1) (16 points) Using definitions and theorems we proved in class Prove or Disprove:
There are infinitely many composite numbers.

2) (16 points) Find \(d = (6879, 5328) \) and find all the integer solutions \(x, y \) to
\[
6879x + 5328y = d
\]

3) (16 points) Find the prime factorization of 24737. Explain why each factor is prime.

4) (16 points) Suppose \(d = (a, b) \), let \(L = ab/d \). Show
 a) \(a|L \) and \(b|L \).
 b) Use the property that if \(d = (a, b) \) then \(d = ax + by \) for some \(x, y \) to show if \(a|M \) and \(b|M \) then \(L|M \).

 Note: \(L \) is called the least common multiple of \(a \) and \(b \).

5) (16 points) Show there are no prime triplets, \(p, p + 2, p + 4 \) all prime other than 3, 5, 7.

6) (16 points) Show \(2n^3 + 3n^2 + n \) is divisible by 6 for every positive integer \(n \).

 Note: In the computational problems, especially 2), you should check your work carefully since partial credit will be based on correct work only up to your first error.