = 0

ℓ4 : b = c = 0 ℓ11 : a = b = d

ℓ5 : a = c = 0 ℓ12 : a = b = −c

ℓ6 : a = b = 0 ℓ13 : a = −c = d

ℓ7 : a + c = d = 0 ℓ14 : a − d = b + c = 0

Let ℓ15, . . . , ℓ20 denote the six exceptional divisors lying above the points e1, . . . , e6.
Since these rational curves have self-intersection −2, one easily deduces the follow-
ing intersection matrix, where the rows and columns correspond to ℓ1, . . . , ℓ20.




−2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0

0 −2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 −2 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0

0 0 0 −2 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0

0 0 0 0 −2 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 −2 0 0 0 0 0 0 0 0 1 0 0 1 1 0

0 1 0 0 0 0 −2 0 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 −2 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 −2 0 0 0 1 0 0 0 1 0 1 0

1 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 0 0 −2 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0 0 0 0 −2 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 −2 0 0 1 0 0 0 1

0 0 1 1 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 1

0 0 0 1 1 1 0 0 0 0 0 1 0 0 −2 0 0 0 0 0

1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 −2 0 0 0 0

1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 −2 0 0 0

0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 −2 0 0

0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 −2 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 −2




It has determinant −7.
Since 7 is prime, the lines ℓ1, . . . , ℓ20 span the full Néron-Severi group. In par-

ticular, the rank of X is 20 and so it defines a singular K3 surface. Since Q(
√
−7)

has class number 1, X corresponds to the unique singular K3 in the Shioda-Inose
classification [18] with discriminant 7. Now consider the elliptic curve E = E49A1

with complex multiplication by Q(
√
−7) which is given by the affine model

y2 + xy = x3 − x2 − 2x − 1

The results of [18] imply that the graph of the complex multiplication in E×E gives
rise to a decomposition of Sym2H1(E) into two pieces, one of which is H2

tr(X).
The results of Livné [12] allow one to conclude that the weight 3 modular form
corresponding to H2

tr(X) is given by the symmetric square of the modular form of
E. Alternatively, one sees that X corresponds to the first entry of Table 2 in [16].
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7.2. A modular form. Consider Ramanujan’s double theta function:

θ(r, s) =

∞∑

n=−∞

rn(n+1)/2sn(n−1)/2

and write θa,b(q) = θ(−qa,−qb). Then, following [13], set

f49(q) = θ7,14(q)
3
[
q θ21,28(q) + q2θ14,35(q) − q4θ7,42(q)

]

= q + q2 − q4 − 3q8 − 3q9 + 4q11 − q16 − 3q18 + 4q22 + 8q23 + . . .

which spans the one-dimensional space of newforms of level 49 and weight 2 (see
also [17]). If apn denotes the coefficient of qpn

in f49(q), one knows that the number
of points of E over Fpn is pn + 1 − apn .

Putting all the previous elements together, we arrive at:

Theorem 53. Let G be the 8-loop non-planar graph defined in §6.2. Then the
number of points of the affine graph hypersurface XG over Fpn satisfies:

XG(Fpn) ≡ 3 + a2
pnp2n (mod p3n) ,

where apn is defined as above. In particular, XG(Fpn) is not a polynomial in pn.

Assuming the completion conjecture 4, or by the double-triangle theorem and
the computer calculation in [15], the graph of §6.3 has exactly the same property,
and yields a planar counter-example at 9 loops.

7.3. A further counter-example. Consider the 8-loop primitive-divergent φ4

graph with vertices numbered 1 . . . 9 and edges given by:

12, 13, 19, 26, 27, 34, 35, 37, 46, 48, 56, 58, 69, 78, 79, 89

Its completion class is the graph P8,39 in [14]. This graph can also be treated in a
similar manner to the previous example, and experimentally yields the new form
of weight 3 and complex multiplication by Q(

√
−8), corresponding to the second

entry of table 2 in [16].
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