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Chapter 1

Introduction

The goal of this dissertation is to begin the analysis of a class of combinatorial
Lie algebras, which has been introduced by Alain Connes and Dirk Kreimer
in [7], in their approach to the renormalization of perturbative quantum field
theories [5, 6, 2], and [9] for the general framework. In their approach, a main
role is played by the Hopf algebra structure defined over the set of Feynman
diagrams underlying the theory. The main features of such a Hopf algebra
are captured by the Hopf algebra of rooted trees Hrt in its bare and dressed
version. The properties of such a combinatorial Hopf algebra, becomes then
crucial for the understanding of the combinatorics which is behind renormal-
ization [12, 13, 14].
Hrt is a commutative, Z≥0-graded and connected (kerε =

⊕
i>0 Hi) Hopf al-

gebra. By the Milnor-Moore theorem [21], its dual H?
rt is isomorphic to the

universal enveloping algebra of a Lie algebra P (H?
rt), which can be faithfully

represented into the Lie algebra of the infinitesimal characters of Hrt. From
a more detailed analysis [7], it follows that the Lie algebra P (H?

rt) has two
other distinguished representations, D+ and D−, where the former is the Lie
algebra of the insertion operators and the latter the Lie algebra of the elim-
ination operators. Since both D+ and D− are Lie algebras of derivations for
Hrt, it is natural to seek for a larger Lie algebra which contains both D+ and
D− as sub Lie algebras. Such a Lie algebra is the insertion elimination Lie
algebra LL introduced in [7].
Since the full insertion elimination Lie algebra is a quite complicated object,
it is natural to seek for some distinguished sub Hopf algebra of Hrt, and then
begin the analysis of the insertion elimination Lie algebra naturally attached
to it. The choice of the ladder Hopf algebra HL is then quite a natural one.
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4 CHAPTER 1. INTRODUCTION

On the one hand, it is a fairly simple Hopf algebra, on the other hand it has
a non trivial physical content, [3], [16].
The main achievement of the present work is the description of the structure
of the insertion elimination Lie algebra, which is naturally associated to the
ladder Hopf algebra of rooted trees.

The outline of the present work is the following:

In the first chapter, we introduce all the algebraic structures which are used
in the following chapters.
The second chapter is devoted to the detailed analysis of the Hopf algebra
of rooted trees. In particular we give a summary of the results contained in
[21], suitable to the present purposes.
The third and the fourth chapters are the core of the present work. In
the third chapter, we introduce and motivate the class of the insertion-
elimination Lie algebras. The fourth chapter contains the analysis of the
structure of the insertion-elimination Lie algebra which is naturally associ-
ated to the Hopf algebra of the ladder rooted trees. There, we describe the
structure of such a Lie algebra, its relations with some other well known
infinite dimensional Lie algebra, and finally, we describe its cohomology in
some details .
In the fifth chapter, we give a survey of the theory of the extensions of Lie
algebras. There we carefully describe this theory, which is particularly rele-
vant for what is discussed in chapter four.
We conclude the exposition with two appendices, where the main results
about the cohomology of Lie algebras and the cohomology of the general
linear group are stated.



Chapter 2

Hopf algebras

In this chapter all the algebraic structures relevant for the present work will
be introduced. A particular care will be taken of the class of connected
graded Hopf algebras, for which a structure theorem will be proved. The last
section contains a detailed account of the Milnor-Moore theorem, which is a
key result for the topic of the present work. The references for the present
chapter are: [11] and [21].

2.1 Algebras

We will introduce in this section the main notions from the theory of Hopf
algebras. In what follows, we will assume that the base field k is the field of
complex numbers C of the field of real numbers R and all the tensor products
will be assumed over the field k.

Definition 1 A k-algebra with unit is a k-vector space A together with two
linear maps, multiplication m : A⊗ A −→ A and unit u : k −→ A such that
the following two diagrams are commutative:

A⊗ A⊗ A
m⊗id−−−→ A⊗ A

id⊗m

y
ym

A⊗ A
m−−−→ A

5



6 CHAPTER 2. HOPF ALGEBRAS

(Associativity)

k ⊗ A
u⊗id //

∼=
%%KKKKKKKKKK A⊗ A

m

²²

A⊗ k
id⊗uoo

∼=
yyssssssssss

A

(Unit)

Definition 2 Let V and W be two k-vector spaces. Define:

τ : V ⊗W −→ W ⊗ V (2.1)

saying that τ(v ⊗ w) = w ⊗ v for each v ⊗ w ∈ V ⊗W . The map τ is called
twist map.

Definition 3 (A, u) is said to be commutative if τ ◦m = m, i.e if the fol-
lowing diagram is commutative:

A⊗ A
m //

τ
%%KKKKKKKKK A

A⊗ A

m

;;xxxxxxxxx

(Commutativity)

Algebras over a given field k form a category, whose morphisms are defined
as follow:

Definition 4 A morphism φ between two algebras (A1,m1, u1) and (A2,m2, u2)
is a linear map φ : A1 −→ A2 such that m2◦(φ⊗φ) = φ◦m1 and φ◦u1 = u2.
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To show that algebras and their morphisms form a category we need only to
check that:

Proposition 1 Given φ1 : A1 −→ A2 and φ2 : A2 −→ A3, morphisms of
algebras φ2 ◦ φ1 : A1 −→ A3 is a morphism of algebras;

Proof We need to check that:

m3 ◦
(
(φ2 ◦ φ1)⊗ (φ2 ◦ φ1)

)
= (φ2 ◦ φ1) ◦m1.

m3 ◦
(
(φ2 ◦ φ1) ⊗ (φ2 ◦ φ1)

)
= m3 ◦

(
φ2(φ1) ⊗ φ2(φ1)

)
. Since φ2 is an al-

gebra morphism the last term of the previous equality can be written as:
φ2

(
m2(φ1 ⊗ φ1)

)
. Since also φ1 is an algebra morphism we can rewrite the

last formula as: φ2(φ1 ◦m1), that is what we wanted to show. ♠

From now on, by algebra will be meant associative algebra unless specified
differently.

Example 1 The ground field k with multiplication mk : k ⊗ k −→ k (which
corresponds to the natural multiplication) and unit uk : k −→ k, defined
by uk(1) = 1, is a commutative k-algebra. For any given algebra (A,m, u),
the unit u : k −→ A is a morphism between the algebra (k,mk, uk) and the
algebra (A,m, u).

Example 2 Let (A,mA, uA) and (B, mB, uB) be two algebras over the field
k. We can define an algebra structure on the tensor product A ⊗ B via the
following: m⊗

(
(a ⊗ b) ⊗ (a′ ⊗ b′)

)
= mA(a ⊗ a′) ⊗mB(b ⊗ b′), for a, a′ ∈ A

and b, b′ ∈ B. The unit is given by uA ⊗ uB.

For any given algebra A, we can define the following notions:

Definition 5 A given subvector space B ⊂ A is called an A sub-algebra
if for each x, y ∈ B, m(x, y) ∈ B, i.e if and only if the restriction of the
multiplication map to B takes values in B.

Moreover we also have the following:

Definition 6 A subalgebra I ⊂ A is called right (left) ideal if m(A, I) ⊂ I
(m(I, A) ⊂ I). If I ⊂ A is called bilateral if it is left and right ideal.
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Proposition 2 If I is a bilateral ideal then the quotient space A = A/I has
a natural structure of algebra: m : A⊗ A −→ A, m(x, y) = m(x, y).

Proof The only thing we need to check is that the multiplication is well
defined. This follows from the hypothesis that I is bilateral. ♠

Let us now introduce one more notion:

Definition 7 An augmentation for A is an algebra morphism ε : A −→ k
(where k is endowed with the algebra structure defined in example 1). An
algebra (A,m, u) with an augmentation map will be called augmented algebra.

Proposition 3 Let A be an augmented algebra, with augmentation map ε.
Then ker ε ⊆ A is an ideal and it is called augmentation ideal.

Proof Since ε is an algebra morphism, we have that for x ∈ ker ε, and
y ∈ A, ε(m(x, y)) = mk(ε(x), ε(y)) = 0. ♠

2.2 Coalgebras

The dual notion of a k-algebra is the one of a k-coalgebra. In this section we
will introduce and discuss some of the most elementary properties of such an
algebraic structure.

Definition 8 A k-coalgebra is a k-vector space C together with two k-linear
maps: the comultiplication ∆ : C −→ C ⊗ C and the counit ε : C −→ k,
such that the following two diagrams are commutative:

C ⊗ C
id⊗∆−−−→ C ⊗ C ⊗ C

∆

x
x∆⊗id

C
∆−−−→ C ⊗ C

(Coassociativity)
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k ⊗ C C ⊗ C
ε⊗idoo id⊗ε // C ⊗ k

C

∼=

eeKKKKKKKKKK
∼=

99ssssssssss
∆

OO

(Counit)

Example 3 The ground field k endowed with the maps: comultiplication
∆k : k −→ k ⊗ k, 1 Ã 1⊗ 1 and counit εk : k −→ k, 1 Ã 1 is easily checked
to be a coalgebra.

The notion of morphism between coalgebras is given in the following defini-
tion:

Definition 9 A morphism between two coalgebras (C1, ∆1, ε1) and (C2, ∆2, ε2)
is a linear map ψ : C1 −→ C2 such that: (ψ⊗ψ)◦∆1 = ∆2◦ψ and ε1 = ε2◦ψ.

In particular, coalgebras and their morphisms form a category. As in the
algebra case, we only need to check that:

Proposition 4 Given ψ1 : C1 −→ C2 and ψ2 : C2 −→ C3 morphisms of
algebras ψ2 ◦ ψ1 : C1 −→ C3 is a morphism of algebras;

Proof The proof of this statement is completely analogous to the one
given for the algebras’ case. ♠

Definition 10 An augmentation for (C, ∆, ε) is a coalgebra morphism u :
k −→ C, where we think of k as the coalgebra (k, ∆k, εk), defined in example
3.

The notion of commutativity is given in the following definition:
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Definition 11 C is cocommutative if τ ◦∆ = ∆. Equivalently, C is cocom-
mutative if the following diagram is commutative:

C ⊗ C C
∆oo

∆{{ww
ww

ww
ww

w

C ⊗ C

τ

eeKKKKKKKKKK

(Cocommutativity)

In any given coalgebra C, we can individuate a particular subset of elements,
which are called primitive. These are defined as follows:

Definition 12 We say that x ∈ C is primitive if ∆(x) = x⊗ 1 + 1⊗ x. We
will denote the set of primitive elements in C as P (C).

In particular we have:

Proposition 5 P (C) ⊆ ker ε.

Proof This follows from the property of the counit map: x = (ε⊗ idC) ◦
∆(x) = x + ε(x). ♠

Example 4 The field k has a natural coalgebra structure: ∆k(1) = 1 ⊗ 1,
εk(1) = 1 (and use now the linearity of the maps ∆ and ε). Moreover, for
any coalgebra (C, ∆, ε), ε : C −→ k is a map of coalgebras.

Example 5 For every coalgebra (C, ∆, ε), we can define a new coalgebra
(C, ∆op, ε) called opposite coalgebra, where ∆op = τ ◦∆.

Moreover:
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Example 6 1) The dual vector space C∗ of a coalgebra (C, ∆, ε) is endowed
with a natural algebra structure. In fact, define:

m∗ = ∆t|C∗⊗C∗(C ⊗ C)∗ −→ C∗,

〈∆t(φ⊗ ψ), x〉 = 〈φ⊗ ψ, ∆(x)〉.
The associativity of m∗ follows from the coassociativity of ∆. The unit is
defined by taking the transpose of the counit map:

u∗ = εt : k∗ ' k −→ C∗.

2) The dual vector space A∗ of a finite dimensional algebra (A,m, u) has
a natural coalgebra structure. In fact, we can define comultiplication and
counit by taking the transpose of the multiplication map and the transpose of
the unit map, i.e:

∆∗ = mt : A∗ −→ (A⊗ A)∗ ' A∗ ⊗ A∗ and ε∗ = ut : A∗ −→ k∗ ' k.

Let us conclude this section with one more example.

Example 7 Let (C1, ∆1, ε1) and (C2, ∆2, ε2) be two coalgebras. The tensor
product C1 ⊗ C2 has a coalgebra with co-multiplication ∆⊗ = (id⊗ τ ⊗ id) ◦
(∆1 ⊗∆2) and co-unit ε1 ⊗ ε2.

2.3 Lie algebras

In this subsection we introduce another algebraic structure which will play
the most fundamental role in the following exposition.
Let g a k-vector space.

Definition 13 g is called Lie algebra if it is endowed with a bilinear map:

B : g⊗ g −→ g

such that:
1) B is antisymmetric: B ◦ τ = −B;
2) B fulfills the following identity:

B(x,B(y, z)) + B(z, B(x, y)) + B(y, B(z, x)) = 0

for each x, y, z ∈ g.
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We will denote with the bracket [ , ] the bilinear form B.

Example 8 Let (A,m, u) be any algebra. We can define a Lie algebra struc-
ture on A, defining the bracket between two elements x, y ∈ A as [x, y] =
m(x, y)−m(y, x). The antisymmetry follows from the very definition, while
the Jacobi identity is an easy consequence of the associativity of the prod-
uct m. We will indicate with L(A) the Lie algebra defined on A by this
bracket. In particular given a vector space V , the vector space End(V ) is an
associative algebra with product defined by the composition: φ, ψ ∈ End(V ),
m(φ, ψ) = ψ ◦ ψ ∈ End(V ). The Lie algebra L(End(V )) is defined by the
bracket [φ, ψ] = φ ◦ ψ − ψ ◦ φ for each φ,ψ in End(V ).

Example 9 Let us consider a 3-dimensional k-vector space generated by
x, y, h. Let us define a Lie algebra structure on V , via the following: [x, y] =
h, [h, x] = 2x, [h, y] = −2y (and [y, x] = −h, [x, h] = −2x, [y, h] = 2y).
Such a bracket fulfills the Jacobi identity, so that it defines a Lie algebra
structure on such a vector space. This Lie algebra is usually called sl2

Let g1 and g2 be two Lie algebras over the field k, and φ : g1 −→ g2 a
morphism of k-modules.

Definition 14 We say that φ is a Lie algebra morphism if:

φ[x, y]g1 = [φ(x), φ(y)]g2 , ∀x, y ∈ g1.

Remark 1 Lie algebras and their morphisms form a category.

Definition 15 A Lie algebra g is called commutative or abelian if [x, y] = 0
for each x, y ∈ g.

Example 10 Every vector space V can be endowed with the structure of
abelian Lie algebra by saying that: for each x, y ∈ V , [x, y] = 0.

Lie subalgebras and Lie ideals are defined as follows:

Definition 16 A subvector space a ⊂ g is a sub Lie algebra if for each
x, y ∈ a, [x, y] ∈ a.

Definition 17 A given subvector space a ⊂ g is called an ideal of g, if
[a, g] ⊂ g.
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Proposition 6 If a ⊂ g is an ideal, the quotient g/a has a structure of a
Lie algebra.

Proof The proof of the statement is completely analogous to the one
given for the algebra case. ♠

The previous proposition gives us a way to define a new Lie algebra starting
from a given Lie algebra g and a given ideal a. However, this is not the only
way to define new Lie algebras from old ones. In fact:

Proposition 7 If g and t are two Lie algebras, the cartesian product A =
g× t has a natural structure of Lie algebra given by:

[
(ξ1, x1), (ξ2, x2)

]
A

=
(
[ξ1, ξ2]g, [x1, x2]t

)
.

Proof Antisymmetry and Jacobi identity follow immediately from the
definition of the bracket [ , ]A and from antisymmetry and Jacobi identity of
the brackets [ , ]g and [ , ]t. ♠

One more definition:

Definition 18 A Lie algebra g is called simple if it has no non trivial ideal.
It is said semi-simple if it has no non trivial abelian ideal.

The center of the Lie algebra g is defined as follows:

Z(g) = {x ∈ g such that [x, y] = 0 for each y ∈ g}.

In particular Z(g) is an abelian ideal.

Example 11 The Lie algebra sl2 is simple. In particular its center is trivial.

2.3.1 Universal enveloping algebra

An universal enveloping algebra U(g) is an associative algebra which is con-
structed starting from any given Lie algebra g. In what follows we will
describe its construction and its main properties.
Let us consider a Lie algebra g, and let us think of it as a k-vector space:
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Definition 19 The tensor algebra T (g) is the following graded associative
algebra generated by g:

T (g) = k ⊕ g⊕ (g⊗ g)⊕ (g⊗ g⊗ g)⊕ · · · ⊕ g⊗n ⊕ · · · =
⊕

k≥0

g⊗k.

Here g⊗n denotes the tensor product (over the field k) of n copies of g, whose
elements are (finite) linear combinations of terms ξ1 ⊗ · · · ⊗ ξn, with ξk ∈ g.
The algebra structure is given by concatenation: (η1, η2) −→ η1⊗η2 ∀η1, η2 ∈
T (g). A given element η is (homogeneous) of degree n if and only if η ∈ g⊗n.

Let us write: j : g −→ T (g) for the inclusion map. Then T (g) is generated,
as k-algebra, by j(g). From this, we conclude that T is a functor from the
category of k-modules to the category of associative (unital) k-algebras.
We also have a presentation of T (g) as an algebra: T (g) is a free algebra
with generators j(ξ) ξ ∈ g, which are subject to the (k-module) relations in
j(g):

aj(ξ) = j(aξ) and j(ξ1) + j(ξ2) = j(ξ1 + ξ2), (2.2)

for any a ∈ k, ξ, ξ1 and ξ2 ∈ g.

We can now define:

Definition 20 The universal enveloping algebra U(g) is the quotient of T (g)
by the 2-sided ideal generated by the relations:

j([ξ1, ξ2]) = j(ξ1)⊗ j(ξ2)− j(ξ2)⊗ j(ξ1), ξ1, ξ2 ∈ g. (2.3)

Equivalently, U(g) is the free algebra generated by j(ξ), ξ ∈ g, subjected to
the relations (2.2) as well as the relation (2.3).

Since the ideal generated by the relation (2.3) is not homogeneous, the grad-
ing in T (g) does not induce a grading in U(g). Nevertheless, such an ideal
preserve the natural filtration in T (g), T (g) : C = T0 ⊂ T1 ⊂ · · · ⊂ Tn ⊂ · · · ,
where Tn =

⊕n
i=0 gi, so that U(g) is naturally a filtered algebra:

U(g) : C = U(g)0 ⊂ U(g)1 ⊂ · · · ⊂ U(g)n ⊂ · · · .

Such a filtration will induce a grading:
⊕

k≥0

U(g)k , U(g)k = U(g)k/U(g)k−1 and U(g)−1 = 0,
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and with respect to this grading we will think of U(g) as a graded algebra.
Moreover, a natural inclusion ig : g −→ U(g) is defined.

The universal enveloping is characterized by the following universal prop-
erty:

Theorem 1 (Universal property)
Let g be a Lie algebra and A an algebra. For any morphism of Lie algebras:
f : g −→ L(A), there exists a unique morphism of associative algebras:
φ : U(g) −→ A, such that:

φ ◦ ig = f,

i.e φ is the only morphism of associative algebras which makes the following
triangle commutative:

U(g)
φ

##GGGGGGGG

g

ig

OO

f
// L(A)

(Universal)

Theorem 1 can be rephrased by saying that, for every Lie algebra g and
any associative algebra A, we have a natural bijection:

HomLie(L,L(A)) ∼= HomAss(U(g), A).

The universal property described above and the explicit construction of U(g)
described before are equivalent to say that the universal enveloping algebra
is unique.

2.4 Bialgebras and Hopf algebras

Let B be a vector space having an algebra (B, m, u) and a coalgebra (B, ∆, ε)
structure. The tensor product B⊗B is endowed with the structure of algebra
and the one of coalgebra as described in the examples (2), (7). We can now
investigate the compatibility of these two algebraic structures. We start with
the following definition:
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Definition 21 A bialgebra is a k-vector space endowed with an algebra struc-
ture (m,u) and a coalgebra structure (∆, ε), such that (m,u) and (∆, ε) are
respectively coalgebra and algebra morphisms.

The following theorem tells us that we need to check only one of the two
compatibility conditions:

Theorem 2 The maps (m,u) are coalgebra morphisms if and only if the
maps (∆, ε) are algebra morphisms.

Proof If m is a coalgebra morphism the following diagrams are commu-
tative:

H ⊗H

(id⊗τ⊗id)(∆⊗∆)
²²

m // H

∆
²²

(H ⊗H)⊗ (H ⊗H) // H ⊗H

H ⊗H

m

²²

ε⊗ε // H

id
²²

H
ε // H

and similarly:

k

id ÁÁ=
==

==
==

u // H

ε
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ

k

k

id
²²

u // H

∆
²²

k ⊗ k
u⊗u // H ⊗H

These four diagrams are equivalent to the commutativity of the following
four diagrams:

k

id
²²

u // H

∆
²²

k ⊗ k
u⊗u // H ⊗H

H ⊗H

m

²²

// (H ⊗H)⊗ (H ⊗H)

(m⊗m)(id⊗τ⊗id)

²²
H

∆ // H ⊗H

k

id ÁÁ=
==

==
==

u // H

ε
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ

k

H ⊗H

m

²²

ε⊗ε // k ⊗ k

id
²²

H
ε // k

which express the fact that ∆ and ε are morphisms of algebras. ♠

The set of primitive elements of a bialgebra B has the following remarkable
property:
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Proposition 8 If B is a bialgebra, then P (B) is a sub Lie algebra of the Lie
algebra L(B).

Proof Let x, y ∈ P (B). Then ∆([x, y]) = [∆(x), ∆(y)] = [x ⊗ 1 + 1 ⊗
x, y ⊗ 1 + 1⊗ y] = [x, y]⊗ 1 + 1⊗ [x, y]. ♠

Let us now consider the bialgebra B and the vector space of the endomor-
phisms of B, Homk(B,B). For any φ, ψ ∈ Homk(B, B), we can define the
following linear map:

φ ? ψ = m ◦ (φ⊗ ψ) ◦∆, (2.4)

Definition 22 The operation ? defined in (2.4), which is clearly bilinear, is
called convolution product.

Now it follows that:

Proposition 9 (Homk(B,B), ?, u ◦ ε) is a k-algebra over the field k.

Proof The associativity of the product ? follows from the coassociativity
of ∆ and the associativity of m.♠

Definition 23 An element S ∈ Homk(B,B), which has the property S ?
idB = idB ? S = u ◦ ε is called antipode

Definition 24 A bialgebra endowed with an antipode is called Hopf algebra.

If a given bialgebra has an antipode, this is unique:

Proposition 10 If S1 and S2 are two antipodes then S1 = S2

Proof This follows from the associativity of the convolution product
defined in (2.4) and from the definition of antipode (see definition 23); in
fact:

S1 = S1 ? (u ◦ ε) = S ? (idH ? S2) = (S1 ? idH) ? S2 = (u ◦ ε) ? S2 = S2.

♠

We can summarize what has been discussed in this section by saying that: a
Hopf algebra H is a bialgebra endowed with an antipode S.
Let us now go back to the universal enveloping algebra U(g) of a Lie algebra
g introduced in the previous section, and let us show that it has a natural
Hopf algebra structure:
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Theorem 3 The universal enveloping algebra U(g) has a structure of Hopf
algebra.

Proof U(g) is an algebra by its very definition. Let us now define on
U(g) a compatible coalgebra structure. As a consequence of the universal
property, we first observe, that the universal enveloping algebra U(g × g) is
isomorphic as a k-algebra to U(g)⊗ U(g). Then, since U(g) is generated by
g, the diagonal morphism

g −→ g× g, ξ Ã (ξ, ξ), ξ ∈ g

induces an algebra morphism:

∆ : U(g) −→ U(g)⊗ U(g),

whose restriction to g ' j(g) ⊂ U(g) is:

∆(ξ) = ξ ⊗ 1 + 1⊗ ξ.

Such a map defines a coproduct on U(g). The counit is defined extending
the linear map:

ε : U(g) −→ k, ε(ξ) = 0 ∀ξ ∈ g,

to an algebra morphism. Finally the antipode is defined on the generators by
S(ξ) = −ξ and it is then extended to an algebra morphism to U(g). It is easy
to check the compatibility of the maps just defined, so that we can summa-
rize what has been done saying that (U(g),m, ∆, u, ε, S) is a Hopf algebra. ♠

Let us give two more examples of Hopf algebras, both associated with a finite
group G. We will then end the present section, briefly discussing the duality
between finite dimensional Hopf algebras.

Example 12 (group algebra) Let G be any finite group. The group algebra
kG is the k-vector space, freely generated by the elements g of the group
G. The algebra structure over kG is induced by the group structure defined
in G; if a =

∑
i αigi and b =

∑
j βjgj (both sums are finite), define the

multiplication via:

m(a, b) =
∑
i,j

αiβj(gi · gj)
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while the unit is defined via the following u(1) = e, where e is the unit element
in G. The coalgebra structure is defined as follows: given c =

∑
k γkgk, the

coproduct is

∆(c) =
∑

k

γkgk ⊗ gk,

while the counit map is given by

ε(c) =
∑

k

γk.

It is easy to show that the algebra and the coalgebra structure so defined
are compatible, so that kG is a bialgebra. Finally the antipode is defined as
follows: S(g) = g−1, for g ∈ G and then extended to a morphism of kG by
linearity. Also, the compatibility of the antipode so defined with the bialgebra
structure is easily checked. Summarizing:

Theorem 4 The group algebra kG endowed with algebra, coalgebra and an-
tipode as defined above, is a Hopf algebra.

Example 13 (functions on a finite group G)
Let G be a finite group, with multiplication map:

· : G×G −→ G, (g1, g2) Ã g1 · g2.

The set of k-valued functions on G, F(G), is a vector space generated by
delta type functions, i.e by the functions δg, g ∈ G, defined as follows:

{
δg1(g2) = 1 if g1 = g2,

δg1(g2) = 0 if g1 6= g2.
(2.5)

Let us endow F(G) with a structure of Hopf algebra. The multiplication
map m : F(G)⊗F(G) −→ F(G), is defined by:

m(δg1 , δg2) = δg1(g2)δg1 ,

and then extended by linearity. The identity function in F(G) will be used
to define the unit map:

u : k −→ F(G)

1 Ã
∑
g∈G

δg.
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Moreover, since G is a finite group, we have an isomorphism of vector spaces:

F(G×G) −→ F(G)⊗F(G),

δ(g1,g2) Ã δg1 ⊗ δg2 ,

where G×G is endowed with the product group structure. Using this isomor-
phism and the map:

∆ : F(G) −→ F(G×G),

δg Ã
∑

(g1,g2), g1·g2=g

δ(g1,g2),

we can define a linear map, still denoted by ∆,

∆ : F(G) −→ F(G)⊗F(G),

δg Ã
∑

(g1,g2), g1·g2=g

δg1 ⊗ δg2 .

It is easy to show that such a map defines a coproduct. The coalgebra structure
on F(G) is completed by defining the counit as the linear map:

ε : F(G) −→ k, ε(δg) = δg(e).

It is clear by their very definition that such maps are compatible, so that they
define a bialgebra structure (F(G),m, ∆, u, ε) on the algebra of functions on
G. Finally, the antipode is given by:

S : F(G) −→ F(G).

δg Ã δg−1 .

We have already remarked that, at least in the finite dimensional case, the
notion of algebra and the one of coalgebra are dual to each other. Let us
briefly discuss the case of a finite dimensional Hopf algebra (H,m, ∆, u, ε, S).
In this case we have an isomorphism of k-vector spaces H∗⊗H∗ ' (H⊗H)∗.
Let us define the transposed maps: m∗ = ∆t : H∗ ⊗ H∗ −→ H∗, ∆∗ =
mt : H∗ −→ H∗ ⊗ H∗, u∗ = εt : k −→ H∗, ε∗ = ut : H∗ −→ k and
S∗ = St : H∗ −→ H∗. We can now state the following theorem:

Theorem 5 (H∗,m∗, ∆∗, u∗, ε∗, S∗) is a Hopf algebra. In particular the cate-
gory of finite dimensional Hopf algebras is involutive, with involution functor
given by the adjunction.
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Proof Since H is a finite dimensional vector space, (H⊗H)∗ ' H∗⊗H∗.
To prove the theorem we need to show that the maps m∗, ∆∗ etc, define a
product, coproduct, etc, for H∗. For example, the associativity of m∗ = ∆t

is a consequence of the coassociativity of ∆ and similarly, the coassociativity
of ∆∗ = mt will follow from the associativity of m. Moreover it is necessary
to show that (m∗, u∗) is a morphism of coalgebra, i.e that they are compat-
ible with (∆∗, ε∗) (see theorem 2). All these are simple proofs which follow
directly by the definitions of the maps involved. ♠

Example 14 For a given finite group G, the Hopf algebra F(G) is the dual
Hopf algebra of kG.

In the next section, we discuss more in depth the duality for Hopf algebras
dropping the hypothesis of finite dimensionality.

2.5 The Milnor-Moore theorem

In this section, we discuss a structure theorem for cocommutative Hopf alge-
bras. We mainly work with infinite dimensional graded Hopf algebras. Let
us start by introducing their main definitions and properties. All the results
contained in the present sections are taken from [21] (warning for the reader:
we will work with Hopf algebras over a field, which will be always C or R. In
the reference [21] the authors work with Hopf algebras over a commutative
ring).

Definition 25 A Z-graded Hopf algebra is a Hopf algebra H whose un-
derlying vector space is Z-graded, i.e H =

⊕
i∈ZHi and such that prod-

uct, coproduct and antipode respect the grading: m : Hn ⊗ Hk −→ Hn+k,
∆(Hn) −→ ⊕

p+q=n Hp ⊗Hq and S : Hn −→ Hn for each n,m ∈ Z.

Example 15 The universal enveloping algebra U(g), is a graded Hopf alge-
bra.

Remark 2 In what follows we will consider Hopf algebras graded over Z≥0.

Definition 26 A graded Hopf algebra H =
⊕

i∈Z+
Hi is said to be of finite

type if each of its homogeneous components Hi are vector spaces of finite
dimension.
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We want now to discuss some of the consequences of the property of being a
graded Hopf algebra of finite type.

Definition 27 Let H be a graded Hopf algebra of finite type. Then H? =⊕
i∈Z+

H∗
i is called the restricted dual of H.

Remark 3 If H is an infinite dimensional vector space, then the restricted
dual H? is strictly contained in the space of linear functional H∗ = Homk(H, k)
on H. In particular, a given linear map f ∈ H∗ belongs to H?, if and only if
f |Hl = 0 for all l ∈ Z+, but for a finite number. If H is a finite dimensional
vector space, then H? ' Homk(H, k).

Let H =
⊕

i∈Z+
Hi be an Hopf algebra of finite type. Let us indicate with

ε∗
.
= ut : H? −→ k, m∗

.
= ∆t : H? ⊗ H? −→ H?, u∗

.
= εt : k −→ H?,

∆∗
.
= mt : H? −→ H?⊗H? and S∗ = St : H? −→ H? the adjoint maps (with

respect to the pairing between H and H?) of the unit, coproduct, counit,
multiplication and antipode maps.

Theorem 6 Under the previous assumptions, we have that (H?, m∗, ∆∗, u∗, ε∗, S∗)
is a Hopf algebra with multiplication given by m∗, unit given by u∗, coproduct
given by ∆∗, counit by ε∗ and antipode by S∗.

Proof Let us first note the following isomorphism:

(H ⊗H)? '
⊕
n≥0

⊕
i+j=n

(
H∗

i ⊗H∗
j

)
' H? ⊗H?,

which is a direct consequence of the property of the restricted dual. The
proof of the statement consists in proving that the maps ∆∗, m∗ etc, define
a coproduct, a product etc, for H?. All of this follows from the definitions of
the maps with the lower stars and from the properties of product, coproduct,
unit counit and antipode. The discussion follows verbatim the final dimen-
sional case discussed in theorems 2 and 5.♠

Remark 4 The previous theorem is the infinite dimensional generalization
of the theorem 5. In particular, we can say that the category of graded and
finite type Hopf algebras has an involution which is given by taken the re-
stricted dual.
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In what follows, we consider a particular class of graded Hopf algebras, which
we introduce with the following definition:

Definition 28 A graded Hopf algebra is called connected if H0 ' k.

Proposition 11 If H is a graded Hopf algebra of finite type, then ker ε =
{x ∈ H| x 6= α1H , α ∈ k}. In particular, if H is connected, graded, and of
finite type then ker ε ' ⊕

i>0 Hi.

Proof Since H is graded and of finite type, also H? is a graded and of
finite type Hopf algebra. In particular 1H? = u∗(1) is the only element in
H? such that: 0 = 〈1H∗ , x〉 = 〈u∗(1), x〉 = 〈1, ε(x)〉 = ε(x), for each x 6= 1H .
The second statement it is now clear. ♠

In the case of connected Hopf algebras, the coproduct is characterized by the
following proposition:

Proposition 12 For any given element x ∈ H, ∆(x) = x⊗1+1⊗x+Σ⊗Σ′,
where Σ⊗ Σ′ ∈ ker ε⊗ ker ε.

Proof Suppose that x ∈ Hi. Since H is graded, we have: ∆(x) ∈⊕
p+q=i Hp ⊗ Hq. Since H is connected, we have that ∆(x) = α(y ⊗ 1) +

β(1⊗z)+
∑

k,l zk⊗zl, (in fact H connected means H0 ' k). From the co-unit
property: (ε⊗Id)◦∆(x) = x = (Id⊗ε)◦∆(x), it follows that x⊗1 = α(y⊗1)
and 1⊗ x = β(1⊗ z), so that α = β = 1 and z = y = x. ♠

Definition 29 The kernel of the counit ε is an ideal in H, which is called
augmentation ideal.

Given an Hopf algebra H, let us restrict the multiplication map to the kernel
of the counit map:

m : ker ε⊗ ker ε −→ ker ε.

In particular, we can consider the cokernel of such a map, which will be de-
noted with: i(H) = ker ε/m(ker ε⊗ ker ε).

We can now define the following set of elements in H:
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Definition 30 An element x ∈ ker ε ⊂ H is called indecomposable if and
only if it has non trivial class in i(H), i.e if and only if it cannot be written
as a linear combination of products of elements in ker ε.

The set of indecomposable elements in H will be denoted with I(H).
The following result will be important for what follows:

Theorem 7 Let H be a connected, graded Hopf algebra of finite type and H?

its restricted dual. Then, the space of primitive elements P (H) is in one to
one correspondence with the space I(H?) of indecomposable elements in the
dual Hopf algebra H?.

Proof Let x be an homogeneous element in P (H) (say deg x = i).
Suppose that Zx is the dual form of x, 〈Zx, x〉 = 1 and zero otherwise (in
particular Zx ∈ H∗

i ). Let now suppose that Zx = m∗(
∑

k,l αl,kZl ⊗ Zk),
where Zk, Zl 6= 1∗H , for each k, l and Zk ∈ H∗

k and Zl ∈ H∗
l with k + l = i,

for each k, l. Then we can write: 1 = 〈Zx, x〉 = 〈m∗(
∑

k,l αk,lZk ⊗ Zl), x〉 =∑
k,l αk,l〈∆t(Zk ⊗ Zl), x〉 =

∑
k,l αk,l〈Zk ⊗ Zl, ∆(x)〉 =

∑
k,l αk,l〈Zk ⊗ Zl, x⊗

1H + 1H ⊗ x〉. From the hypothesis 1 = 〈Zx, x ⊗ 1H + 1H ⊗ x〉 we get now
a contradiction. So we get a (linear) map Γ : P (H) −→ I(H?), defined as
follows: x Ã Zx, where 〈Zx, x〉 = 1. Such a map is clearly injective. The fact
that the map just defined is surjective follows easily by similar argument. ♠
The following corollaries are almost self evident:

Corollary 1 The set of indecomposable element in H, I(H), is in one to
one correspondence with the set of primitive elements in H?, P (H?).

Proof From the theorem 7, P (H) ' I(H?). The statement of the corol-
lary follows now from the isomorphism (H?)? ' H. ♠

Corollary 2 If H is a connected, graded Hopf algebra of finite type, which
is generated by the set of its indecomposable elements, then H? is generated
by the set of its primitive elements.

Proof The result follows from the theorem 7 and from the isomorphism
between H and H?. ♠
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Remark 5 We stated the previous results assuming that the Hopf algebra
H is graded and of finite type. Actually such hypothesis are overstated: it
is enough to demand that the dual of the Hopf algebra H is a Hopf algebra
itself. As it has already been stressed, this is always true for finite dimensional
Hopf algebras but in general it fails to be true for infinite dimensional Hopf
algebras, unless we consider Hopf algebras which are graded and of finite type.
Moreover, we need to observe that the form of the coproduct is fundamental
to prove that the map Γ defined in theorem 7 is surjective. Such a coproduct
is a consequence of the hypothesis that H is connected.

Let us make one more observation:

Proposition 13 If (H, m, u, ∆, ε, S) is a graded cocommutative (commuta-
tive) Hopf algebra of finite type, then (H?, ∆∗, ε∗,m∗, u∗, S∗) is a graded com-
mutative (cocommutative) Hopf algebra of finite type.

Proof The statement is an easy consequence of the definition of product
and coproduct: if m is commutative mt = ∆∗ is cocommutative and if ∆ is
cocommutative, ∆t = m∗ will be commutative.♠

The following fundamental theorem has been proved by John Milnor and
John Moore in 1965, and it represents one of the main tools of the present
work:

Theorem 8 (Milnor-Moore) If H is a connected, graded, of finite type co-
commutative Hopf algebra, then: H ' (U(P (H)) as a Hopf algebras.

Instead to prove the theorem 8 in its full generality, we will state and prove
a slightly weaker form of it:

Theorem 9 If H is a cocommutative Hopf algebra generated by the space of
primitive elements P (H), then we have that: H ' (U(P (H)).

Before giving the proof of the theorem 9, let us clarify its statement and let
make some observations:

1) An Hopf algebra H is primitively generated if and only if there exist
a surjective map p : U(P (H)) −→ H, i.e if H is primitively generated, then
any element x ∈ H can be written as a linear combination of products of
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elements in P (H).

2) If H is primitively generated then H is connected. This follows from
the fact that P (H) ⊂ ker ε (see proposition 5).

Proof (theorem 9) Let P (H) be the set of primitive elements in H.
We already now that P (H) is a sub Lie algebra of L(H). By the hypothesis we
have that there exists a surjective (Hopf algebras’) map: π : U(P (H)) −→ H.
The statement will follow if we can show that such a map is also injective.
Let I = ker π ⊂ U(P (H)) be a Hopf ideal and let us consider the filtra-
tion in I induced by the standard one in U(P (H)): I =

⋃
n≥0 In, where

In = I
⋂U(P (H))n. Clearly we have that I0 = 0 = I1; suppose that

I 6= {0} and let ξ ∈ U(P (H))m be an element of minimal degree in I.
Then: ∆(ξ) − ξ ⊗ 1 + 1 ⊗ ξ ∈ U(P (H))m−1 ⊗ U(P (H))m−1. Since m is of
minimal degree, and π is a Hopf algebra morphism we need to conclude that
ξ is primitive: ∆(ξ) = ξ ⊗ 1 + 1 ⊗ ξ. But this contradicts that m > 1. So
that I = {0} and the map π : U(P (H)) −→ H is a bijection. ♠

Now we will state two corollaries to the theorems 8, 9.

Corollary 3 If H is a connected graded, commutative Hopf algebra of finite
type, then it is isomorphic, as a Hopf algebra, to the dual of the enveloping
algebra of some Lie algebra.

Proof As above remarked H? is also connected and it is cocommutative.
Then by the theorem 8, H? ' U(P (H?)). ♠
Similarly we have:

Corollary 4 If H is a graded commutative Hopf algebra, of finite type, gen-
erated by its indecomposable elements, then it is isomorphic, as a Hopf alge-
bra, to the universal enveloping algebra of some Lie algebra.

Proof From theorem 7 it follows that H? is generated by the set of its
primitive elements. From theorem 9 it follows that H? ' U(P (H?)) so that
the statement follows. ♠

Let x ∈ H be an indecomposable (and homogeneous) element, and let Zx =
Γ(x) ∈ P (H?), where Γ is the linear map defined in the theorem 7. The set
of elements Zx with x ∈ I(H) (each of those is a primitive element in H?),
is a linear form on H. We extend their action to the full algebra H via the
following theorem:
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Theorem 10 For each Zx as above, 〈Zx, z1z2〉 = 〈Zx, z1〉ε(z2)+〈Zx, z2〉ε(z1).
In particular, assuming that the Hopf algebra H is graded and of finite type,
as a consequence of the proposition 11, each Zx extends by zero to the full
algebra H.

Proof The proof goes as follows: 〈Zx, z1z2〉 = 〈Zx,m(z1⊗z2)〉 = 〈∆(Zx), z1⊗
z2〉 = 〈Zx ⊗ 1?

H + 1?
H ⊗ Zx, z1 ⊗ z2〉 = 〈Zx, z1〉ε(z2) + 〈Zx, z2〉ε(z1), by the

definition of 1?
H . The last part of the statement follows now from the fact

that H is connected. ♠

Definition 31 The elements in the (full) dual of H are called characters of
the Hopf algebra. Since H? ⊂ Homk(H, k), each element in the restricted
dual is a character of H. Every character Z of H, whose extension to the
full algebra H fulfills the condition expressed in theorem 10, 〈Zx, z1z2〉 =
〈Zx, z1〉ε(z2) + 〈Zx, z2〉ε(z1), is called infinitesimal character.

So we can rephrase theorem 10 with the following proposition:

Proposition 14 Each primitive element of the Hopf algebra H?, is an in-
finitesimal character for H.
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Chapter 3

The Hopf algebra of rooted
trees

In this chapter, we first introduce the main definitions and the main proper-
ties of the Hopf algebra of rooted trees Hrt. Such Hopf algebra turned out
to be the algebraic backbone of the combinatorics behind the renormaliza-
tion of perturbative quantum field theories, which ha been explored in the
works of Alain Connes and Dirk Kreimer. Then we define the Lie algebra of
the infinitesimal derivations of Hrt, and finally, we give a description of the
ladder Hopf algebra of rooted trees. The main references are [12] and [5].

3.1 Main definitions

Let us start with the definition of rooted tree:

Definition 32 A (non planar) rooted tree t is a connected, simply connected
one dimensional simplicial complex with a point base ∗(t), which is called the
root of the tree t, see example 16.

Example 16 Examples of rooted trees are given by:

The root is the uppermost vertex.

29
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Rooted trees will be denoted with the letter t (or T ). For each rooted tree,
the following sets can be defined: the set of edges E(t), each of which will be
assumed oriented, and the set of vertices V (t) (we will assume the concepts
of edge and of vertex as primitive). Each vertex is attached to at most one
incoming (with respect to the orientation) edge. A vertex v will be called
external if it is attached to one incoming and none outgoing edge, or if it is
attached to exactly one outgoing and none incoming edge. Such an external
edge is the root of the tree. In particular V (t) = V int(t) t V int(t).

Example 17 For example card
(
V ( )

)
= 1 while E( ) is empty. For the

tree we have card
(
(V ( )

)
= 2, V int( ) is empty (i.e all the vertices are

external) and card
(
E( )

)
= 2.

Each rooted tree is then oriented away from the root. This orientation is
induced by the orientation of the edges and by the property that each vertex
has at most one incoming edge. A subtree of a given tree t is a connected
and simply connected simplicial sub complex of t, whose orientation is com-
patible with the one of t.

Remark 6 The presence of the distinguished vertex (the root), and the fact
that for any other vertex there is only one incoming edge, has as a conse-
quence that in any rooted tree loops are forbidden. In what follows, by tree
will be meant a non-planar rooted tree.

Definition 33 We will denote the set of all trees by T . The empty tree will
be considered an element of T , and it will be denoted with 1. Any subset of
T is called a forest. In what follows, F(T ) will denote the set of all forest
with finite cardinality.

Let t ∈ T with root {∗(t)}:

Definition 34 Two vertices, v1, v2 ∈ V (t), are called path connected if it is
possible to reach v2 starting from v1 in a way compatible with the orientation
of t.
In such a case, we can define a (unique) subtree of t, P (v1, v2), such that
V ext(P (v1, v2)) = {v1, v2} and ∗(P (v1, v2)) = v1.
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Remark 7 The root is the only vertex that is path connected to each of the
other vertices.

The next goal is to define a structure of Hopf algebra on F(T ). Such a Hopf
algebra will be freely generated by the set of all trees. Let us start defining
the algebra structure.

Multiplication and unit are defined as follows:

Definition 35
m : F(T )⊗F(T ) −→ F(T )

,

ti1 · · · tin ⊗ tj1 · · · tjm Ã ti1 · · · tintj1 · · · tjm ,

where ti1 · · · tin and tj1 · · · tjm are two forests with n and m trees. In partic-
ular, the product of two trees t1 and t2 will deliver a forest, t1t2. Moreover,
we define: m(1, t) = m(t,1) = t for each t ∈ T .
The unit is the linear map: u : k −→ T ⊂ F(T ), 1 Ã 1.

Graphically we will write:

m( ⊗ ) =

The following proposition is now trivial:

Proposition 15 (F(T ),m, u) is a commutative algebra.

Proof Commutativity and associativity follow immediately from the very
definition of the multiplication m. ♠

Remark 8 Since now on we will think of F(T ) endowed of the algebra struc-
ture defined in the previous proposition 15. In particular, any given forest,
F = t1 · · · tn ∈ F(T ), can be interpreted as the result of the iterated product
of the trees t1 up to tn, so that the algebra (F(T ),m, u) is freely generated
by set of all trees T .

The next definition is fundamental for what follows:
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Definition 36 An elementary cut for t, c̃, is a subset of E(t) of cardinality
equal to one. An admissible cut c, is a subset of E(t) such that for each
v ∈ V (t), E(P (∗(t), v)) ∩ c has cardinality less or equal to one. Obviously,
each elementary cut is also an admissible cut. By definition, the empty cut
and the total cut, are elementary.

Example 18 1) For the tree , there are only two admissible cuts: the empty
and the total one. In particular, for any tree (non empty), the set of admissi-
ble cuts contains always two elements, which are the empty and the total one.

2) The tree has only one edge so that the set of admissible cut contains
only three elements.

3) The first non trivial examples are given by the trees: and . For
those trees, beside the total and the empty cuts, we have the following: for
the first one, we have that each admissible cut has cardinality equal to one,

in particular the set of admissible cuts contains two elements. The tree
is more interesting: in this case we have three possible admissible cuts, two
of them with cardinality equal to one, one with cardinality equal to two.

The notion of admissible cut c, allows to introduce a map

C : T −→ F(T )× T , C(t) = (Pc(t), Rc(t)).

Rc(t) is a distinguished tree such that ∗(Rc(t)) = ∗(t) and Pc(t) =
∏

i ti is a
forest whose cardinality is equal to card(c), and such that for any ti ∈ Pc(t),
∗(ti) is the incoming vertex of one of the edges in c (see examples below).
Let us give some example which will clarify these important concepts.

Example 19 In the following examples we will not consider the empty and
the total cuts.

1) t = . In this case, we have only one admissible cut c̃, and such has

cardinality equal 1. Removing the edge we will get: Pc̃( ) = , and similarly,

Rc̃( ) = . Beside the appearance Pc̃(t) and Rc̃(t), have a different meaning:

by definition Rc̃(t) coincide with ∗( )
.
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2) t = . We have three admissible cuts, two of them with cardinality
one and one with cardinality 2. For the first two cases we have that: Pc̃ =

and Rc̃ = , while the third case give us Pc̃ = and Rc̃ = . As this
example shows, in general Pc̃(t) is not a tree but a forest.

Remark 9 T is a naturally Z≥0 graded vector space freely generated by the
trees. The grading is given as follows: deg(t) = card(V (t)) and deg(1) = 0.
Then we can write: T =

⊕
i≥0 Ti. Moreover, since dimk(Ti) < ∞ for each

i, T is a graded vector space of finite type.

To define the coalgebra structure, let us first introduce the following maps:

1. ε : T −→ k, such that:

ε(t) = 0, ε(1) = 1,

and having the property: ε ◦m(t1 ⊗ t2) = ε(t1)ε(t2).

2. ∆ : T −→ F(T )⊗ T , such that:

∆(1) = 1⊗ 1, ∆(t) = t⊗ 1 + 1⊗ t +
∑

c̃

Pc̃(t)⊗Rc̃(t),

and having the property: ∆◦m(t1⊗t2) = (m⊗m)(∆t1⊗∆t2), which extends
∆ to a map: F(T ) −→ F(T )⊗F(T ) .

Example 20
1) ∆( ) = ⊗ 1 + 1⊗ ,

since the set of simple cuts is empty.

2) ∆( ) = ⊗ 1 + 1⊗ + ⊗ .

3) ∆( ) = ⊗ 1 + 1⊗ + 2 ⊗ + ⊗ .

Now we can prove the following theorem:

Theorem 11 (F(T ), ∆, ε) is a coalgebra; i.e ∆ is a coproduct and ε is a
counit. Moreover they are compatible with the algebra structure defined in
the proposition 15, so that (F(T ), m, ∆, u, ε) is a bialgebra.
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Proof Since the compatibility of ε and ∆ with the algebra structure is
contained in the definition of these two maps, we are only left to show the
counit property and the coassociativity of the map ∆. The counit property
is trivially checked: (Id⊗ε)◦∆(t) = t = (ε⊗ Id)◦∆(t), and (Id⊗ε)◦∆(1) =
1 = (ε⊗ Id) ◦∆(1) by the definition of ∆ and ε. Now we need to show that
∆ is coassociative, i.e: (∆ ⊗ Id) ◦∆(t) = (Id ⊗∆) ◦∆(t) for each tree. Let
us start introducing the following operator:

L : F(T ) −→ T ;

L(t1 · · · tn) = t,

where t is the tree obtained joining the roots of t1, ..., tn to a common vertex:

Example 21

L( ) = .

We now state the following lemma. For its proof, as well as for the relevance
of the operator L and for its cohomological interpretation, we refer to [?].

Lemma 1 For each A ∈ F(T ),

∆ ◦ L(A) = L(A)⊗ 1 + (Id⊗ L)∆(A).

Following [?], we will prove the associativity by an inductive argument.
Let us define Fm the sub algebra of F(T ), which is generated by the trees
of degree less of equal to m (see remark 9). Clearly we have that F(T ) =⋃

nFn. The induction will be performed on the degree of the filtration F(T ) :
· · · Fm ⊂ Fm+1 ⊂ · · · . The restriction of ∆ to F1 is clearly associative:
∆( ) = ⊗ 1 + 1⊗ . Let us suppose that associativity holds up to degree m,
and let us prove that it holds also in degree m + 1. In particular let us take
T of degree m + 1. This tree can be written as L(A) = L(t1 · · · tl), where
deg(tj) ≤ m. Then, using the previous lemma and the induction, we can
write the following chain of equalities:

(Id⊗∆)∆(T ) = (Id⊗∆)∆(L(A)) = (Id⊗∆)(L(A)⊗ 1 + (Id⊗L)∆(A)) =

L(A)⊗ 1⊗ 1 + (Id⊗∆)(A′ ⊗∆(L(A′′)) = L(A)⊗ 1⊗ 1 + A′ ⊗ L(A′′)⊗ 1+

+A′⊗(Id⊗L)∆(A′′) = L(A)⊗1⊗1+A′⊗L(A′′)⊗1+(Id⊗(Id⊗L))A′⊗∆(A′′) =
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= L(A)⊗ 1⊗ 1 + A′ ⊗ L(A′′)⊗ 1 + (Id⊗ (Id⊗ L))∆(A′)⊗ A′′ =

= L(A)⊗ 1⊗ 1 + A′ ⊗ L(A′′)⊗ 1 + ((Id⊗ Id)⊗ L)∆(A′)⊗ A′′ =

= L(A)⊗ 1⊗ 1 + A′ ⊗ L(A′′)⊗ 1 + ∆(A′)⊗ L(A′′) =

= (∆⊗ Id)(L(A)⊗ 1 + A′ ⊗ L(A′′)) = (∆⊗ Id)∆(L(A)),

where we used the notation ∆(A) = A′ ⊗ A′′. ♠

Theorem 12 The bialgebra (F(T ),m, ∆, u, ε) is graded, of finite type and
connected.

Proof If we define deg(m(t1⊗t2)) = card(V (t1))+card(V (t2)), (F(T ),m, u)
becomes a graded algebra. To show that the coproduct is compatible with
the grading, it suffices to observe that for any tree t and any admissible
cut c̃, Pc̃(t) =

∏
j tj (see remark 8), so that deg(Pc̃(t)) =

∑
j card(V (tj)) =∑

j deg(tj). Now the statement follows from the equality: card(V (t)) =
cardV (Rc̃(t)) +

∑
j cardV (tj). ♠

To show that (F(T ),m, ∆, u, ε) is actually a Hopf algebra, we are left to
define the antipode map: S : F(T ) −→ F(T ). To this end, we state the
following theorem:

Theorem 13 The map S : F(T ) −→ F(T ), defined as:

S(1) = 1;

S(t) = −t−
∑

c̃

S(Pc̃(t))Rc̃(t);

and extended to an algebra morphism: S(titj) = S(ti)S(tj) for each ti, tj,
defines the antipode for the bialgebra (F(T ),m, ∆, u, ε).

Proof The proof follows from the definition of the antipode map for a
bialgebra; this is a map S ∈ Hom(B, B) such that: S ? idB = idB ?S = u ◦ ε,
where S ? idB = m ◦ (S ⊗ idB) ◦∆ is the convolution product. If such a map
S does exist, this is unique. Since the F(T ) is connected, for any tree t we
can write:
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0 = m ◦ (S ⊗ 1) ◦∆(t) = m ◦ (S ⊗ 1)
(
t⊗ 1 + 1⊗ t +

∑
c̃

Pc̃(t)⊗Rc̃(t)
)
,

From this we now get:

S(t) = −t−
∑

c̃

S(Pc̃(t))Rc̃(t).

♠

As it follows from the previous argument, we could also write the antipode
for the bialgebra (F(T ), m, ∆, u, ε), as:

S(t) = −t−
∑

c̃

S(Rc̃(t))Pc̃(t).

Remark 10 The formula for the antipode follows directly as a consequence
of F(T ) of being connected.

Remark 11 From now on, the Hopf algebra of rooted trees (F(T ), ∆,m, ε, u, S)
will be indicated with Hrt.

Example 22 Let us give some explicit calculation of the antipode for some
simple tree.

1) S( ) = − .

2) S( ) = − + .

3) S( ) = − + 2 − .

Proposition 16 The Hopf algebra of rooted trees Hrt is generated by the set
of its indecomposable elements I(Hrt) = T .

Proof Since Hrt is connected we have that:

I(Hrt) = ker ε/m(kerε⊗ ker ε) =
⊕

k>0

(
Hk/⊕l+m=k HlHm

)
,

where HlHm is a short hand notation for m(Hl ⊗Hm). ♠



3.1. MAIN DEFINITIONS 37

Example 23 In degree one there is only one indecomposable element, i.e .
In particular we have that H1 = spank〈 〉.

In degree two we have only one indecomposable element, i.e , and H2 =

spank〈 , 〉.

In degree three, we have two indecomposable elements: , and H3 =

spank〈 , , , 〉.

What has been shown in this section is summarized in the following theorem:

Theorem 14 Hrt is a Hopf algebra, Z+-graded, connected and of finite type
and it is generated by the set of indecomposable elements.



38 CHAPTER 3. THE HOPF ALGEBRA OF ROOTED TREES

3.2 Duality and Lie algebra of infinitesimal

derivations

In the previous subsection we showed that Hrt is endowed with a structure
of a graded Hopf algebra, connected and of finite type. Now we want to
study the (restricted) dual Hopf algebra, H?

rt =
⊕

i≥0 H∗
i . We already know

that H?
rt is a Z+-graded, and of finite type Hopf algebra (see proposition 13).

Since Hrt is commutative and (freely) generated by the set of all trees, i.e by
the indecomposable elements, we have the following theorem (see theorem
8):

Theorem 15 H?
rt is a cocommutative, primitively generated Hopf algebra, so

that it is isomorphic, as a Hopf algebra, to the universal enveloping algebra
of the Lie algebra of its primitive elements P (H?

rt).

The set of primitive elements P (H?
rt) ⊂ H?

rt is in one to one correspondence
with the set of indecomposable elements I(Hrt) ⊂ Hrt; for each tree t ∈
I(Hrt), we get a linear form Zt ∈ P (H?

rt). Since Hrt is graded, of finite type
and connected, we have the following proposition, (see theorem 10):

Proposition 17 Each Zt extends by zero to an algebra derivation.

Proof In fact: 〈Zt,m(t1 ⊗ t2)〉 = 〈Zt, t1〉ε(t2) + 〈Zt, t2〉ε(t1). But ker ε '⊕
i>0 Hi. ♠

Definition 37 The derivation Zt defined in the previous proposition, is called
infinitesimal character of the Hopf algebra Hrt.

For any t1, t2 ∈ Hrt let Zt1 , Zt2 be the corresponding infinitesimal char-
acters. The product between those is the one induced by the coproduct ∆
defined in Hrt: 〈m∗(Zt1 ⊗ Zt2), t〉 = 〈Zt1 ⊗ Zt2 , ∆(t)〉.

In particular, we have the following proposition:

Proposition 18 For Zt1 , Zt2 and t as above, we have:

〈m∗(Zt1 ⊗ Zt2), t〉 =
∑

c̃

(〈Zt1 , Pc̃(t)〉〈Zt2 , Rc̃(t)〉
)
, (3.1)

where c̃ runs over the set of all possible admissible cut of cardinality equal to
one (i.e over the set of elementary cuts).
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Proof In fact, for any give admissible cut c, the number of factors in
Pc(t) is equal to the cardinality of c. Since the linear form Zt1 extends by
zero to a derivation of the algebra Hrt, the only terms which are not iden-
tically equal to zero in (3.1) are the ones labelled by admissible cuts with
cardinality equal to one.♠

The Lie algebra structure defined on P (H?
rt) is given by the bracket:

[Zt1 , Zt2 ] = m∗(Zt1 ⊗ Zt2 − Zt2 ⊗ Zt1).

The associativity of the multiplication m∗ (which follows from the coasso-
ciativity of the coproduct ∆), ensures that such a bracket fulfills the Jacobi
identity.

Remark 12 The product m∗ is also called convolution product.

We will now analyze in greater details the Lie algebra P (Hrt).
We start with the following proposition:

Proposition 19 The set of the infinitesimal characters is not closed with
respect to the convolution product.

Proof Let Zt1 , Zt2 be two infinitesimal derivations and let T1, T2 be two
trees. Then: 〈m∗(Zt1 ⊗ Zt2),m(T1 ⊗ T2)〉 = 〈Zt1 ⊗ Zt2 ,m(∆(T1) ⊗ ∆(T2)).
On the other hand, by the definition of the coproduct, we have: ∆(Ti) =
Ti ⊗ 1 + 1⊗ Ti +

∑
i T

′
i ⊗ T ′′

i , i = 1, 2, where T ′
i and T ′′

i have degree greater
than zero. So that: m(∆(T1)⊗∆(T2)) = T1 ⊗ T2 + T2 ⊗ T1 + Σ′ ⊗Σ′′ where
either Σ′ or Σ′′ are decomposable (product of indecomposable, i.e product of
trees), so that they belong to the kernel of the linear forms Zt1 , Zt2 . From
this, we can conclude:

〈Zt1 ⊗ Zt2 ,m(∆(T1)⊗∆(T2)) = 〈Zt1 , T1〉〈Zt2 , T2〉+ 〈Zt2 , T1〉〈Zt1 , T2〉,
which is, in general, different by zero. ♠

Remark 13 It is clear that the previous results hold for any Hopf algebra
connected, graded of finite type, since the key for those results is the charac-
terization of the coproduct, given in proposition 12.
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Example 24 Let us calculate the convolution product between Z with itself.
From the definition:

m∗
(
Z ⊗ Z

)
=

(
Z ⊗ Z

) ◦∆. (3.2)

This is an element in H?
rt, so that can be written as a linear combination

of elements like ZF , where F is a forest. The generators in degree less or
equal to 3, of the homogeneous components of the restricted dual are the
following:

H∗
1 = spank〈Z 〉; H∗

2 = spank〈Z ,Z 〉, H∗
3 = spank〈Z ,Z , Z , Z 〉.

Since m∗ is grading preserving: m∗
(
Z ⊗ Z

) ∈ H∗
2 , so that we can write:

m∗
(
Z ⊗ Z

)
= a1Z + a2Z

for some a1, a2. It is easy to find such coefficients using the equality (3.2);

m∗
(
Z ⊗ Z

)
= Z + 2Z .

Remark 14 Using the previous argument, it is possible, at least in principle,
to write each generator of H?

rt as linear combinations of products (with respect
to m∗) of infinitesimal characters. In particular, from the previous example
we have that:

Z =
1

2

(
m∗

(
Z ⊗ Z

)− Z
)
.

In the case under examination, i.e for the Hopf algebra Hrt, it is possible to
introduce a new product, that we will indicate with ∗, with respect to which
P (H?

rt) turn out to be closed. Such a remarkable product will induce a Lie
algebra structure on the vector space P (H?

rt) that will coincide with the one
defined via the convolution product.

Definition 38 For any given Zt1 , Zt2 ∈ P (H?
rt), define:

Zt1 ∗ Zt2 =
∑

c̃

n(t; t1, t2)Zt, (3.3)
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where c̃ runs over the set of all admissible cut of cardinality equal to one. The
numerical coefficients n(t; t1, t2), express the number of ways in which t can
be decomposed by an elementary cut c̃ (i.e an admissible cut with cardinality
equal to one), in such a way Pc̃(t) = t1 and Rc̃(t) = t2.

Example 25 Let us calculate the ∗-product in some simple case:

1) Z ∗ Z = Z ;

2) Z ∗ Z = Z + 2 Z ,

3) Z ∗ Z = Z ;

As it is evident in the previous examples, the ∗-product is not commutative.
Moreover, it is not associative as the next example shows:

Example 26
(
Z ∗ Z

) ∗ Z = Z ∗ Z = Z ;

on the other hand:

Z ∗ (
Z ∗ Z

)
= Z ∗ Z = Z + 2 Z .

Nevertheless, the ∗-product defined in (3.3) fulfills the following property:

Theorem 16 For each triple of rooted trees t1, t2 and t3 we have:

Zt1 ∗
(
Zt2 ∗Zt3

)− (Zt1 ∗Zt2) ∗Zt3 = Zt2 ∗
(
Zt1 ∗Zt3

)− (
Zt2 ∗Zt1

) ∗Zt3 . (3.4)

Proof The proof is a consequence of the following lemma. Let us define
the following triple product:

A(t1, t2, t3) = Zt1 ∗
(
Zt2 ∗ Zt3

)− (
Zt1 ∗ Zt2

) ∗ Zt3 . (3.5)

Lemma 2
A(t1, t2, t3) =

∑
c̃

n(t1, t2, t3; t)Zt,

where n(t1, t2, t3; t) is the number of admissible cuts c̃ of t such that Rc̃(t) = t3
and Pc̃(t) = t1t2 and card c̃ = 2.
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Proof(of the Lemma) By the definition of the product ∗, we can write:

A(t1, t2, t3) =
∑

t

( ∑

t′
n(t2, t3; t

′)n(t1, t
′; t)− n(t1, t2; t

′)n(t′, t3; t)
)
Zt.

The first sum corresponds to the couples of elementary cuts (c̃, c̃′) where c̃ is
a cut of the tree Rc̃(t). Such a set of couples is the (disjoint) union of the set
of couples (c̃, c̃′), with the property that c̃ ∪ c̃′ is still admissible for t, with
the set of couples which do not have such a property. On the other hand, the
second sum corresponds to the set of couples of admissible cuts (c̃, c̃′), such
that Rc̃(t) = t3 and c̃′ is cut of Pc̃′(t). This means that for such couples we
never have the case c̃ ∪ c̃′ is admissible for t. From this follows the lemma,
since the difference representing A(t1, t2, t3) will count only the couple (c̃, c̃′)
of admissible cuts such that c̃ ∪ c̃′ is still admissible. ♠

To end the proof of the theorem, it suffices to observe that:

A(t1, t2, t3) = A(t2, t1, t3),

which follows from the definition given in the equation (4.1). ♠

Definition 39 A vector space V endowed with a product ∗ that fulfills the
condition expressed in (3.4) is called a pre-Lie algebra.

Remark 15 The trilinear form A defined in (4.1) can be thought as a mea-
sure of the non-associativity of the product ∗ and it is called associator.
Pre-Lie algebras are also known in the literature as left-symmetric or right-
symmetric. The one we introduced is left symmetric since:

A(t1, t2, t3) = A(t2, t1, t3).

Right-symmetric ones would be defined using the following associator:

A(t1, t2, t3) = A(t1, t3, t2).

Proposition 20 If (V, ∗) is a pre-Lie algebra then L(V ) is a Lie algebra; i.e
the bracket [·, ·] : V ⊗V −→ V , [x, y] = x∗ y− y ∗x, for each x, y ∈ V fulfills
the Jacobi identity.
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Proof We need to show that for each x, y and z in V , [x, [y, z]] +
[z, [x, y]] + [y, [z, x]] = 0. This follows after applying the definition of the
bracket [x, y] = x ∗ y − y ∗ x, and from the property (3.4). ♠

On P (H?
rt) there are defined two products: the convolution product m∗ = ∆t,

and the pre-Lie product (3.3). The first one does not close to a product for
the vector space of the primitive elements P (H?

rt) (see proposition 19) while,
by its very definition, the pre-Lie product ∗ does close to such a product.
Nevertheless, we have the following result:

Proposition 21 The convolution product between Zt1 and Zt2, (Zt1 ⊗Zt2) ◦
∆, is a linear form on Hrt, whose restriction to the indecomposable elements
I(Hrt) coincides with the linear form Zt1 ∗ Zt2.

Proof Let us consider the t1, t2, t ∈ I(Hrt). The coproduct gives us
∆(t) = t⊗ 1 + 1⊗ t +

∑
c̃ Pc̃(t)⊗Rc̃(t), where the sum is taken over the set

of admissible cuts. The convolution between Zt1 and Zt2 will give us:

(
(Zt1 ⊗ Zt2) ◦∆

)
(t) =

∑
c̃

〈Zt1 , Pc̃(t)〉〈Zt2 , Rc̃(t)〉. (3.6)

Since Zt1 , Zt2 are infinitesimal characters, the the sum in (3.6) reduces to a
sum over the elementary cuts, i.e:

(
(Zt1 ⊗ Zt2) ◦∆

)
(t) =

∑
c̃

〈Zt1 , Pc̃(t)〉〈Zt2 , Rc̃(t)〉.

This sum represents the number of ways in which t can be decomposed, via
an elementary cut c̃, as Pc̃ = t1 and Rc̃(t) = t2; such a number is by definition
n(t; t1, t2) ♠

Moreover, we have that:

Theorem 17 For each t1 and t2 in I(Hrt),

m∗(Zt1 ⊗ Zt2 − Zt2 ⊗ Zt1) = Zt1 ∗ Zt2 − Zt2 ∗ Zt1 ,

so that the Lie algebras structures induced on P (H?
rt) by these two products

coincide.
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Proof We already know that the restriction of m∗(Zt1 ⊗ Zt2) to the in-
decomposable elements in Hrt coincides with Zt1 ∗ Zt2 , so that m∗(Zt1 ⊗
Zt2 − Zt2 ⊗ Zt1)(t) = (Zt1 ∗ Zt2 − Zt2 ∗ Zt1)(t) for any t ∈ I(Hrt). There-
fore, we are left to prove that m∗(Zt1 ⊗ Zt2 − Zt2 ⊗ Zt1) restricts to zero
to any decomposable element in Hrt. Let T = T1T2 such an element, then
∆(T ) = T1 ⊗ T2 + T2 ⊗ T1 +

∑
σ ⊗ σ′ where σ and or σ′ are decomposable.

Applying Zt1 ⊗ Zt2 − Zt2 ⊗ Zt1 to right hand side of the previous equality
we get zero: in fact (Zt1 ⊗ Zt2 − Zt2 ⊗ Zt1) is zero for each term of the sum∑

σ⊗σ′ since Zt1 , Zt2 are infinitesimal derivations, and (Zt1⊗Zt2−Zt2⊗Zt1)
is zero on T1 ⊗ T2 + T2 ⊗ T1 since the last one is symmetric in T1, T2 while
the first one in antisymmetric in t1, t2. ♠

Remark 16 The convolution product m∗ is associative, while, as already
remarked, the product ∗ is pre-Lie. Nevertheless,

Zt1 ∗ Zt2|I(Hrt) = m∗(Zt1 ⊗ Zt2)|I(Hrt).

Let us clarify this apparent anomaly discussing one example. Let us consider
the triple product of the infinitesimal character Z with itself.
Let us calculate first the triple products using the ∗-product:

Z ∗ (
Z ∗ Z

)
= 2Z + Z , (3.7)

and

(
Z ∗ Z

) ∗ Z = Z . (3.8)

Using the convolution product, we get instead:

m∗
(
Z ⊗m∗

(
Z ⊗Z

))
= m∗

((
2Z +Z

)⊗Z
)

= 6Z +2Z + (3.9)

+3Z + Z

and similarly:

m∗
(
m∗

(
Z ⊗Z

)⊗Z
)

= m∗
(
Z ⊗(

2Z +Z
))

= 6Z +2Z + (3.10)
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+3Z + Z

The computations (3.9) and (3.10) give us the same result (the convolu-
tion product is associative). In particular, if we restrict the results of such
computations to the set of indecomposable elements I(Hrt) we get the same
infinitesimal character we get from the computation done in (3.7). The dif-
ference between (3.7) and (3.8) lies in the absence of the term 2Z . Such a

term is given in (3.9) by the product m∗
(
2Z ⊗Z

)
, i.e it is a consequence of

the presence of the linear term Z , which is not an infinitesimal character.

3.3 The ladder tree Hopf algebra

We will now introduce a sub Hopf algebra of Hrt, which is at the base of the
present work.

Let us consider the sub set of all indecomposable elements in Hrt having each
vertex with fertility equal to one. Let us indicate such a set with IL.

Lemma 3 IL

⋃
1 generates a sub Hopf algebra of the Hopf algebra Hrt.

Proof First let us observe that for each n ∈ Z>0 there is exactly one tree
t ∈ IL such that deg t = n. Let us call tn, the tree in IL of degree equal to n.
Let us now call with HL the algebra generated by IL. To prove the statement
it suffices to show that coproduct and antipode defined on Hrt restrict to a
coproduct and to an antipode to HL; i.e we need to show:

∆(HL) ⊂ HL ⊗Hl;

and

S : HL ⊂ HL.

Both properties are easily checked once it is noticed the following: for each
t ∈ IL each admissible cut has cardinality equal to one.

Example 27 The following trees represent the generators for the ladder
Hopf algebra up to degree equal to 5:
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.

From this observation we have that:

∆(tn) =
n∑

k=0

tn−k ⊗ tk; (3.11)

and

S(tn) = −tn −
n∑

k=0

S(tn−k)tk.

♠

Corollary 5 HL is a graded, commutative and cocommutative Hopf algebra.
The grading is induced by the one defined in Hrt.

Proof The commutativity does not need any comment. On the other
hand:

τ ◦∆(tn) = τ
( n∑

k=0

tn−k ⊗ tk
)

=
n∑

k=0

tk ⊗ tn−k =
n∑

j=0

tn−j ⊗ tj = ∆(tn).

♠

Definition 40 We will indicate with ln, the generator of HLn. In particular
we have that l0 = 1.

Proposition 22 For any pair of ladder trees (ln, lm),

Zlm ∗ Zln |IL
= Zln ∗ Zlm|IL

.

Proof The statement is equivalent to say that for each couple of non
negative integer numbers (n,m), n + m = m + n. ♠



Chapter 4

Insertion elimination Lie
algebras

This chapter is devoted to the introduction of a class of combinatorial Lie
algebras, which can be defined using an underlying combinatorial Hopf alge-
bras. Even if such Lie algebras can be defined for a large class of tree-like
objects (e.g graphs), we will be only concerned with the Lie algebras associ-
ated to the Hopf algebra of rooted trees. The reference for material contained
in this chapter is [7].

4.1 Derivations for the Hopf algebra of rooted

trees

For any couple of trees (T, t) and any vertex v ∈ V (T ), we can define the
following operation:

Definition 41 Given the data (T, t, v) ∈ Hrt ×Hrt × V (T ) we define a tree
T ∪v t obtained gluing the ∗(t) to v with a new edge.

Example 28 1) Let us take T = t = . In this case, the operation described
above give us:

T ∪v t = .

2) Let us consider T = and t = and let us take v = ∗(T ). In this case
we get:

47
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T ∪v t = .

Remark 17 Even if we will use the gluing operation mainly in the form we
have just introduced it, i.e to glue a tree to another tree along a vertex, we
can define a slightly more general operation, that consists in gluing a forest
to a tree, along one of its vertices. Let us just give a simple example of such
operation: T = and let us take as forest F = .

T ∪v F =

It follows from the definition that:

card
(
E(T ∪v t)

)
= card

(
E(T )

)
+ card

(
E(t)

)
+ 1,

and that:

card
(
V (T ∪v t)

)
= card

(
V (T )

)
+ card

(
V (t)

)
.

Remark 18 It is worthwhile to compare the gluing operation just introduced,
with the one which is defined in [7]. In [7], to any triple (T, t, v) as defined
above, it is associated the tree T ∪̃vt. This tree is obtained by gluing the root
of t to the vertex v of T , without inserting any new connecting edge. The
difference between these two operations is exemplified in the following:

1) For T = t = , the new operation gives us:

T ∪̃vt = ,

2) if T = , t = and v = ∗(T ), we get:

T ∪̃vt = .

It is clear that for such operations we have:

card
(
E(T ∪̃vt)

)
= card

(
E(T )

)
+ card

(
E(t)

)
,

and that:

card
(
V (T ∪̃vt)

)
= card

(
V (T )

)
+ card

(
V (t)

)− 1.



4.2. INSERTION LIE ALGEBRA 49

4.2 Insertion Lie algebra

We can define the first class of derivations naturally associated to Hrt. First,
let us consider the vector space freely generated by the set of the indecompos-
able elements I(Hrt) ⊂ Hrt (we gave the same name to set of the indecom-
posable elements, such a choice should not cause any confusion). For each
tree t ∈ I(Hrt), let us introduce the linear form D+

t ∈ Homk

(
I(Hrt), I(Hrt)

)
,

via the following:

Definition 42
D+

t (T ) =
∑

v∈V (T )

T ∪v t.

Moreover, for each couple of trees t1, t2 and a1, a2 ∈ k we define:

D+
a1t1+a2t2

= a1D
+
t1

+ a2D
+
t2
.

Example 29

1) D+( ) =

2) D+
( )

= + .

We now extend D+
t to a derivation of Hrt:

D+
t

(
T1, · · · , Tn

)
=

n∑
i=1

T1 · · ·D+
t (Ti) · · ·Tn.

Remark 19 The previous definition gives then a linear map:

I(Hrt) Ã Der(Hrt).

Following the remark (17), we can say that we have defined a linear map
between Hrt and Der(Hrt).

Example 30 Let us consider F1 = and F2 = .

D+
F1

(F2) = D+ ( ) =
(
D+ ( )

)
+

(
D+ ( )

)
= 2 .

Let us now write a close formula for the composition of two operators D+
t1

and D+
t2 :
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Theorem 18 For a given pair of trees (t1, t2) we have:

D+
t2
◦D+

t1
= At1t2 + D+

D+
t2

t1
,

where At1t2 is symmetric (in t1, t2) linear map defined on each tree T by:

At1t2(T ) =
∑

v 6=ṽ∈V (T )

(T ∪v t1) ∪ṽ t2.

Proof Let us calculate:

D+
t2
◦D+

t1
(T ) = D+

t2

(
D+

t1
T

)
.

By definition:

D+
t2

(
D+

t1
T

)
=

∑

v∈V (D+
t1

T )

(
D+

t1
T

) ∪v t2.

But V (D+
t1T ) =

⋃
ṽ∈T V (T ∪ṽ t1) = V (T ) ∪ V (t1). So we can write:

D+
t2

(
D+

t1
T

)
=

∑

v∈V (T )∪V (t1)

D+
t1
(T )∪vt2 =

∑

v∈V (T )

D+
t1
(T )∪vt2+

∑

v∈V (t1)

D+
t1
(T )∪vt2 =

∑

v∈V (T )

( ∑

ṽ∈V (T )

T ∪ṽ t1
) ∪v t2 +

∑

v∈V (t1)

( ∑

ṽ∈V (T )

T ∪ṽ t1
) ∪v t2.

In the first double sum there is no dependence on t1 and it represents all
the possible way to glue the trees t1, t2, into the tree T , at the vertices
ṽ, v ∈ V (T ). In the second addendum, we can interchange the order of the
sums: ∑

ṽ∈V (T )

T ∪ṽ

( ∑

v∈V (t1)

t1 ∪v t2
)

=
∑

ṽ∈V (T )

T ∪ṽ (D+
t2
t1),

which is what we wanted to show. ♠

A close formula for the commutator
[
D+

t1 , D
+
t2

]
, is given in the following

proposition:

Proposition 23

[
D+

t1
, D+

t2

]
=

∑

v∈V (t2)

D+
t2∪vt1

−
∑

v∈V (t1)

D+
t1∪vt2

.
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Proof The proof of the statement follows from the theorem 18, noticing
that the term A+

t1t2 is symmetric in t1 and t2. ♠

Example 31 Let us consider the case of D+ and D+. Then:

[
D+, D+

]

Definition 43 Let us call D+ the Lie algebra of derivations of Hrt defined
by the map I(Hrt) 3 t Ã D+

t . We will call the linear maps D+
t insertion

operators.

Convention 1 To the unit element 1 in Hrt will be associated the operator
D+

1 , whose action is given by the following formula:

D+
1 (T ) =

∑

v∈V (T )

T ∪v 1.

T ∪v 1 is the tree T at which it is attached the empty tree at the vertex v, so
that:

T ∪v 1 = T.

From this we deduce:

D+
1 (T ) = cardV (T )T ;

i.e the operator D+
1 is the grading operator for the algebra Hrt.

Remember that the set of primitive elements in H?
rt is endowed with a Lie

algebra structure induced by the ∗-product.
Let us define the linear map:

Ψ+ : P (H?
rt) −→ D+

Zt Ã D+
t .

Then:

Proposition 24 The map Ψ+ is a Lie algebra isomorphism.
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Proof Ψ+ is clearly an isomorphism of vector spaces. Let us show that
it preserve the Lie bracket. For Zt1 , Zt2 ∈ P (H?

rt), we have
[
Zt1 , Zt2

]
=

∑

T∈I(Hrt)

n(t1, t2; T )ZT −
∑

T∈I(Hrt)

n(t2, t1; T )ZT ,

so that:

Ψ+
([

Zt1 , Zt2

])
=

∑

T∈I(Hrt)

n(t1, t2; T )D+
T −

∑

T∈I(Hrt)

n(t2, t1; T )D+
T .

n(t1, t2; T ) is the number of ways in which we can decompose T with an
elementary cut c̃ to obtain Pc̃(T ) = t1 and Rc̃(T ) = t2, or, equivalently is
the number of times we can get T gluing t1 to t2. So that: n(t1, t2; T ) is
the number of vertices v ∈ V (t2) such that t2 ∪v t1 = T . We have a similar
interpretation for the number n(t2, t1; T ), so that we can write:

∑

T∈I(Hrt)

n(t1, t2; T )D+
T−

∑

T∈I(Hrt)

n(t2, t1; T )D+
T =

∑

v∈V (t2)

D+
t2∪vt1

−
∑

v∈V (t1)

D+
t1∪vt2

.

♠

4.3 Elimination Lie algebra

Let us now introduce a second class of derivations for the Hopf algebra of
rooted trees. For each t ∈ I(Hrt) let us define:

D−
t ∈ Homk

(
I(Hrt), I(Hrt)

)
;

D−
t (T ) = 〈Zt ⊗ IdHrt , ∆(T )〉.

Example 32 Let us calculate:

D−(
).

It is enough to find the decomposition of the tree given by the subset of
the elementary cuts. In this case, we have four possible elementary cuts. The

empty one, the total one and the ones which correspond to Rc( ) = and

Pc( ) = (there are two of them). Since in each of these cases Pc( ) 6= ,

D−(
) = 0.
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Lemma 4 For each t ∈ I(Hrt), D−
t is a derivation for Hrt.

Proof Let T1, T2 rooted trees.

D−
t (T1T2) = 〈Zt ⊗ IdHrt , ∆(T1)∆(T2)〉 = 〈Zt ⊗ IdHrt , T1 ⊗ T2 + T2 ⊗ T1〉,

where the last equality is a consequence of Zt being an infinitesimal charac-
ter. ♠

Definition 44 The derivations D−
t , t ∈ I(Hrt) are called eliminations op-

erators. The set of such derivations will be denoted with D−.

Convention 2 To the unit element 1 in Hrt will be associated the operator
D−

1 . For each tree T we have:

D−
1 (T ) =

∑
c

〈Z1, Pc(T )〉Rc(T ) = T.

In other words, the only elementary cut which gives a non zero contribution
is the empty cut, for which Pc(T ) = 1 and Rc(T ) = t.

Let us define the natural map:

Ψ− : P (H?
rt) −→ D−;

Zt Ã D−
t .

Now we can prove the following theorem:

Theorem 19 The map Ψ− is an anti-isomorphism of the Lie algebra of the
infinitesimal characters with the Lie algebra D−.

Proof For any two infinitesimal characters Zt1 , Zt2 ,

[
Zt1 , Zt2

]
=

∑
T

(
n(t1, t2; T )− n(t2, t1; T )

)
ZT .

To prove the statement we need to show that:
∑

T

(
n(t1, t2; T )− n(t2, t1; T )

)
D−

T = −(
D−

t1
◦D−

t2
−D−

t2
◦D−

t1

)
. (4.1)
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It is clear that RHS and LHS of (4.1) act by zero on every t which does not
contain T = t1 ∪ t2 or T = t2 ∪ t1 as a subtree. On the other hand for any
tree t which has T = t1 ∪ t2 as a subtree: D−

t1 ◦D−
t2(t) = n(t2, t1; T ) and for

an tree t having T = t2 ∪ t1 as a subtree: D−
t2 ◦D−

t1(t) = n(t1, t2; T ).♠

As an immediate consequence of the previous theorem, we get a closed for-
mula for the commutator between two elimination operators.

Proposition 25 For t1, t2 ∈ I(Hrt), we have:

[
D−

t1
, D−

t2

]
=

∑
t

(
n(t2, t1; t)− n(t2, t1; t)

)
D−

t .

Example 33 Let us consider t1 = and t2 = . Let us first calculate:

[
Z ,Z

]
= 2Z .

The commutator between the corresponding elimination operators is given by:

[
D− , D− ]

= −2D−

We can rephrase what we have seen in the previous two subsections of this
chapter by saying that the Lie algebra of the infinitesimal characters comes
endowed with two natural representations: the Lie algebra of insertion op-
erators, D+, and the Lie algebra of the elimination operators D−. Both are
algebras of derivations of the Hopf algebras of the rooted trees. We are now
going to define a bigger algebra of derivations for Hrt, that will contain both
D+ and D− as sub Lie algebras.

4.4 The insertion-elimination Lie algebra

We want now to put on the same ground insertion and elimination operators.
To this end, we need to show that they actually close to a Lie algebra, i.e we
need to show, that for any choice of t1, t2:

[
D−

t1
, D+

t2

]
=

∑
t

α(t1, t2; t)D
+
t +

∑
t

β(t1, t2; t)D
−
t ;
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for t ∈ I(Hrt) and α(t1, t2; t), β(t1, t2; t), numerical coefficients which depend,
for each t, only on t1, t2.
To find out what the ingredients of the right hand side of the previous formula
are, we need the following theorem:

Theorem 20
[
D−

t1 , D
+
t2

]
(T ) =

∑

v∈V (T )

∑

c∈E(t2)

〈Zt2 , Pc(t2)〉T ∪v Rc(t2) +
∑

c∈E(T )

∑

v∈Pc(T )

〈Zt1 , Pc(T ) ∪v t2〉Rc(T ).

Note that all the admissible cuts are elementary (i.e with cardinality equal to
one).

Proof Let us calculate separately the terms:

D−
t1
◦D+

t2
(T ) and D+

t2
◦D−

t1
(T ).

The latter gives us:

D+
t2
◦D−

t1
(T ) = D+

t2

( ∑

c∈E(T )

〈Zt1 , Pc(T )〉Rc(T )
)

=
∑

c∈E(T )

〈Zt1 , Pc(T )〉(
∑

v∈Rc(T )

Rc(T )∪vt2
)
.

The former is instead:

D−
t1
◦D+

t2
(T ) = D−

t1

( ∑

v∈V (T )

T∪vt2
)

=
∑

v∈V (T )

( ∑

c∈E(T∪vt2)

〈Zt1 , Pc(T∪vt2)〉Rc(T∪vt2)
)
.

For each vertex v ∈ V (T ), the sum

∑

c∈E(T∪vt2)

〈Zt1 , Pc(T ∪v t2)〉Rc(T ∪v t2)

can be rewritten as:

∑

c∈E(T )

〈Zt1 , Pc(T ∪v t2)〉Rc(T ∪v t2)+
∑

c∈Ẽ(t2)

〈Zt1 , Pc(t2)〉T ∪v Rc(t2)+ 〈Zt1 , t2〉T,

where with Ẽ(t2) we indicated the entire set of elementary cuts for t2, but the
empty and the total one, the latter being represented by the term 〈Zt1 , t2〉T.
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The sum
∑

c∈E(T )〈Zt1 , Pc(T ∪v t2)〉Rc(T ∪v t2) can be further decomposed in
two pieces as follows:

∑

c∈E(T ), v∈Pc(T )

〈Zt1 , Pc(T ) ∪v t2〉Rc(T ) +
∑

c∈E(T ), v∈Rc(T )

〈Zt1 , Pc(T )〉Rc(T ) ∪v t2.

Putting all these together we will write:

D−
t1
◦D+

t2
(T ) =

∑

v∈V (T )

( ∑

c∈E(t2)

〈Zt1 , Pc(t2)〉T ∪v Rc(t2)
)

+
∑

c∈E(T )

( ∑

v∈Pc(T )

〈Zt1 , Pc(T ) ∪v t2〉Rc(T )
)

+
∑

c∈E(T )

( ∑

v∈Rc(T )

〈Zt1 , Pc(T )〉Rc(T ) ∪v t2
)
, (4.2)

where in the first summand of the equation (4.2), E(t2) denotes, with a light
notational abuse, the set of elementary cuts for t2, but the empty cut. Taking
now the difference between the results obtained we get the proof. ♠

Remark 20 From the previous theorem, we have that for any given tree
T , the non zero contributions to

[
D−

t1 , D
+
t2

]
(T ) comes from the subtrees t of

T such that t1 = t∪v t2 (contained in
∑

c∈E(T ), v∈Pc(T )〈Zt1 , Pc(T )∪v t2〉Rc(T )),

and from the subtrees t of t2 such that t = t1, (
∑

v∈V (T )

( ∑
c∈E(t2)〈Zt1 , Pc(t2)〉T∪v

Rc(t2)
)
). This suggests the following definition: for each triple of trees

t1, t2, t,

• α(t1, t2; t) is number of ways we can write Rc(t2) = t and Pc(t2) = t1,
where c ∈ E(T );

• β(t1, t2; t) is the number of times we can write t1 = t∪v t2 for v ∈ V (t).

Corollary 6

[
D−

t1
, D+

t2

]
=

∑
t

α(t1, t2; t)D
+
t +

∑
t

β(t1, t2; t)D
−
t .
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Proof The proof follows from the definition of α and β, from the proof
of the theorem 20 and from the previous remark 20. ♠

We will now define a larger class of derivations for the Hopf algebra of rooted
trees. These derivations will form a Lie algebra, which contains D+ and D−

as sub Lie algebras. For each pair of trees, let us define the linear operator
Z[t1,t2], such that:

Z[t1,t2](T ) =
∑

c∈E(T )

〈Zt2 , Pc(T )〉Rc(T ) ∪vc t1.

Let us give a wordy definition of such an action: the linear map acts as the
zero operator on on each tree T for which does not exist any elementary cut
c such that Pc(T ) = t2. If such an elementary cut does exist, we will write
T = Rc(T )∪vc Pc(T ). In this case Z[t1,t2] will eliminate Pc(T ) and it will glue
at the vertex vc, the tree t1. The final result will be the tree Rc(T ) ∪vc t2.

Example 34

Z[
,

]( )
= 2

Using our usual convention about the identification of the empty tree with
the unit 1 of the Hopf algebra Hrt, we have that:

D+ = {Z[t1,t2]| t2 = 1} and D− = {Z[t1,t2]| t1 = 1}.

Lemma 5 Each Z[t1,t2] is a derivation of the algebra Hrt.

Proof The proof is again a simple consequence of the definition of the
action of the operators Z[t1,t2]. ♠

Definition 45 The operators Z[t1,t2] are called insertion elimination opera-
tors. They form an algebra with respect the composition, wich will be denoted
with L.

A close formula for the commutator between two insertion elimination oper-
ators is given in the following theorem;
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Theorem 21 [7] For any quadruple t1, t2, t3, t4, we have:

[
Z[t1,t2], Z[t3,t4]

]
= Z[Z[t1,t2](t3),t4] − Z[t3,Z[t2,t1](t4)] − Z[Z[t3,t4](t1),t2]+

+Z[t1,Z[t4,t3](t2)] − δK
t2,t3

Z[t1,t4] + δK
t1,t4

Z[t2,t3], (4.3)

where δK is the usual Kronecker delta.

Proof We refer to the reference [7] for the proof of this statement as for
further information about the general insertion elimination Lie algebra. ♠



Chapter 5

The ladder Lie algebra

In this chapter, we introduce the ladder insertion elimination Lie algebra LL.
This is a particular insertion elimination Lie algebra, which can be realized
as a sub Lie algebra of derivations of the ladder Hopf algebra HL. The main
definition will be followed by a detailed analysis of the structure of such a
combinatorial Lie algebra. In particular, the relation of LL with a well known
infinite dimensional Lie algebra will be analyzed. The chapter will end with
some remarks about the cohomology of LL. The main references for material
contained in this chapter are [19], [20] where the results about the structure
of the Lie algebra LL were first proved.

5.1 Motivations and generalities

In this section, we will focus on the sub Hopf algebra of Hrt generated by
the ladder trees. Such a Hopf algebra has been introduced in the subsection
3.3, to which we will refer for notations and definitions.
Let us introduce the following notation:

Definition 46 For any pair of non negative integer numbers n,m define:

Θ(n−m) = 1 if n ≥ m, and 0 otherwise.

Let start with the following lemma:

Lemma 6 For each ladder tree ln, D−
ln
∈ Homk(IL, IL). Moreover:

D−
ln

(lm) = Θ(m− n)lm−n.

59
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Proof For any lm ∈ IL we have, (3.11):

∆(lm) =
m∑

k=0

lk ⊗ lm−k;

from which we deduce:

D−
ln

(lm) =
m∑

k=0

〈Zln , tk〉lm−k.

The formula is evident. ♠

Definition 47 Let us call D−
L , the vector space of the elimination operators,

whose elements are D−
ln
. Moreover, for each ln, let us indicate with D−

n the
operator D−

ln
.

Lemma 7 The restriction of D−
L to the vector space IL, is a commutative

sub Lie algebra of D−.

Proof This follows by direct inspection of the commutator between two
such operators, or by using proposition 22 and by observing that Zln Ã D−

n

is an (anti) isomorphism of Lie algebras. ♠

Let us consider the vector space of the insertions operators D+
ln

, with ln ladder
tree. Let us call this space D+

L . It is clear that in general, the insertion
operator D+

ln
is not a linear map between IL and itself:

Example 35

D+ ( ) = + .

To define a class of insertion operators which maps IL into itself we need
to modify the gluing operation. For a general tree t, the only distinguished
vertex is its root, ∗(t). On the other hand, for ladder trees we also have
another distinguished vertex, which is the one opposite to the root (remember
that trees are supposed to be oriented). Therefore, it makes sense to define
for the ladder trees the following gluing operation:

ln ∪L
vn

lm = lm+n;
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The wordy definition of this operation is as follows:
given the tree ln whose vertex opposite to its root is vn, and a ladder tree
lm, we get the ladder tree lm+n by gluing the root of lm to the vertex vn of
ln via a new edge.

Example 36 1) l1 = and l2 = .

l1 ∪L
v1

l2 = .

2) l1 = and l2 = .

l1 ∪L
v2

l2 = .

For each ladder tree ln we can now define the following insertion operator:
D+

n which will act on IL as follows:

D+
n (lm) = lm ∪L

vm
ln.

Lemma 8 For each pair of ladder trees ln, lm,

[
D+

n , D+
m

]
= 0.

Proof The statement follows directly from the definition. ♠

We will then extend such a class of linear operators to a class of deriva-
tions of the Hopf algebra HL in the obvious way. The following proposition
summarizes what we have discussed in the present section:

Proposition 26 From ladder Hopf algebra HL we can define two classes of
derivations, D+

L and D−
L , whose elements represent the (ladder) insertion and

respectively, elimination operators. Moreover, they are both commutative Lie
algebras of derivations, for the HL.

Remark 21 In the ladder case, the composition between insertion operators
and between elimination operators is associative, as it follows trivially from
the definition. In the general case are pre-Lie and not associative.

Following what has been done in the previous section, we can now introduce
the ladder insertion elimination Lie algebra.
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Definition 48 For each pair of ladder trees ln, lm, we define the linear op-
erator Zn,m, whose action on the ladder tree lk is given by the following:

Zn,m(lk) = Θ(k −m)lk−m+n

We will adopt the following convention: the empty ladder tree, which is the
unit in HL ⊂ Hrt will be denoted with l0. In particular we have the following
identifications:

Zn,0 = D+
n and Z0,n = D−

n ;∀ n ∈ Z>0.

The operator Z0,0 will coincide with the identity in HL.

We extend the linear map Zn,m, to a derivation of HL in the obvious way.
Let us now make a couple of preliminary observations.

Lemma 9 The composition between insertion elimination operators is not
commutative; [

Zn,m, Zl,s

] 6= 0.

Proof

Zn,m ◦Zl,s(lk) = Θ(k− s)Zn,m(lk−s+l) = Θ(k− s+ l−m)Θ(k− s)lk−s+l−m+n,
(5.1)

and similarly

Zl,s◦Zn,m(lk) = Θ(k−m)Zl,s(lk−m+n) = Θ(k−m+n−s)Θ(k−m)lk−m+n−s+l.
(5.2)

For general quadruples, the last terms of the previous equalities are in
general different; it is enough that k < s, and k ≥ m and s ≤ (n −m + k).
♠

The second observation is contained in the following lemma:

Lemma 10 The composition between the ladder insertion elimination oper-
ators is associative:

Zr,t ◦
(
Zn,m ◦ Zl,s

)
(lk) =

(
Zr,t ◦ Zn,m

) ◦ Zl,s(tk),

for each n,m, l, s, r, t, k ∈ Z≥0.
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Proof The proof is similar to the one of the previous lemma. ♠

Let us give a close formula for the commutator between two insertion elimi-
nation operators:

Theorem 22 For any pair of derivations Zn,m, Zl,s, we have that:

[
Zn,m, Zl,s

]
= Θ(l −m)Zl−m+n,s −Θ(s− n)Zl,s−n+m

−Θ(n− s)Zn−s+l,m + Θ(m− l)Zn,m−l+s

−δm,lZn,s + δn,sZl,m, (5.3)

where: {
Θ(l −m) = 0 if l < m,

Θ(l −m) = 1 if l ≥ m
(5.4)

and where δn,m is the usual Kronecker delta:

{
δn,m = 1 if m = n,

δn,m = 0 if n 6= m.
(5.5)

Proof Let us first consider the equation (5.1). For this equation we have
two cases:

1) m > l, from which it follows s − l + m > s. This implies Θ
(
k − (s −

l + m)
)
Θ(k − s) = Θ

(
k − (s− l + m)

)
= Θ(m− l)Θ

(
k − (s− l + m)

)
. This

is equivalent to write:

Zn,m ◦ Zl,s = Θ(m− l)Zn,s−l+m.

2) l > m, from which it follows s− l + m < s. Under this assumption we
can write Θ

(
k− (s− l +m)

)
Θ(k− s) = Θ(k− s) = Θ(l−m)Θ(k− s). Then:

Zn,m ◦ Zl,s = Θ(l −m)Zn−m+l,s.

The case l = m will get a non zero contribution from 1) and 2) equal to Zn,s,
this explain the presence of the term −δm,lZn,s in equation (5.3). The term
Zl,s ◦ Zn,m can be treated in a completely analogous fashion. ♠
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Corollary 7 The commutator defined in (5.3) fulfills the Jacobi identity.

Proof The statement is a consequence of the theorem 22 and lemma 10.
♠

Definition 49 We will call ladder insertion elimination Lie algebra, LL, the
Lie algebra generated by the symbols Zn,m with n,m ∈ Zgeq0, endowed with
the bracket defined in (5.3).

Remark 22 Note that we could have deduced the formula (5.3) from the
general formula (4.3) where, instead of the general insertion operation, we
should have used the one defined for the ladder rooted trees. From this remark,
we deduce that we cannot think of LL as sub Lie algebra of L.

We can now state the first properties of the Lie algebra LL:

Corollary 8 1) LL is Z-graded Lie algebra:

LL = ⊕i∈Zli

where each for each Zn,m ∈ li, deg(Zn,m) = i = n−m and dimC li = +∞;
2) LL has the following decomposition:

LL = L+ ⊕ L0 ⊕ L−;

where L+ = ⊕n>0ln, L− = ⊕n<0ln and L0 = l0.

Proof The proof follows from the very definition of a graded Lie algebra
and from the formula (5.3). We recall here the definition of graded Lie alge-
bra: a Lie algebra g is G-graded (where G is any abelian group) if g = ⊕i∈Ggi

and [gi, gj] ⊂ gi+j. ♠

We conclude this section with the following proposition:

Proposition 27 Each element Zn,m ∈ LL can be written in the following
form:

Zn,m = [Zn,0, Z0,m] +Θ(n−m)Zn−m,0 +Θ(m−n)Z0,m−n− δn−m,0Z0,0. (5.6)
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Proof The statement follows trivially applying formula (5.3) to the
elements Zn,0 and Z0,m for n > m, n < m and n = m. ♠

Remark 23 The previous proposition is equivalent to the following (vector
space) decomposition of the Lie algebra LL:

LL = [D,D]⊕D;

where we define:

D = a+ ⊕ a− ⊕ C
and a+ = spanC〈Zn,0 : n > 0〉, a− = spanC〈Z0,n : n > 0〉 and C is the
trivial Lie algebra generated by Z0,0. In fact a+ and a− are commutative sub
algebras of LL and Z0,0 is a central element.

5.2 The structure of the Lie algebra LL

We begin with two statements whose proofs are collected at the end of this
section.

Theorem 23 The center of the Lie algebra LL has dimension one and it is
generated by the element Z0,0.

Theorem 24 l0 is a maximal abelian sub-algebra of LL.

In what follows, we will show that the Lie algebra LL is not simple. Let
us introduce the following:

Definition 50

gl+(∞) = spanC〈Ei,j : Zi,j − Zi+1,j+1| i, j ∈ Z≥0〉.

We have:

Proposition 28 1) [Ei,j, Er,k] = Ei,kδj,r − Er,jδk,i;
2) gl+(∞) is an ideal in LL.
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Proof The proof of 1) and 2) is a simple but tedious application of the
commutator formula (5.3). ♠

We can now define the quotient Lie algebra:

C = LL/gl+(∞)

and consider the exact sequence:

0 −−−→ gl+(∞) −−−→ LL
π−−−→ C −−−→ 0. (5.7)

It is now clear that to have a better understanding of the Lie algebra LL

we need to study carefully the structure of the Lie algebra C. The crucial
ingredient will be the following proposition:

Proposition 29

gl+(∞) = [LL,LL].

Proof Let us prove the two inclusions.
gl+(∞) ⊂ [LL,LL] since from the definition of gl+(∞):

Ei,j = Zi,j − Zi+1,j+1 = [Zi,0, Z0,j]− [Zi+1,0, Z0,j+1],

where the second equality follows from the formula (5.6).
To show the other inclusion, i.e [LL,LL] ⊂ gl+(∞), it suffices to observe
that for any two generators, say Zh,p and Zr,q, of LL we have that their
commutator is given by the difference between two elements having same
degree (see formula (5.3)), say Zn,m and Zl,s, such that n−m = l − s.

Under the hypothesis that k = n − m = l − s > 0 and that s > m
(the other cases are completely analogous), we can write their difference as
follows:

Zn,m − Zl,s = Zm+k,m − Zs+k,s = Zm+k,m − Zm+k+1,m+1 +

+Zm+k+1,m+1 − ....− Zs+k−1,s−1 + Zs+k−1,s−1 − Zs+k,s,

which expresses the difference between Zn,m and Zl,s as finite linear combi-
nation of elements in gl+(∞). ♠

In particular, we can rephrase the previous proposition as follows:
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Lemma 11 Two generators Zn,m and Zl,s are gl+(∞)-equivalent if and only
if they have the same degree, i.e:

Zn,m ∼ Zl,s ⇐⇒ deg(Zm,n) = deg(Zl,s).

Proof Using the same argument we used to prove proposition 29,
we can conclude that if Zn,m and Zl,s have the same degree, then they are
equivalent.
Suppose now that the difference between Zn,m and Zl,s can be written as a
(finite) linear combination of elements in gl+(∞) and also that n−m 6= l−s
(w.l.o.g. we can assume that n−m > 0 and that l − s > 0).
Under these assumptions, and from formula (5.6), it follows also that: Zn−m,0−
Zl−s,0 =

∑
finite aiEpi,qi

. But this has as a consequence that each of these
two elements are finite linear combinations of (homogeneous) elements in
gl+(∞). Accordingly we can write: Zn−m,0 =

∑
finite ciEri,ki

and Zl−s,0 =∑
finite ciEti,vi

. Rewriting the right hand side of each of those two equalities
in terms of the generators Zn,m, it follows that such equations can not hold. ♠

From the proposition 29 it follows that C is a (maximal) commutative Lie
algebra coming from a quotient of LL.
Let us now introduce a set of (natural) generators for C. Since the set

〈Zn,m| n,m ∈ Z≥0〉
is a basis for LL and since π : LL −→ C is a surjection, it follows that:

〈Zn,m = π(Zn,m)| n,m ∈ Z≥0〉
is a set of generators for C. Moreover, from the lemma 11 it follows that
when n > m, then Zn,m ∼ Zn−m,0, when m > n, then Zn,m ∼ Z0,m−n and,
finally, when n = m, then Zn,m ∼ Z0,0.
So defining Zn = Zn,0, Z−n = Z0,n for n > 0 and Z0 = Z0,0, we get

C = spanC〈Zn|n ∈ Z〉.
The fact that such elements are also linearly independent (i.e they form a
basis for C) follows easily from lemma 11. We now want to look more closely
at the exact sequence (5.7). In particular, we will prove the following result:

Theorem 25 The exact sequence (5.7) does not split, i.e the Lie algebra LL

is not the semi-direct product of the Lie algebra gl+(∞) with the (commuta-
tive) Lie algebra C.
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From the exact sequence (5.7) and from what we explained above, we can
conclude that the Lie algebra LL is a non-abelian extension of the commuta-
tive Lie algebra C by the Lie algebra gl+(∞). Let us explain with some care
the meaning of such a statement (for more details we refer to the chapter 6
of the present work, where we collect a general overview of this subject).
For time being we will state what is needed for the applications to the Lie
algebra LL. Let g, h and e be Lie algebras.

Definition 51 We will say that the Lie algebra e is an extension of the
Lie algebra g by the Lie algebra h, if g, h and e fit into the following exact
sequence:

0 −−−→ h −−−→ e
π−−−→ g −−−→ 0, (5.8)

Moreover, we will say that two such extensions, e and e′, are equivalent,
if and only if e and e′ are isomorphic as Lie algebras.

Let Der(h) be the Lie algebra of derivations of h, α′, α ∈ HomC(g, Der(h))
and ρ′, ρ ∈ HomC(Λ

2g, h). On the set of the couples (α, ρ) introduced above,
we define the following equivalence relation:

(α, ρ) ∼ (α′, ρ′) ⇐⇒ ∃ b ∈ HomC(g, h)

such that:
α′(x).ξ = α(x).ξ + [b(x), ξ]h,

ρ′(x, y) = ρ(x, y) + α(x).b(y)− α(y).b(x)− b([x, y]g) + [b(x), b(y)]h.

Then, we have that:

Theorem 26 1) The classes of isomorphism of the extensions of the Lie
algebra g by the Lie algebra h given by the exact sequence (5.8), are in one-
to-one correspondence with the equivalence classes [(α, ρ)], such that:

[α(x), α(y)]Der(h).ξ − α([x, y]g).ξ = [ρ(x ∧ y), ξ]h;
∑

cyclic

(
α(x).ρ(y, z)− ρ([x, y]g, z)

)
= 0;

for every x, y, z ∈ g and ξ ∈ h.
2) The Lie algebra structure induced by the datum (α, ρ), on the vector space
e = h⊕ g, is given by:

[(ξ1, x1), (ξ2, x2)]e = ([ξ1, ξ2]h+α(x1).ξ2−α(x2).ξ1+ρ(x1, x2), [x1, x2]g). (5.9)
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We apply this result to our setting, where g = C and h = gl+(∞).

The exact sequence (5.7) tells us that we have:

LL ' gl+(∞)⊕ C,

where such a splitting holds in the category of vector spaces. We first prove
that:

Proposition 30 The Lie algebra structure on LL, given by the bracket (5.3),
corresponds to the couple (α, ρ) defined by:

α(Zn).(Ei,j) = Θ(n)
∑

k≥0

(En+k,jδi,k − Ei,kδn+k,j)+

Θ(−n)
∑

k≥0

(Ek,jδk+n,i − Ei,k+nδj,k)

for n 6= 0 and

α(Z0) ≡ 0;

while:

ρ(Zn, Zm) = 0

if n,m ≥ 0 or n, m ≤ 0 and

ρ(Zn, Z−m) =
m−1∑

k=0

En−m+k,k

if n > m, and:

ρ(Zn, Z−m) =
m−1∑

k=0

Ek,m−n+k,

if n < m.

Proof The proof follows comparing formula (5.3) with formula (5.9). ♠

We now remark that:
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Lemma 12 Given:

0 −−−→ h −−−→ e
π−−−→ g −−−→ 0, (5.10)

as in (5.8), any splitting s : g −→ e (at the vector space level) of the
previous exact sequence, induces a map αs ∈ HomC

(
g, Der(h)

)
, via the fol-

lowing:
αs(X).ξ = [s(X), ξ];

for each X ∈ g and each ξ ∈ h.

Proposition 31 The map α ∈ HomC
(
C,Der(gl+(∞))

)
, defined in propo-

sition 30, is induced by the linear map s : C −→ LL, which is defined as
follows:

s(Zn) = Θ(n)Zn,0 + Θ(−n)Z0,n − δn,0Z0,0. (5.11)

Proof The map s defined in formula (5.11) is a section of the projection
π : LL −→ C defined by the exact sequence (5.7). In other words, s ∈
HomC(C,LL) such that s ◦ π = IdC . From the lemma (12) we know that
such a section s induces a linear map:

αs : C −→ Der(gl+(∞)),

defined by:
αs(x).ξ = [s(x), ξ]LL

.

It is now easy to check that this map is the same as the one defined in the
proposition 30. ♠

We are now almost ready to prove theorem 25. We only need to remark
the following. From theorem 26 we have that a given extension (α, ρ) of
the Lie algebra C by the Lie algebra gl+(∞) will split, i.e will be equiva-
lent to a semi-direct product of the these two Lie algebras, if and only if
(α, ρ) ∼ (α′, 0), or, in other words, if and only if α′ is a morphism of Lie
algebras. Theorem 26 tells us that this is equivalent to ask for the existence
of a linear map b : C −→ gl+(∞), such that s + b : C −→ LL is a morphism
of Lie algebras. Moreover, since we are working with the category of graded
Lie algebras, the map b has to be grade preserving. In conclusion, to prove
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theorem 25, we are left to show that such a map b does not exist.

Proof(Theorem 25) Suppose we can define a linear map b : C −→
gl+(∞) such that s + b : C −→ LL is a morphism of (graded) Lie alge-
bras. That means that we can find elements

∑M
i=1 ahi

Ehi+1,hi
∈ gl+(∞) and∑N

i=1 bkj
Ekj ,kj+1 ∈ gl+(∞) such that b(Z1) =

∑M
i=1 ahi

Ehi+1,hi
, b(Z−1) =∑N

i=1 bkj
Ekj ,kj+1 and furthermore

0 = [(s + b)(Z1), (s + b)Z−1] = [Z1,0 +
M∑
i=1

ahi
Ehi+1,hi

, Z0,1 +
N∑

j=1

bkj
Ekj ,kj+1].

We can calculate such a commutator by re-writing each of the terms Ei,j

in the sums in terms of the generators Zn,m, and applying to such terms the
brackets given in formula (5.3). The result, written in terms of the generators
Ei,j, takes the form:

−E0,0 +
N∑

j=1

bkj
(Ekj+1,kj+1−Ekj ,kj

) +
M∑
i=1

ahi
(1 + bhi

)(Ehi+1,hi+1−Ehi,hi
) = 0.

The right hand side of the previous sum can be reorganized in term of
the summands Ej+1,j+1 − Ej,j as follows:

−
L∑

i≥0

φj(Ej+1,j+1 − Ej,j),

where L is the biggest between N and M and the φj’s are coefficients.
Then we have that:

E0,0 =
L∑

i≥0

φj(Ej+1,j+1 −Ej,j) = −φ0E0,0 +
∑
j≥0

(φj+1 − φj)Ej,j + φLEL+1,L+1,

that clearly give us a contradiction. ♠

Proof of Theorems 23 and 24

In this subsection we give the proofs of the theorems 23 and 24.

We observe that the Lie algebra LL has an obvious module:
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Definition 52

S =
⊕
n≥0

Ctn = C[t0, t1, t2, t3.....].

We will assign a degree equal to k to the generator tk for each k ≥ 0. LL

acts on S via the following:

Zn,mtk = 0 if m > k,

Zn,mtk = tk−m+n if m ≤ k. (5.12)

In what follows we will indicate by Z(LL) the center of the Lie algebra LL.
Proof(Theorem 23). It is obvious that CZ0,0 ⊂ Z(LL). Let us prove

the other inclusion. Let us suppose that there is some element α ∈ LL, not
proportional to Z0,0 and that belongs to the center of LL. W.l.o.g. we assume

α =
k∑

i=1

aiZni,mi
=

∑

i: ni,mi 6=0

biZni,mi
+

∑

i: ñi 6=0

ciZñi,0 +
∑

i: m̃i 6=0

diZ0,m̃i
, (5.13)

where all the ñi’s (m̃i’s) are different from 0 and ñi 6= ñj (m̃i 6= m̃j), if i 6= j,
and (ni,mi) 6= (nj,mj), if i 6= j.
We will prove that α, defined above, is equal to zero by showing that the
coefficients bi, ci and di are all equal to zero. We will split the proof of this
assertion into two lemmas.

Lemma 13 If α ∈ Z(LL), where α is defined as above, then bi = di = 0 for
each i.

Proof Let us consider some element Zn,0 ∈ LL such that 0 < n ≤
mini{mi, m̃i}. Then using formula (5.3), we get:

[Zn,0, α] =
∑

i

bi[Zn,0, Zni,mi
] +

∑
i

di[Zn,0, Z0,m̃i
] =

∑
i

bi(Zni+n,mi
− Zni,mi−n) +

∑
i

di(Zn,m̃i
− Z0,m̃i−n).

Note the all the m̃i’s are different (and different from 0), while in the set of
the mi’s (which are also all different from 0) we can have repetitions.
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Let us now define the set M
.
= {m1, ....,mk, m̃1, ..., m̃r}, and let us con-

sider the disjoint union:

M = M1 ∪ . . . ∪Ms.

Each Mi corresponds to the set of all indices in M which are equal to some
given index li, say. We remark once more that for each i Mi ∩ {m̃1, · · · , m̃r}
contains at most one element, since in the set {m̃1, ..., m̃r} we do not have
repetitions.
Let us now consider p1 = l1 − n (which is ≥ 0, as a consequence of the con-
dition we imposed on n), and let us also consider the corresponding element
tp1 ∈ S. Since α belongs to Z(LL), and since n > 0, we have:

0 = [Zn,0, α](tp1) = −
( ∑

i: mi∈M1

bitp1−mi+n+ni
+

∑
i: m̃i∈M1

ditp1−m̃i+n

)
. (5.14)

Remark 24 We observe that all the indices in M1 are equal to l1 and that
p1 = l1−n. Moreover the ni’s in the first sum of the right hand side in formula
(5.14) are all different (since by assumption we have that (ni,mi) 6= (nj,mj)
unless i = j and in our case all the mi belong to the class M1). Finally, we
notice that the last sum, if not equal to zero, contains only one term.

Let us now suppose that M1∩{m1, · · · ,mk} and M1∩{m̃1, · · · , m̃r} are both
not empty (the cases where one, or both, of those intersections are empty,
are completely analogous). From the previous remark it follows that:

0 = [Zn,0, α](tp1) = −( ∑
i: mi∈M1

bitl1−n−l1+n+ni
+

∑
i: m̃i∈M1

ditl1−n−l1+n

)
=

−( ∑
i

bitni
+ d1t0

)
.

Since all the ni in the first sum are different, we have that d1 = 0 and bi = 0
for each i.
We can apply the same argument to the sets M2,...,Ms, to show that each of
the coefficients bi and ci are equal to 0. ♠
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From the lemma 13 we conclude that if α ∈ Z(LL), α defined as in
equation (5.13), then:

α =
∑

i

ciZni,0.

To conclude the proof of the theorem 23, we need to show that:

Lemma 14 If α ∈ Z(LL) and α =
∑

i ciZni,0, then ci = 0 for each i.

Proof We first notice that we can suppose all ni 6= 0 and n1 < n2....
Let us now consider some element Z0,n, such that n ≥ maxi{ni}. Since we
suppose α =

∑
i ciZni,0 to be in the center of LL, we can write:

0 = [α, Z0,n] =
∑

i

ci[Zni,0, Z0,n] =
∑

i

ci(Zni,n − Z0,n−ni
).

By the hypothesis on n and the one on the ni’s, we conclude that all the ci’s
are equal to zero. ♠

Proof (Theorem 24). Let us suppose that l0 is not maximal abelian
sub-algebra of LL, i.e that there exists LL 3 α /∈ l0, α =

∑n
i=1 aiZni,mi

, such
that:

[α, Zk,k] = 0, ∀ k > 0.

Without loss of generality we can suppose that in each of (ni,mi)’s, ni 6= mi

(if no, α = β +
∑

i fiZni,ni
and [β, Zk,k] = [α, Zk,k]).

Such an element can be written as:

α =
∑

i: mi 6=0, ni 6=0

biZni,mi
+

∑

i: ñi 6=0

ciZñi,0 +
∑

i: m̃i 6=0

diZ0,m̃i
. (5.15)

Remark 25 We note that in formula (5.15) all the ni’s and the mi’s are
different from 0 and also that ñi 6= ñj and m̃i 6= m̃j for each i 6= j.

We will prove that such element is identically equal to zero, showing that
each of the coefficients in the equation (5.15) is equal to zero. We will divide
the proof of this statement in two lemmas.

Lemma 15 Given α ∈ l0, defined as in formula (5.15), we have that ci =
di = 0 for all i.
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Proof Let us fix integer k, 0 < k ≤ mini {ni,mi, ñi, m̃i}. Then we get:

[α, Zk,k] =
∑

i: mi 6=0,ni 6=0

bi[Zni,mi
, Zk,k]+

∑

i: ñi 6=0

ci[Zñi,0, Zk,k]+
∑

i: m̃i 6=0

di[Z0,m̃i
, Zk,k] =

∑

i: ñi 6=0

ci(Zk+ñi,k − Zñi,0) +
∑

i: m̃i 6=0

di(Z0,m̃i
− Zk,k+m̃i

),

since:
[Zni,mi

, Zk,k] = 0, ∀ {ni,mi} such that ni ≥ k, mi ≥ k,

[Zñi,0, Zk,k] = Zk+ñi,k − Zñi,0 if 0 < k ≤ ñi, and

[Z0,m̃i
, Zk,k] = −Zk,m̃i+k + Z0,m̃i

if 0 < k ≤ m̃i.

Since α commutes with all the elements of the sub-algebra l0, we have:

0 =
∑

i: ñi 6=0

ci(Zk+ñi,k − Zñi,0) +
∑

i: m̃i 6=0

di(Z0,m̃i
− Zk,k+m̃i

).

But in the right hand side of the previous formula the first sum contains
only elements of positive degree while the second sum contains only those of
negative degree, thus the sum is equal to zero if and only if separately

∑

i: ñi 6=0

ci(Zk+ñi,k − Zñi,0) = 0 and
∑

i: m̃i 6=0

di(Z0,m̃i
− Zk,k+m̃i

) = 0.

From this it follows that all ci’s and di’s are equal to zero. Indeed, consider
the sum containing the ci’s (the one contains the di’s can be treated in the
same way): ∑

i: ñi 6=0

ci(Zk+ñi,k − Zñi,0) = 0.

Since k 6= 0 and since ñi 6= ñj if i 6= j, all the elements Zk+ñi,k − Zñi,0 are
linearly independent. ♠

Summarizing, so far we have proved that if a given element α commutes
with each of the elements in l0, then:

α =
∑

i: ni 6=0,mi 6=0

biZni,mi
. (5.16)
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Lemma 16 If
[
α, l0

]
= 0, with α defined as in (5.16), then all the bi’s are

equal to 0.

Proof Let us decompose the element α in term of elements of positive
and negative degree, i.e:

α =
∑

i

aiZni,mi
=

∑
j

( ∑
i≥0

biZri+sj ,ri

)
+

∑
j

( ∑
i≥0

ciZpi,pi+tj

)
.

Remark 26 We remark that in α elements of the same (negative or positive)
degree could be present; as an example of such element (of positive degree)
we can consider:

βj =
∑

i

biZri+sj ,ri
, for a given j

or the element (of negative degree):

γj =
∑

i

ciZpi,pi+tj , for a given j .

From the previous remark let us re-write α as:

α =
∑

j

βj +
∑

j

γj,

each βj ∈ L+ and each γj ∈ L−.
Let us now consider some element Zk,k ∈ l0 and let us take the commu-

tator of such element with α

[α,Zk,k] =
∑

j

[βj, Zk,k] +
∑

j

[γj, Zk,k].

Since LL is a graded Lie algebra and since deg Zk,k = 0, we have that

deg [βj, Zk,k] = sj , ∀j

and similarly

deg [γj, Zk,k] = −tj , ∀j.
Hence

[α, Zk,k] = 0 ⇐⇒ [βj, Zk,k] = 0 and [γj, Zk,k] = 0 , ∀j.
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We are left to prove that any homogeneous element commuting with all the
elements in l0 can not exist.

So, to fix ideas, let us now consider some element of positive degree s,
say, β =

∑l
i=1 aiZni+s,ni

and let us suppose that

[β, Zk,k] = 0 ∀ k ≥ 1. (5.17)

Without loss of generality we can further assume that 0 < n1 < n2 < ... < nk

(that β fulfills the hypothesis is constrained by the assumptions given for
the element α defined in formula (5.16), which translates for β into the
condition ni 6= 0). To conclude, it suffices to show that each of the ai’s of
β =

∑l
i=1 aiZni+s,ni

is equal to 0. So let us consider k = n2 in formula (5.17).
Applying the formula (5.3) to this case, we get:

[β, Zk,k] = a1[Zn1+s,n1 , Zn2,n2 ] +
∑
i≥2

ai[Zni+s,ni
, Zn2,n2 ] =

= a1

(
Zn2+s,n2−Θ(n2−n1−s)Zn2,n2−s−Θ(n1+s−n2)Zn1+s,n1+δn1+s,n2Zn2,n1

)
,

since
∑

i≥2 ai[Zni+s,ni
, Zn2,n2 ] = 0.

By the previous formula and the hypothesis for the ni’s, we conclude that
[β, Zn2,n2 ] = 0 ⇐⇒ a1 = 0. Taking k = n3, n4, ...., and using the same
argument, we can conclude that each of the ai’s is equal to zero. ♠

5.3 Cohomology of LL

The main result of this section is contained in the following theorem:

Theorem 27 The cohomology groups H i(LL), i=1,2, are infinite dimen-
sional. In particular, the Lie algebra LL has infinite many non equivalent
central extensions.

In order to prove this statement, we need to use some results about the
cohomology of the Lie algebra gl(n) and of its infinite dimensional analogous
gl+(∞). The results we need are stated below, their will proofs are collected
in appendix 2. For general information about cohomology of Lie algebras we
refer to appendix 1.
For any given integer n ≥ 0 we have defined the standard inclusion map:
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in : gl(n) ↪→ gl(n + 1); (5.18)

where by definition gl(0) = (0) ↪→ gl(1) ' C.
Let us start with the following classic result:

Theorem 28 1). The cohomology ring of the Lie algebra gl(n) is an exterior
algebra in n generators of degree 1, 3, ..., 2n− 1:

H•(gl(n)) = Λ[c1, c3, ....., c2n−1];

2) for any given n, the (inclusion) map defined in formula (5.18) induces a
map i∗n in cohomology:

i∗n : H•(gl(n + 1)) −→ H•(gl(n)),

such that:
i∗n : Hp(gl(n + 1)) −→ Hp(gl(n))

is an isomorphism for p ≤ 2n−1, and it maps to zero the top degree generator
when p = 2n + 1;

Now we need to relate the Lie algebra gl+(∞), with the Lie algebra of the
general linear group gl(n).

Lemma 17 The data (gl(n), in), with in defined in (5.18), define a direct
system of Lie algebras:

· · · // gl(n− 1)
in−1 // gl(n)

in // gl(n + 1) // · · ·
Then:

lim
−→

gl(n) ' gl+(∞).

Proof The proof follows immediately from the definition 50. ♠

We can now state the following result about the cohomology of the Lie
algebra gl+(∞):

Corollary 9 The cohomology ring of the Lie algebra gl+(∞) is a (infinitely
generated) exterior algebra having generators only in odd degree:

H•(gl+(∞)) = Λ[c1, c3, .....].
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We are now ready to prove the theorem 27:
Proof The following exact sequence follows from the Hochschild-Serre

spectral sequence:

0 // H1(C)
i // H1(LL)

r // H1(gl+(∞))C t // H2(C)
i // H2(LL) // H2(gl+(∞).

Note that C is infinite dimensional vector space, so that H i(C) ' C for each
i. From the knowledge of the cohomology of gl+(∞) and from the previous
exact sequence, the thesis follows. The statement about the central exten-
sions is a consequence of the fact that those are in one to one correspondence
with the elements of the group H2(LL), see section 7.2 proposition 37. ♠

We can add one more piece of information:

Proposition 32
H1(gl+(∞))C ' C.

Proof Let us start by observing that

H1(gl+(∞)) ' (
gl+(∞)/[gl+(∞), gl+(∞)]

)′ ' C,

and identifying [gl+(∞), gl+(∞)] with sl+(∞), i.e with the Lie algebra of
infinite matrices of finite rank, having trace equal to zero.
In particular, this implies that the only non trivial class [φ] ∈ H1(gl+(∞))
corresponds to a (closed) cochain φ ∈ C1(gl+(∞)) whose kernel is sl+(∞).
Let us now define the action of the (abelian) Lie algebra C on H1(gl+(∞)):
for any φ ∈ C1(gl+(∞)) and [Z] ∈ C ' LL/gl+(∞), define:

([Z].φ)(α) = φ([Z + β, α]), (5.19)

where Z ∈ LL and β ∈ gl+(∞)). On the other hand, since φ is a cocycle, we
have that:

φ([Z + β, α]) = φ([Z, α]).

It is a simple calculation to show that [LL, gl+(∞)] ⊂ sl+(∞) so that, from
the hypothesis on φ, we conclude that φ([Z, α]) = 0, i.e:

[Z].φ = 0,

or that φ is C-invariant. ♠
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Remark 27 In this remark we want to compare the Lie algebra gl+(∞) with
its finite dimensional analogous, e.g gl(n). These two Lie algebras are not
simple. In fact the Lie algebra of the matrices having trace equal to zero is a
non trivial ideal in both cases (sl+(∞) in the infinite dimensional case and
sl(n) in the finite dimensional case). Moreover, in both cases the quotient is
the trivial Lie algebra, e.g C. While in the finite dimensional case the quotient
gl(n)/sl(n) ' C ' Z(gl(n)), where Z(gl(n)) is the center of gl(n), in the
infinite dimensional case the quotient gl+(∞)/sl+(∞) does not correspond
to any ideal in gl+(∞). In particular Z(gl+(∞)) = {0}.



Chapter 6

Extensions of Lie algebras

In this chapter, we will give a detailed overview of subject of the Lie algebras
extensions with the goal to give full proofs of the statements contained in the
section 5.2. The results contained in the present chapter, even if not original,
are not easily founded in the literature. As a reference there is the classical
[23], where the author describe the case of (non abelian) group extensions.
For the Lie algebra case we refer to the (unpublished) paper [1]. On the
other hand, the abelian case is completely standard and can be founded in
any books about homological algebra. We will refer to [24].

6.1 Extension of Lie algebras

Let g, h and e three Lie algebras.

Definition 53 We will say that they fit into an exact sequence if there are
morphisms of Lie algebras i : h −→ e and p : e −→ g such that ker p = im i.
In such a case we will write:

0 −−−→ h
i−−−→ e

p−−−→ g −−−→ 0. (6.1)

Definition 54 An exact sequence of Lie algebra:

0 −−−→ h
i−−−→ e

p−−−→ g −−−→ 0

is said a to be a split exact sequence, if there exist a s ∈ HomLie

(
g, e

)
,

such that: p ◦ s = idg. Such a morphism is called a section.

81
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Note that in general, an exact sequence of Lie algebras does not have any
section. In what follows, we describe the obstructions to the existence of
such a morphism. On the other hand, it is easy to show that any exact
sequences of k-modules has always a section, i.e exact sequences of vector
spaces are always split. This in particular implies that any exact sequence
of Lie algebras is split as exact sequence of vector spaces.

Remark 28 If g, h and e form an exact sequence of Lie algebras then i(h) =
ker p so that i(h) is an ideal in e. Since i is injective, i(h) ' h, so that, with
a little abuse of notation, we will think of h itself as an ideal in e.

Definition 55 If the Lie algebras h, g and e fit into an exact sequence as in
(6.1), we will say that the Lie algebra e is an extension of the Lie algebra g

via the Lie algebra h.

We want now to study in some detail the following problem:

• given two Lie algebras g and h describe, up to isomorphism, all the
possible Lie algebra structure on the vector space e = g⊕ h, or equiva-
lently, the set of all the possible extensions of the Lie algebra g by the
Lie algebra h (note that these two problems are actually equivalents
since if e is such an extension, e ' g⊕ h as a k modules).

Definition 56 We will indicate with Ext(g, h) the set of all Lie algebra ex-
tensions of g by h.

Let us start with the exact sequence (6.1) and let us fix a section s ∈
Homk(g, e).
Then we can write any element X ∈ e = i(ξ)+s(x) for some ξ ∈ h and x ∈ g

(note that the elements in g are actually equivalence classes). If X, Y are
two elements in e, their bracket will be written as follows:

[X, Y ]e = [i(ξ) + s(x), i(η) + s(y)]e = [i(ξ), i(η)]e + [i(ξ), s(y)]e + [s(x), i(η)]e+

+[s(x), s(y)]e = i
(
[ξ, η]h

)
+ [i(ξ), s(y)]e + [s(x), i(η)]e+

+[s(x), s(y)]e,

where the last equality follows since i : h −→ e is a homomorphism of Lie
algebras.
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Let us now write the previous commutator in terms of the Lie bracket in g

and in h.
First, observe that the section s define an element αs of the vector space
Homk(g,D(h)) which is defined via the following:

αs : g −→ D(h); (6.2)

x Ã αs(x), αs(x).ξ = [s(x), i(ξ)]e,

for each x ∈ g. Moreover, the same section define the following linear map
ρs:

ρ :
2∧

g −→ h; (6.3)

x ∧ y Ã ρs(x, y), ρs(x, y) = [s(x), s(y)]e − s
(
[x, y]g

)
,

for each x, y ∈ g. Using the maps (6.2) and (6.3), we can rewrite the com-
mutator [X,Y ]e as follows:

[X, Y ]e = i
(
[ξ, η]h

)
+ αs(x).η − αs(y).ξ + ρs(x, y) + s

(
[x, y]g

)
. (6.4)

The following proposition follows now by direct calculation:

Proposition 33 The antisymmetry and the Jacoby identity of the Lie bracket
of e force the maps (6.2) and (6.3) to fulfill the following identities:

1) [αs(x), αs(y)]D(h) − αs([x, y]g) = adh
ρs(x,y); (6.5)

2)
∑

cyclic {x,y,z}

(
αs(x).ρ(y, z)− ρ([x, y]g, z)

)
= 0. (6.6)

Note that the choice of a section s as above is equivalent to the choice of a
representative in e for each equivalence class x ∈ g. Each of such a choice
determine the datum (αs, ρs) as explained above. For the time being, let us
work will the following section:

s : g // e (6.7)
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[x] // x

to which will correspond the datum (α, ρ). We leave for later the question of
how to compare data (αs′ , ρs′) (αs, ρs) coming from different sections.

Let us now suppose that we have two extensions of g by h, say e and e′. Note
that e ' e′ as a vector spaces and in particular that e ' g⊕ h ' e′, being the
same section (6.7) chosen for both.

Definition 57 We will say that e and e′ are two equivalents extensions of g

by h, if and only if there is an isomorphism of Lie algebra ϕ : e −→ e′ which
makes commutative the following diagram:

0 // h
i // e

p //

ϕo
²²

g // 0

0 // h
i′ // e′

p′ // g // 0

Remark 29 More in general, we could say two extensions N ' M1⊕M2 '
N ′ of the k-module M2 by the k-module M1 are equivalent if and only if there
exists an isomorphism ϕ ∈ Homk(N,N ′), that makes the following diagram
commutative:

0 // M1
i // N

p //

ϕ

²²

M2
// 0

0 // M1
i′ // N ′ p′ // M2

// 0

To proceed we need the following lemma:

Lemma 18 Let us suppose that M1,M2 are two vector spaces. The classes of
equivalence of the extensions of M2 by M1 are in one to one correspondence
with the isomorphism ϕ : M1 ⊕M2 −→ M1 ⊕M2, of the following form:

ϕ(x, y) = (x + b(y), y),

where b ∈ Homk(M2,M1).
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Proof Since ϕ : M1 ⊕M2 −→ M1 ⊕M2, it can be written as:

ϕ =

(
a b
c d

)
;

where

a ∈ Homk(M1,M1), d ∈ Homk(M2,M2), c ∈ Homk(M1,M2) and b ∈ Homk(M2,M1).

From the definition of equivalence of extensions it follows that a = 1 ∈
Homk(M1,M1), d = 1 ∈ Homk(M2,M2) and c = 0. ♠

Let us now go back the Lie algebra case. Let e and e′ be two equivalent
extensions, and let (α, ρ) and (α′, ρ′) be the corresponding data.

Theorem 29 Then there exists b ∈ Homk(g, h) such that:

ρ′(x, y) = ρ(x, y) + α(x).b(y)− α(y).b(x)− b
(
[x, y]g

)
+

[
b(x), b(y)

]
h
;

and

α′(x) = α(x) + adh
b(x),

for every x, y ∈ g and ξ ∈ h.

Proof Since the two extensions are equivalent, there exists a Lie isomor-
phism ϕ : e −→ e′, that via the isomorphism e ' h ⊕ g ' e′ can be written
as:

ϕ =

(
1 b
0 1

)
;

see lemma 18. Now apply the definitions of the map α, ρ, α′ and ρ′, and the
hypothesis that ϕ is a morphism of Lie algebras. ♠

To state the converse of the theorem 29 let us consider the subset E ⊂
Homk(g,D(h))×Homk(

∧2
g, h), whose elements fulfill the identities given in

(6.5) and (6.6):

[α(x), α(y)]D(h) − α[x,y]g = adρ(x,y);

∑

cyclic {x,y,z}

(
α(x)ρ(y, z)− ρ([x, y], z)

)
= 0.
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Definition 58 We say that (α, ρ), (α′, ρ′) ∈ E are equivalent if and only if
there exist b ∈ Homk(g, h) such that:

α′(x) = α(x) + adh
b(x)

and

ρ′(x, y) = ρ(x, y) + α(x).b(y)− α(y).b(x)− b([x, y]g) +
[
b(x), b(y)

]
h

The converse of theorem 29 is the following:

Theorem 30 If the datum (α, ρ) associated to e is equivalent to the datum
(α′, ρ′) associated to e′, in the sense of the definition (58), then there exists
an isomorphism of Lie algebras ϕ : e ' h⊕ g −→ h⊕ g ' e′.

Therefore theorems 32 and 29 become:

Theorem 31
Ext(g, h) ' E/ ∼ .

Let us now describe how, for a given extension e, the datum (αs, ρs) depends
on the choice of the section s. To this end, we can use the same argument
we used to study the equivalence classes of the extensions. In particular, we
can take as the isomorphism ϕ the identity. In this case given two sections
s, s′ we will write:

e = h⊕ s(g) ' h⊕ s′(g) = e,

where ' is actually given by the identity. Then:

(η, s(x)) Ã (η, s′(x) + ξ),

for some ξ ∈ h. From this we deduce that

Lemma 19 The set of all section of p : e −→ g is an affine space modelled
on Homk(g, h).

Proof In fact s− s′ : g −→ e is the linear map (s− s′)(x) = ξ. ♠

We have now the following result:
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Theorem 32 For a given extension e of the Lie algebra g by the Lie algebra
h and two sections s, s′ : e −→ g, we have that:

ρs′(x ∧ y) = ρs(x ∧ y) + αs(x).f(y)− αs(y).f(x)− f
(
[x, y]g

)
+

[
f(x), f(y)

]
h
;

αs′(x).ξ = αs(x).y + adf(x).ξ,

for each x, y ∈ g, ξ ∈ h.

Proof The proof follows from the formulas (6.3), (6.2) and from the pre-
vious lemma 19. ♠

Let us now describe in terms of the (α, ρ) under which assumptions a given
extension e of g by h is split. We recall that by definition this means that we
can find a section s of p : e −→ g, such that s

(
[x, y]g

)
=

[
s(x), s(y)

]
e
. Such

a section, will provide us with αs, and ρs as usual.
Let us start with the following observation:

Proposition 34 The extension is split if and only if for any section s :
g −→ e, there exists f ∈ Homk(g, h) such that the section: s′ = s + f is a
morphism of Lie algebras.

Proof The equivalence of the statement of the proposition with the def-
inition is almost a tautology; the first implication follows from the definition
of split extension. Viceversa if the extension is split, then we can find a
section s ∈ HomLie(g, e), but any other section differs from this one by some
element in HomLie(g, e).♠

Let s ∈ HomLie(g, e) be a section for p : e −→ g.

Theorem 33

1. ρs ∈ Homk(
2∧

g, h)

is identically zero;

2. αs ∈ Homk

(
g,D(h)

)

belongs to HomLie(g,D(h)), i.e it is a morphism of Lie algebras.
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Proof 1. follows from the definition of ρs:

ρs(x, y) = s([x, y]g)−
[
s(x), s(y)

]
e
.

2. Follows from the definition of (6.2) and from 1. above:

[
αs(x), αs(y)

]
D(h)

− αs([x, y]g) = adh
ρs(x,y);

which becomes: [
αs(x), αs(y)

]
D(h)

− αs([x, y]g) = 0.

♠

Remark 30 From 2) in the previous theorem, we conclude that h ∈ e is a
s(g)-module. Nevertheless, we cannot say that h is a g module; in fact, the
action of g on h depends on s.

Proposition 35 Any representative the class of equivalence [(α′, ρ′)] ∈ E/ ∼
which corresponds to a split extension can be written in the following form:

(
α′(·) + adh

f(·), ρ′(·, ·) = α ∧ f(·, ·)− f([·, ·]g) +
[
f(·), f(·)]

h

)
,

for some f ∈ Homk(g, h).

6.1.1 Abelian extensions

Let us now describe as a particular case of the general theory outlined above,
the extensions of a Lie algebra g by the Lie algebra h, for h abelian Lie
algebra. The main point of the following discussion will be to interpret such
class of extensions of the Lie algebra g in terms of the cohomology of of the
same Lie algebra. We refer to the appendix 1 for the main notions about Lie
algebra cohomology.
Let us start our discussion with the following proposition:

Proposition 36 Any given an extension e of g by the abelian Lie algebra h

defines an action of g on h; i.e h is a g-module.
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Proof Let us take [x] ∈ g ' e/h and let us define its action on ξ ∈ h by:
[x].ξ = [x, ξ]. This definition does not depend on the representative chosen,
since any other representative of the same class will be of the form x + η,
η ∈ h. ♠

The previous proposition can be rephrased by saying that the abelian exten-
sions of a given Lie algebra are in one correspondence with the extension of
g by a g-module, with its structure of abelian Lie algebra. Therefore, given
g and M , a module over this Lie algebra, let us consider the set Ext(g,M),
i.e the set of equivalence of exact sequences of Lie algebras:

0 −−−→ M
i−−−→ e

p−−−→ g −−−→ 0,

where, as in the previous section, two such exact sequences are equivalent
if and only if there exists a morphism of Lie algebras ϕ : e

'−−−→ e′, which
make the following a commutative diagram:

0 // M
i // e

p //

ϕo
²²

g // 0

0 // M
i′ // e′

p′ // g // 0

From the theorem 31, Ext(g, M) ' E/ ∼, as sets, so that from the extension
we get a couple (α, ρ) ∈ Homk(g,D(M))× Homk(

∧2
g, M), such that:

[α(x), α(y)]D(M) − α([x, y]g) = adM
ρ(x,y);

∑

cyclic {x,y,z}

(
α(x)ρ(y, z)− ρ([x, y], z)

)
= 0.

Since M is abelian, D(M) ' Homk(M,M), and adM
ξ = 0 for each ξ ∈ M ,

so that the first of the previous equations is nothing more than the assertion
that M is a g module; in fact it can be written as:

α([x, y]g) = [α(x), α(y)]Hom(M,M),

and the action of g on M is defined by α ∈ Homk(g, Homk(M,M)). The
identity involving ρ, can be spell out as follows:

ρ([x, y], z)−ρ([x, z], y)+ρ([y, z], x)−α(x).ρ(y, z)+α(y).ρ(x, z)−α(z).ρ(x, y) = 0,
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which is equivalent to ρ ∈ Hom(
∧2

g,M) being a 2-cocycle with coefficients
in M . All of this is equivalent to say that we have a map:

Υ : E −→ H2(g,M);

(α, ρ) Ã [ρ].

Theorem 34 If (α, ρ) ∼ (α′, ρ′) then Υ(α, ρ) = Υ(α′, ρ′). More precisely:

E/ ∼' Ext(g,M) ' H2(g,M).

Proof If (α, ρ) ∼ (α′, ρ′), there exists b ∈ Homk(g,M) such that:

ρ′(x, y) = ρ(x, y) + α(x).b(y)− α(y).b(x)− b
(
[x, y]g

)
+

[
b(x), b(y)

]
M

;

and
α′(x) = α(x) + adM

b(x),

see theorem 29. Since M is a commutative algebra we have that: α′(x) =
α(x) (i.e the modulo structure on M does not change), and:

ρ′(x, y) = ρ(x, y) + α(x).b(y)− α(y).b(x)− b
(
[x, y]g

)
;

which means that:
(ρ′ − ρ)(x, y) = −(d1b)(x, y),

where

d1 : Homk(g,M) −→ Homk(
2∧

g, M);

(d1f)(x, y) = f([x, y])− x.f(y) + y.f(x), ∀ x, y ∈ g,

see (7.2). This prove that the map Υ is well behaved with respect to the
relation ∼, and induces Υ′ : E/ ∼−→ H2(g,M). The injectivity and surjec-
tivity are trivially checked. ♠

Example 37 (Semidirect product)
An abelian extension of the Lie algebra g by M , is called semidirect product
if it is a split extension.

Theorem 35 The semidirect product of g with M , e = M o g, corresponds
to the trivial class in H2(g,M).
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Proof The 2-cocycle ρ is trivial. ♠

Example 38 (Central extensions)
The central extensions form a particular class of abelian extensions. These
are the ones for which i(M) is contained in the center of e. For the one
dimensional central extensions, we have the following proposition:

Proposition 37 The classes of equivalence of one dimensional central ex-
tensions of g:

0 −→ C i−−−→ e
p−−−→ g −−−→ 0

are parameterized by the second cohomology group of g with trivial coeffi-
cients; i.e H2(g,C).
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Chapter 7

Appendix 1

In this chapter we first collect some elementary facts about homological alge-
bra and then, we overview the main features of the cohomology theory which
is associated to any Lie algebra. References for the present chapter are [24]
and [8] for a detailed and extensive analysis the cohomology of Lie algebras.

7.1 Some elementary homological algebra

Let R be a ring , and M1,M2, andM3 R-modules. Let i : M1 −→ M2 and
p : M2 −→ M3 two morphisms of R-modules.

Definition 59 We say that the morphism i and p form an exact sequence if
i is injective, p is surjective and ker p = im i. In such a case we will write:

0 −−−→ M1
i−−−→ M2

p−−−→ M3 −−−→ 0

If M is endowed with a morphism ∂ : M −→ M such that ∂2 = 0 we will
call (M, ∂) a differential module.
Let us define the spaces Z(M, ∂) ≡ ker ∂ and B(M,∂) ≡ im ∂

The following proposition is trivially checked.

Proposition 38 Z(M,∂) and B(M,∂) are submodules of M .

Definition 60 The elements of Z(M, ∂) and B(M,∂) are called respectively
cocycles and coboundaries of the differential module, (M,∂) whose elements
are called cochains.

93



94 CHAPTER 7. APPENDIX 1

From the condition ∂2 = 0 we deduce that B(M, ∂) ⊂ Z(M,∂), so that we
can define the quotient H(M,∂) = Z(M, ∂)/B(M,∂).

Definition 61 The H(M, ∂) = Z(M,∂)/B(M, ∂) is called the cohomology
group of the differential module (M,∂).

Remark 31 H(M, ∂) = Z(M, ∂)/B(M,∂) gives a measure of how the se-
quence:

0 −→ Z(M, ∂) −→ M −→ B(M,∂) −→ 0

is far from being exact.

Given (M,∂) and (M ′, ∂′) two differential modules, we will say that a mor-
phism:

φ : M −→ M ′

is a morphism of differential modules if and only if it commutes with the
differentials, i.e:

φ ◦ ∂ = ∂′ ◦ φ.

Proposition 39 If φ : (M, ∂) −→ (M ′, ∂′) is a morphism of differential
modules then: φ

(
(Z, ∂)

) ⊂ (Z ′, ∂′), and φ
(
(B, ∂)

) ⊂ (B′, ∂′).

Proof The proof is evident from the definition. ♠

From the previous proposition it follows that given a morphism φ of differ-
ential modules we have induced a map between the cohomology groups:

φ̃ : H(M) −→ H(M ′),

[x] Ã [φ(x)].

Moreover, we have that:

Proposition 40 Let:

0 // M ′ φ // M
ψ // M ′′ // 0
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be an exact sequence of differential modules. Then, there exists a morphism
δ : H(M ′′) −→ H(M ′), called connecting morphism, and an exact triangle
in cohomology:

H(M ′′) H(M ′)δoo

φ̃zzttttttttt

H(M)
ψ̃

eeJJJJJJJJJ

For complexes of R-modules, the previous result becomes:

Definition 62 A complex of R-modules is a Z-graded differential module
(M• =

⊕
i∈ZMi, ∂), such that the differential is a graded morphism of degree

1, i.e: ∂i(Mi) ⊂ Mi+1, for each i ∈ Z. In this case we will write:

· · · −−−→ Mi−1
∂i−1−−−→ Mi

∂i−−−→ Mi+1 −−−→ · · ·

To a given complex of R-modules (M•, ∂), we can associate its cohomology,
i.e for each n ∈ Z we can define the n-th group of cohomology as Hn(M•) =
Zn(M•)/Bn(M•), where Bn(M•) ⊂ Mn is by definition ∂n−1(Mn−1) and
Zn(M) = ker ∂n.

The notion of morphism of R-modules is expressed by:

Definition 63 A morphism between two complexes of R modules, (M•, ∂M)
and (N•, ∂N), ψ : M• −→ N•, is a collection of morphisms ψi : Mi −→ Ni

such that the following diagrams commute for each i ∈ Z:

· · · ∂m−2// Mi−1
∂i−1 //

ψi−1

²²

Mi
∂i //

ψi

²²

Mi+1
∂i+1 //

ψi+1

²²

. . .

. . . ∂m−2 // Ni−1
∂i−1 // Ni

∂i // Ni+1
∂i+1 // · · ·

For complexes of module, the proposition 40 becomes:

Proposition 41 Let

0 −−−→ M• ψ−−−→ N• φ−−−→ P • −−−→ 0
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be an exact sequence of complexes of R-modules. Then, for each i ∈ Z there
exist a connecting morphism δi : H i(P •) −→ H i+1(M•) and a long exact
sequence in cohomology:

· · · // H i(M)
ψ̃i // H i(N)

φ̃i // H i(P )
δi // H i+1(M) // · · ·

7.2 Cohomology of Lie algebras

Let g a Lie algebra over the field k (see subsection 2.3). Let M be a k-module,
i.vector space over the field k, and let consider the Lie algebra L(End(M))
(see example 8) the Lie algebra defined on the associative algebra End(M).

Definition 64 We say that M is a g-module, if there is:

φ : g −→ L(End(M)),

morphism of Lie algebras (see definition 14). In particular, we have that
for each x, y ∈ g, φ(x) ∈ End(M)) and φ[x, y] = φ(x) ◦ φ(y) − φ(y) ◦ φ(x).
We will say that the morphism φ defines an action of the Lie algebra g on
the k-module M , and that M is a (linear) representation of g via φ. As a
notational remark, for each x ∈ g and m ∈ M , we will indicate with x.m the
value of φ(x) on m, when it is clear from the context what is the morphism
φ.

Let us give some examples:

Example 39 (trivial module)
The ground field k is endowed with a g module structure by the following:
x.α = 0 for each α ∈ k and x ∈ g. k endowed of such a structure of g

module is called the trivial module.

Example 40 Every Lie algebra g can be thought as a g module. In fact for
each x ∈ g, the map: ad : g −→ End(g), defined by: x Ã adx(·) = [x, ·] ∈
End(g) is a morphism of Lie algebras: as a consequence of the Jacobi identity
we have:

ad[x,y] =
[
[x, y], ·] =

[
x, [y, ·]] +

[
y, [x, ·]].

The action of g defined by the morphism ad is called the adjoint action.
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Definition 65 The action of a Lie algebra g on a module g-module M is
called faithful is the map φ defining the action is injective.

Example 41 The Lie algebra sl2, defined in the example 9, has a faithful
representation on the k-module k2 = k ⊕ k:

h Ã
(

1 0
0 −1

)
, x Ã

(
0 1
0 0

)
, and y Ã

(
0 0
1 0

)
.

If M1 and M2 are two g modules then:

Proposition 42 M1 ⊕ M2, M1 ⊗ M2, Homk(M1,M2) are g modules. In
particular, the exterior algebra and the symmetric algebras generated by a g

module, are g modules.

Proof We need to define the action of g on each of the above k-modules.
For each x ∈ g, m1 ∈ M1 and m2 ∈ M2 we define: 1) x.(m1,m2) =
(x.m1, x.m2), 2) x.(m1⊗m2) = (x.m1)⊗m2+m1⊗(x.m2), and: 3) (x.f)(m1) =
f(x.m1), for any given f ∈ Hom(M1,M2). The action of g of the exterior
algebra generated by M ,

∧• M , and on the symmetric algebra,
⊙• M , are

defined accordingly. It is easy to show that 1), 2) and 3) define a structure
of g module. ♠

For any g-module M we can define the k-module of g invariant elements in
M , by the following:

Invg(M) = {m ∈ M | x.m = 0, ∀x ∈ g}. (7.1)

The following proposition is clear:

Proposition 43 Invg(M) is a g-submodule.

We can now introduce the complex we need to compute the cohomology
of any given Lie algebra. Let g a Lie algebra and M any g-module.

Definition 66 The complex of k-modules associated to g and M is (C•, d)
where C• =

⊕
q∈ZCq(g,M) = Homk(

∧q
g,M), is the space of q-antisymmetric

linear form with values in M and d : C• −→ C• is the linear map defined by:

dc(x1, · · · , xq+1) =
∑

1≤s<t≤q+1

(−1)s+t−1c([xs, xt], x1, · · · , x̂s, · · · , x̂t, · · · , xq+1)+
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+
∑

1≤s≤q+1

(−1)sxs.c(x1, · · · , x̂s, · · · , xq+1), (7.2)

where c ∈ Cq(g,M) and x1, · · · , xq+1 ∈ g.
We complete the definition by imposing that Ci(g,M) = 0 for every i < 0
and requiring that di = 0 when i < 0.

It is clear from the formula (7.2), that d : Cq(g, M) −→ Cq+1(g,M). To
prove that (C•, d) defines a complex of k modules we need to check that:

Proposition 44 The linear map d : C• −→ C• defined in (7.2) is a differ-
ential, d ◦ d = 0, i.e: dq+1 ◦ dq = 0 for every q ∈ Z.

Proof We need to show that for any given q and φ ∈ Cq(g,M), dq+1◦dq :
Cq(g,M) −→ Cq+2(g,M) is identically equal to zero. Using the formula
(7.2), we can write:

dq+1◦dqφ(x1, · · · , xq+2) =
∑

1≤s<t≤q+2

(−1)s+t−1dqφ([xs, xt], · · · , x̂s, · · · , x̂t, · · · , xq+2)+

∑
1≤s≤q+2

(−1)sxs.dqφ(x1, · · · , x̂s, . . . , xq+2).

The proof of the statement goes as follows: we prove that for any three
indexes i, j, k, such that 1 ≤ i < j < k ≤ q+2, the previous formula produces
terms that cancel out. In particular, we can group the summand as follows:

1)

(−1)i+j−1dφ([xi, xj], . . . , x̂i, . . . , x̂j, · · · )+(−1)i+k−1dφ([xi, xk], . . . , x̂i, . . . , x̂k, · · · )+

+(−1)j+k−1dφ([xj, xk], . . . , x̂j, . . . , x̂k, · · · ).
Applying one more time the formula (7.2), we will get:

(−1)i+j−1(−1)k−1+1−1φ(
[
[xi, xj], xk

]
, . . . )+(−1)i+k−1(−1)j+1−1φ(

[
[xi, xk], xj

]
, . . . )+

+(−1)j+k−1(−1)i+1+1−1φ(
[
[xj, xk], xi

]
, . . . ).

So that:
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(−1)i+j+kφ(
[
[xi, xj], xk

]
+ [[xk, xi], xj

]
+ [[xj, xk], xi

]
, · · · ) = 0.

2)

(−1)i+j−1dφ([xi, xj], · · · , x̂i, · · · , x̂j, · · · , xq+2)+(−1)ixi.dφ(x1, · · · , x̂i, · · · , xq+2)+

+(−1)jxj.dφ(x1, · · · , xq+2).

Using again formula (7.2), we obtain:

(−1)i+j−1(−1)[xi, xj]φ(· · · , x̂i, · · · , x̂j, · · · )+(−1)i(−1)j−1xi.xjφ(· · · , x̂i, · · · , x̂j, · · · )+

(−1)i(−1)jxj.xi.φ(· · · , x̂i, · · · , x̂j, · · · ) = (−1)i+j
(
[xi, xj]−xi.xj+xj.xi

)
.φ = 0;

3) finally, from (−1)i+j−1dφ([xi, xj], . . . , x̂i, . . . , x̂j, · · · ), we get the term:

(−1)i+j−1(−1)k−1xk.φ([xi, xj], . . . , x̂i, . . . , x̂j, . . . , x̂k, · · · )
and from the term: (−1)kxk.dφ(· · · , x̂k, · · · ), we will get:

(−1)k(−1)i+j−1xkφ([xi, xj], . . . , x̂i, . . . , x̂j, . . . , x̂k, · · · ).

♠

Definition 67 We will call cohomology of the Lie algebra g with coefficients
in M , the cohomology of the complex (C•, d).

Let us give some examples and the interpretation of the cohomology
groups for a Lie algebra in some particular cases.

Example 42 (H0(g,M))
Since C−1(g,M) = 0, the 0-th cohomology group of the Lie algebra g with
coefficients in M is the same that {ker d0 : C0(g,M) ' M −→ C1(g,M)}.
This means that φ ∈ C0(g,M) represents an element in the 0-th cohomology
group, if and only if: d0φ(x) ≡ 0, for each x ∈ g. By formula (7.2), this
condition is equivalent to: x.φ ≡ 0, i.e that φ ∈ Invg(M) (see formula (7.1)).
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Example 43 (trivial module k)
Suppose that M = k is the trivial module. In this case the formula (7.2)
becomes:

dc(x1, · · · , xq+1) =
∑

1≤s<t≤q+1

(−1)s+t−1c([xs, xt], x1, · · · , x̂s, · · · , x̂t, · · · , xq+1),

(7.3)
since the action of g on the module k is given by x.α = 0 for each x ∈ g and
α ∈ k.

Example 44 For the cohomology with trivial coefficients, we have that H0(g, k) '
k, since H0(g, k) ' ker d0 ' Invg(k) ' k. The first cohomology group
has the following significance: d0 : C0(g) −→ C1(g) is trivial, therefore:
H1(g) = {ker d1 : C1(g) −→ C2(g)}. This implies that:

H1(g) = {φ ∈ C1(g)|d1φ(x, y) = 0, ∀ x, y ∈ g}.

Using formula (7.3), we get:

0 = d1φ(x, y) = φ([x, y]).

In other words, the first cohomology group of g, with trivial coefficients, is in
one to one correspondence with the linear forms on g, which are identically
zero on the derived algebra [g, g], i.e:

H1(g) '
(
g/[g, g]

)∗
.

7.2.1 Derivations

Definition 68 An endomorphism φ of a Lie a algebra g is a derivation of
the Lie algebra if and only if:

φ[x, y] = [φ(x), y] + [x, φ(y)], ∀x, y ∈ g.

Let us denote the set of all derivation of g, with D(g). D(g) is clearly a
vector space. In particular we have:

Lemma 20 D(g) is a sub Lie algebra of the Lie algebra of the endomor-
phisms of g.
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Moreover, we have that:

Proposition 45 We have a Lie morphism:

Γ : g −→ D(g)

x Ã adx.

Proof We need only to check that for each x ∈ g, adx ∈ End(g) is a
derivation of g. This follows easily from the Jacobi identity.

♠

Definition 69 The derivations of g belonging to the image of the map Γ :
g −→ D(g) are called inner derivations, Inn(g). The element of the quotient
space Out(g) = D(g)/Inn(g), are called outer derivations.

The 1-st cohomology group of g with coefficients in g has the following
interpretation.

Proposition 46 H1(g, g) ' Out(g).

Proof From the definition H1(g, g) = Z1(g, g)/B1(g, g), where Z1(g, g) =
{ker d1 : C1(g, g) −→ C2(g, g)} and B1(g, g) = {im d0 : C0(g, g) −→
C1(g, g)}. If φ ∈ Z1(g, g), 0 = d1φ(x, y) = φ([x, y]) − x.φ(y) + y.φ(x), so
that φ ∈ D(g). On the other hand C0(g, g) ' g. ♠
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Chapter 8

Appendix 2

In this appendix, we state and prove with some details some facts about the
cohomology of the Lie algebra of the general linear group. The references for
the material of the chapter are [8] and the original paper [4].

8.1 Cohomology of the lie algebra gl(n)

In this appendix we will work over the field of complex numbers. Let us
start fixing the notation. We recall that gl(n) is the Lie algebra of the
general linear group Gl(n). The generators for such Lie algebra are Ei,j,
i, j ∈ {1, · · · , n} and the relations are given by: [Ei,j, Ek,l] = Ei,lδj,k−Ek,jδl,i.
Let us also introduce the Lie algebra of the n × n skew hermitian matrices
u(n) = {M ∈ gl(n)|M † = −M}, and the corresponding Lie group U(n).

Let us start with the following general result about the topological struc-
ture of a Lie group:

Theorem 36 [10] In a Lie group with a finite number of connected compo-
nents there always exists a maximal compact subgroups. If K is one of them,
then any compact subgroup of G is conjugate to a subgroup of K, and in
particular any two maximal compact subgroups are conjugate. Furthermore,
G is homeomorphic to K × Rm for some m.

Therefore, all the topological information about G are contained in K.
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Definition 70 Let g is a real Lie algebra, gC = g ⊗ C its complexification.
The complexification of the Lie group G is the connected and simply connected
Lie group GC whose Lie algebra is gC.

Since every complex matrix A can be expressed uniquely as the sum
M + iN of two skew hermitian matrices, it follows that:

Lemma 21 The complexification of the Lie algebra u(n) is isomorphic to
gl(n), in other words: U(n)C ' Gl(n)

In particular U(n) sit inside Gl(n) as a maximal compact subgroup.
We can now state the following result about the cohomology of the Lie algebra
of the general linear group:

Theorem 37 1). The cohomology ring of the Lie algebra gl(n) is an exterior
algebra in n generators of degree 1, 3, ..., 2n− 1:

H•(gl(n)) = Λ[c1, c3, ....., c2n−1];

2) for any given n, the (inclusion) map defined in formula (5.18) induces a
map i∗n in cohomology:

i∗n : H•(gl(n + 1)) −→ H•(gl(n)),

such that:

i∗n : Hp(gl(n + 1)) −→ Hp(gl(n))

is an isomorphism for p ≤ 2n−1, and it maps to zero the top degree generator
when p = 2n + 1;

Proof From the previous discussion, it suffices to calculate the coho-
mology ring of the Lie algebra u(n), which is the Lie algebra of the Lie
group U(n) = {A ∈ Gl(n,C)|AA† = Id}. Since U(n) = S1 × SU(n), (as
a topological space), and since the Hochschild-Serre complex of a given Lie
algebra is quasi-isomorphic to the de-Rham complex of the associated Lie
group, the statement of the theorem will be proved once we prove that
H•(SU(n)) = Λ[c3, ....., c2n−1]. The proof of the statement follows by in-
duction on the rank n, and it is based on the cellular decomposition of the
Lie group SU(n). The (standard) action of SU(n) on Cn, has non trivial
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isotropy group which is isomorphic to SU(n− 1). Such an action define the
principal bundle:

SU(n− 1) // SU(n)

π

²²
S2n−1

where S2n−1 is the 2n−1 dimensional sphere. It is now clear how to proceed:
the bundle is locally trivial, with fiber SU(n − 1). The base has a cellular
decomposition S2n−1 = ∗∪D2n−1 and the bundle is trivial when restricted to
the the cell D2n−1. The induction will start for n = 3, the case n = 1 being
trivial and the case n = 2 being obvious. Let us give a glimpse for the first
step of the induction. For n = 3:

SU(2) // SU(3)

π

²²
S5

where the fiber SU(2) ' S3. The cellular decomposition of the of the
bundle is given by the product: (∗ ∪ D3) × D5, where the first term is the
contribution of the fiber and the second the one of the base. From this and
from the cellular decomposition of the fiber above the point ∗ ∈ S5, we get
the following cellular decomposition of the total space:

c0 ∪ c3 ∪ c5 ∪ c8,

i.e it can be decomposed using four cells, one in dimension 0, one in dimension
3, one in dimension 5 and one in dimension 8. Now we use the following
classical result about the ring cohomology of a Lie group:

Theorem 38 (Borel) The cohomology ring of a Lie group is an exterior
algebra.

From this and the previous cellular decomposition we are forced to con-
clude that:

H0(SU(3),R) ' H3(SU(3),R) ' H5(SU(3),R) ' H8(SU(3),R) ' R,

and the ring H•(SU(3),R) will be generated by the duals of c3 and c5, say
y3, y5 such that y3y5 = −y5y3 6= 0.

♠
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Remark 32 The argument used to prove the first of the assertions of the
theorem stated above has more a pedagogical content than a rigorous one.
Using such an inductive argument makes the other statements fairly clear. A
more rigorous approach would be the use of the Leray-Serre spectral sequence
for the fibration described above.
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