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Abstract

Here we present IRIS, a method for prediction of RNA-RNA interactions that is based on dy-
namic programming and extends current RNA secondary structure prediction approaches. Using
this method we have found a number of interesting refinements to the structures of RNA-RNA
complexes that have been studied previously and predicted novel targets for several known reg-
ulatory RNAs in E. coli. The computational time and memory usage of IRIS are O(n3m3) and
O(n2m2), respectively, where n and m are the lengths of the input sequences. IRIS can be used
for analysis of antisense regulatory systems in sequenced organisms and for the design of artificial
riboregulators such as antisense drugs.
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1 Introduction

In recent years, the class of non-coding RNAs has acquired many new members in prokaryotes, eukary-
otes and archaea [1, 2, 3]. Non-coding RNAs are involved in catalysis and metabolite-sensing, but more
typically they are employed by the cell to guide sequence-specific recognition and processing of other
RNA molecules [4]. In particular, they can silence or repress genes at the posttranscriptional level
by using base complementarity to hybridize with mRNAs. In animals and plants they are known as
small interfering RNAs (siRNAs) and microRNAs (miRNAs), whereas in bacteria the commonly used
term is riboregulator [5]. While siRNAs are often fully complementary to their targets, miRNAs and
riboregulators interact with mRNAs in a more intricate manner, one which does not involve perfect
duplexing [6]. Riboregulators in E. coli demonstrate that this interaction can be rather complex, such
that intermolecular helices alternate with unpaired regions and intramolecular secondary structure.
For instance, the small RNA oxyS, which is involved in the oxidative stress response system, interacts
with its target, fhlA mRNA at two sites that reside in the loops of two stem-loop structures [7, 8].
The dsrA RNA, which activates and represses, respectively, two other transcriptional regulators hn-S
and rpoS, pairs to their mRNAs by different parts of its three stem-loops [9, 10]. The antisense RNA
copA binds to the leader region of copT mRNA and forms an asymmetrical X-shaped conformation
with a four-way junction [11]. The small RNA ryhB interferes with translation and transcription of
the polycystronic gene sdhCDAB by hybridization with the ribosome binding site [12]. In C. elegans,
the small temporal RNAs lin-4 and let-7 pair to the 3’ untranslated regions of their target genes in
multiple copies, forming bulged double-stranded structures [13, 14, 15].

The wealth of genomic information that was brought by high throughput sequencing poses a
challenging problem to systematically search for new targets of known riboregulators and miRNAs.
The first step in this direction is to develop an approach for predicting RNA-RNA interactions that
extends beyond usage of standard sequence alignment tools. The most straightforward way to find out
whether two RNA sequences are able to hybridize with each other is to search for a reverse complement
of one of them in another using, for instance, nucleotide BLAST [16]. This method is applicable for
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locating long stretches of complementarity and is useful in, for instance, siRNA target search [17, 18].
Another approach, which seems to be more suitable for finding miRNA targets, consists in adopting the
RNA structure prediction programs to treat two input sequences [19]. One could concatenate the two
RNA sequences, input the result to MFOLD, and obtain the intra and intermolecular pairings from the
MFOLD output [20]. However, this approach has a serious problem because MFOLD can only predict
pseudoknot-free structures, that is, it will erroneously miss the optimal intermolecular interaction in
favor of intramolecular secondary structure, if the individual molecules are highly structured [21]. The
secondary structure prediction method that is tolerant to pseudoknots is potentially applicable but
not practicable because of high computational complexity [22].

Here we introduce a method for Intermolecular RNA Interaction Search (IRIS) [23]. Essentially, it
is a product of sequence alignment and two MFOLD-type secondary structure prediction algorithms,
implemented as four-dimensional dynamic programming. It shares many common features with sec-
ondary structure prediction method with pseudoknots, but is less computationally intensive. The input
consists of two RNA sequences. Each of the sequences is allowed to form its own nested secondary
structure and to hybridize to the other molecule. The computational time and storage are O(n3m3)
and O(n2m2), respectively, where n and m are the lengths of the input sequences. Although the total
degree of the algorithm is six (as in [22]), it is more practical than the pseudoknotted algorithm when
one of the sequences is much shorter than the other. This, indeed, is the case for riboregulators and
miRNAs. The computational time needed to obtain the optimal secondary structure with pseudoknots
by [22] would be (n + m)6, whereas with IRIS it only takes n3m3. This facilitates more than 106-fold
increase in speed for n = 200 and m = 20.

2 Methods

The principle of secondary structure prediction methods that are based on the dynamic programming
consists of the recursive derivation of the secondary structure for all segments of the sequence, pro-
ceeding progressively from short segments to the entire molecule [24]. A fitness function (typically,
the lowest equilibrium free energy) is optimized on each step of the recursion. The fitness function
used in MFOLD is the sum of energy impacts from stacking interactions, dangling bases, hairpins,
bulges, internal loops and multiloops [25]. It is clear that the set of thermodynamic parameters that is
used for RNA secondary structure prediction can be also used for structure prediction of RNA-RNA
complexes, as they are based on energies of the same structural elements. In order to provide clear
explanation and simple of notation, here we use trivial fitness function, the maximum number of base
pairs, although the actual algorithm is based on thermodynamic parameters [26].

First, we recall the formal language of secondary structures. A secondary structure on a sequence
(x1, . . . , xn) is a set of pairs (i, j) such that for every two pairs (i, j) and (i′, j′) the condition i = i′

implies j = j′ and vice versa. In other words, each position in can be paired to at most one other
position. A secondary structure is said to be nested, if for every two pairs (i, j) and (i′, j′), either
i ≤ i′ ≤ j′ ≤ j or i′ ≤ i ≤ j ≤ j′. A nested secondary structure can be represented by an outer-planar
graph, that is, a graph that can be embedded in the plane such that all vertices lie on the boundary
of its exterior region [27]. Nested secondary structures admit an equivalent representation by regular
expressions. In this notation, balanced parentheses are used to indicate paired positions, while dots
are used to indicate ones that are unpaired. There is a one-to-one correspondence between nested
secondary structures and their parenthesis representations [27]. In order to set up the recursion,
Nussinov denotes by Mij the maximum number of pairs in the segment (xi, ,̇xj). Then, Mij can be
calculated by formula

Mi j = max
{

Mi+1 j−1 + δij , max
i<k<j

{Mi k + Mk+1 j}
}

(1)

with the initial conditions Mi i = Mi i+1 = 0, i = 1 . . . n. Here δij = 2, if xi and xj are complementary
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nucleotides, and δij = 0 otherwise.
Now we extend this formalism to the case of two sequences. Denote them by X = (x1, . . . , xn)

and Y = (y1, . . . , ym). In what follows, we assume that X is written in 5’-3’ direction, Y is written in
3’-5’ direction, the superscripts always refer to X, and the subscripts always refer to Y . Consider the
following sets of pairings: (1) pairings of xi with xj , (2) pairings of yk with yl, and (3) cross-pairings
of xi with yk. We require that

1. Every position in X and Y participates in at most one pairing.

2. The pairings of xi with xj form nested secondary structure.

3. The pairings of yk with yl form nested secondary structure.

4. If xi is paired to yk, and xj is paired to yl, then i < j implies k < l and vice versa.

If the conditions 1-3 are met then the set of pairings is said to be the joint secondary structure. If, in
addition, the condition 4 is met then the joint secondary structure is said to contain no generalized
pseudoknots. Geometrically, the conditions 1-4 mean that the first and the second set of pairings can
be represented by two outer-planar graphs, whose nodes are connected by the third set of pairings
such that the connecting edges don’t intersect. Absence or presence of generalized pseudoknots is not
critical for the algorithm’s performance. However, the joint secondary structure admits an analog of
parenthesis representation when generalized pseudoknots are absent. This representation may contain
gaps, and, therefore, one structure can have more than one parenthesis representation, but the inverse
relation in unambiguous: one representation corresponds to only one joint secondary structure.

From now on we consider the structures that are free of generalized pseudoknots. A pair of
segments (xi, . . . , xj−1) and (yk, . . . , yl−1) is called the bisegment and is denoted by XY ij

kl . Note that
the last positions xj and yl and are not included. The way of indexing has been changed because we
now have to deal with segments of zero length. Let M ij

kl be the maximum number of base pairs in
XY ij

kl . Similarly to (1), we can calculate M ij
kl recursively by formula

M ij
kl = max

{
M i+1j−1

kl +δij−1,M ij
k+1l−1+δkl−1,M

ij−1
kl−1 +δj−1

l−1 ,M i+1j
k+1l +δi

l , max
s,t
{M is

kt+M s+1j
t+1l }

}
(2)

In other words, either two terminal bases of the first sequence, or two terminal bases of the second
sequence, or a terminal base of the first and a terminal base of the second sequences pair, or the
bisegment XY ij

kl is spited into two previously processed bisegments. The last term in equation (2),
M is

kt+M s+1j
t+1l does not account for generalized pseudoknots. In order to treat generalized pseudoknots,

one should replace it with max{M is
kt+M s+1j

t+1l ,M is
tl +M s+1j

k t+1}.
The recursion (2) stops when i = j or k = l, that is, when one of the sequences in the bisegment

becomes empty. Therefore, the initial conditions for (2) are M ij
kk = M i j−1 and M ii

kl = Mk,l−1 for all i,
j, k, and l, where M ij and Mkl are the corresponding Nussinov matrices for X and Y , respectively.
They are calculated recursively by equation (1):

M i j = max
{

M i+1 j−1 + δij , max
i<s<j

{M i s + M s+1 j}
}

, (3)

Mk l = max
{

Mk+1 l−1 + δkl, max
k<t<l

{Mk t + M t+1 l}
}

. (4)

with initial conditions Mkk = Mk k+1 = M ii = M i i+1 = 0 for all i and k. As always, the superscripts
refer to the sequence X, and the subscripts refer to the sequence Y .

Calculation of M ij
kl is organized as follows. First, we initialize the matrices M ij and Mkl, and

then compute M ij and Mkl by equations (3) and (4). Next, we initialize the four-dimensional matrix
M ij

kl using M ij and Mkl, and then compute M ij
kl by equation (2). The number M1 n+1

1 m+1 is the desired
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Figure 1: The structure of oxyS(blue)-fhlA(black) complex proposed by Argaman et al [8] (left) and
the structure predicted by IRIS (right). The Shine-Dalgarno sequence is shown in green.

maximum number of base pairs, and the optimal joint secondary structure is obtained from the matrix
M ij

kl by traceback. In this setup, the computational time and space are O(n3m3) and O(n2m2),
respectively.

The algorithm described in this section can be modified and extended to a more realistic schema,
one which is based on thermodynamic parameters rather than on scoring matrix. The reader is referred
to the supplementary material for the desciption of the complete algorithm.

3 Results

In this section we IRIS to several RNA-RNA complexes that have been described in the literature. The
annotated genomic sequences of E. coli K12 (NC 000913), S. flexneri 2457T (NC 004741), S. typhi
Ty2 (NC 004631), and S. typhimurium LT-2 (NC 003197) were obtained from NCBI. The calculations
were performed with a temperature parameter setting of 37C for all sequences. Comparative sequence
analysis was performed using CLUSTALW [28] (alignments not shown). The following pairs of regu-
latory RNA vs. target mRNA were analysed: oxyS and fhlA, dsrA and rpoS/hns (results not shown),
gcvB and dppA/oppA, dicF and ftsZ/ftsA, and ryhB and sdhC/bfr/sodB (results not shown). The
predicted structures have been translated from the parenthesis notation to a more friendly, pictorial
representation (figures 1-2) using JAVA-based software [29].

4 Discussion

oxyS and fhlA. The oxyS RNA is expressed in E. coli in response to oxidative stress and is known
to repress the translation of fhlA gene by blocking ribosome binding. It was found in [7] that oxyS
operates by pairing with a short sequence overlapping the Shine-Dalgarno sequence. Later on, dele-
tion and mutation studies performed by the same group revealed that oxyS-fhlA interaction involves
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dicF-ftsZ
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Figure 2: The predicted structures for gcvB RNA, gcvB(black)-dppA(blue), gcvB(black)-oppA(blue)
complexes, dicF RNA, dicF(black)-ftsZ(blue), and dicF(black)-ftsA(blue) complexes. The ribosome
binding site is shown in light blue.
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Figure 3: Transformations of polygons (see text).

a second site residing further downstream, within the coding region of fhlA [8]. The structure of
oxyS-fhlA complex that was proposed in [8] consists of four adjacent stem-loops, two in each of the
interacting molecules, which form stable kissing complex (figure 1a). We examine this complex and
find that, in fact, it is not the minimum free energy structure. Moreover, the Shine-Dalgarno sequence
(shown in green) is only partially obstructed. The optimal structure predicted by IRIS is shown in
figure 1b and has slightly different arrangement of hairpins. According to IRIS prediction, there exist
the third site of interaction that is located between two other sites, which is able to sequester the
Shine-Dalgarno sequence completely. Comparative sequence analysis in other enteric bacteria shows
that this structure is conserved in S. flexneri, S. typhi, and S. typhimurium.
gcvB and dppA/oppA. Transcription of gcvB RNA in E. coli is controlled by transcriptional
regulators of the gcvTHP operon encoding the enzymes of the glycine cleavage system [30]. It has
been shown to repress the translation of OppA and DppA genes, the periplasmic-binding protein
components of the two major peptide transport systems. We propose the following structures that
could be responsible for inhibition of translation of OppA and DppA by gcvB, although the detailed
mechanism involving gcvB in the repression of these two genes has not been studied yet (figure 2). The
structure of the gcvB RNA (200-bp long) contains three distinguished stem-loops, two of which are
folowed by polyuridine track (n = 5− 7) and, therefore, may act as terminators. The structure of the
gcvB-oppA complex involves intermolecular helices that precede nd follow the putative terminator,
while the interaction between gcvB and dppA mRNA only contains helices that precede the putative
terminator. This difference might impose another level of control or differential influence on regulation
of these two genes. The Shine-Dalgarno sequence in gcvB-oppA complex is mostly obstructed, while
the most of the structure in gcvB-oppA complex is in the upstream region. This correlates very well
with the fact that oppA regulation appears to be at the translational level, whereas dppA regulation
occurs at the mRNA level [30]. The structure is conserved in S. flexneri, S. typhi, and S. typhimurium.
dicF and ftsZ. A 190 nt RNA dicF is processed from a polycistronic transcript (dicB operon) by
RNase III and RNase E [31]. A cell-division gene, ftsZ, has been identified as the target of dicF RNA by
a genetic screen for suppressors of dicF-dependent inhibition of cell division [32]. We confirm that dicF
RNA has significant complementarity to the ftsZ mRNA in the region surrounding the ShineDalgarno
sequence, which is consistent with the result that dicF regulates ftsZ by interfering with ribosome
binding. We also find that dicF-ftsZ complex admits another region of complementarity (figure 2),
which gives rise to a generalized pseudoknot. The structure of the dicF-ftsZ complex is similar to the
one of dsrA-hns, in which dsrA RNA interacts with both 5’ and 3’ ends of the hns mRNA [9]. We
also report that ftsA, another gene that is involved in cell division, has significant complementarity
to dicF RNA (figure 2). Interestingly, the dicF-ftsA interaction appear to be downstream of the start
codon. As in the case of gcvB-dppA, it suggests that dicF-mediated regulation of ftsA occurs at the
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mRNA level, while the regulation of ftsA occurs at the translational level.
The structures of oxyS-fhlA complex shown in figure 1, have an interesting property. The problem

is that the rightmost intermolecular helix is surrounded by AA and UU nucleotides, which could have
been paired. However, the helix has to be ”straight” because it makes a full turn over the distance of
10 base pairs. Thus, the distance between two nucleotides at the ends of the helix is approximately
3.4 nm [33]. On the other hand, the phosophodiester bond is approximately 0.7 nm long. Therefore,
the bases A and U that are adjacent to the helix cannot reach each to form a base pair because of
backbone constrains. In the case of one RNA molecule we didn’t have this problem because on each
step of the recursion the paired nucleotides were independent of previously built helices. Now we
need to keep track of the geometry of the growing structure, as the multiloop energy is not a simple
function of the number of interior bases. The same sort of artifacts is peculiar to the RNA structure
prediction algorithm with pseudoknots [22].

Geometrically, this problem comes down to arranging a number of straight segments in 3D space
and connecting them by freely-joint chains such that obvious spatial constraints are met. The straight
segments and the freely-joint chains are helices and unpaired fragments, respectively. In particular,
the triangle inequality must hold, that is, for any closed chain of segments in the structure, the length
of each segment is not greater than the sum of lengths of the other segments. Although the triangle
inequality filters out the configurations that a priori contradict Euclidian geometry, it is necessary but
not sufficient condition for the given arrangement of helices to exist. In general, this problem can be
as hard as the problem of graph embeddings [34].

We use the triangle inequality to detect structures that violate backbone constraints as follows.
For each bisegment we consider four chains of straight segments that correspond to its four faces: top,
bottom, left, and right. They account for four possibilities of pairing one of the two 5’ ends with one
of the two 3’ ends. Here by a1, . . . , an we denote the lengths of the segments, including both helices
and single-stranded regions. Then, the ends of the chain can touch each other if and only if all of the

λj = aj −
∑

i6=j

ai (5)

are negative, or, equivalently, λ = max{λj} is negative. We call λj the discrepancy of the j-th segment.
Denote by π the perimeter of the chain a1, . . . , an. Heuristically, λ and π are the minimum and the
maximum distance between the ends of the freely-joint chain. On each step of the dynamic program-
ming we either make a base pair at one of the ends of the bisegment or split it into smaller parts. The
criterion λ < 0 can be used to determine whether a base pair is possible. However, calculation and
evaluation of λ requires checking all the subsegments of the given segment and, therefore, results in
non-polynomial computational time.

However, it is not necessary to keep track of λj for each segment, if we only extend but not
change the structures that have been built before. These extensions are summarized in figure 3. They
start with a dinucleotide (a). A new base pair can elongate the existing straight segment (b) or be
connected to it freely-jointly (c). Similarly, when the bisegment is split into parts, the corresponding
polygons are concatenated. The concatenation can be soft (d), if the terminal segments are connected
freely-jointly, or rigid (e), if they merge into a new straight segment. It turns out that we only need λ,
λ1, λn, and π in order to determine whether the chain can close to form a polygon. These parameters
are recalculated on every step of the dynamic programming for each of the four chains according to
table 1. By α and β in table 1 we denote the discrepancies of the initial and the terminal segments,
that is λ1 and λn, respectively. The subscripts refer to the first and the second polygon, which are
being connected, concatenated, or closed.

Although the triangle inequality doesn’t give a sufficient condition for structure to exist, it allows to
get rid of simple artifacts. In principle, the theory of graph embeddings can be used here to obtain not
only necessary but also the sufficient conditions, but it would give rise to an NP-complete algorithm.
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Table 1: Transformations of polygons (see text).

Transformation α β λ π

Initiation x x x x

Elongation left α + x β − x max{λ− x, α + x} π + x
right α− x β + x max{λ− x, β + x} π + x

Connection left x− π β − x max{λ− x, x− π} π + x
right α− x x− π max{λ− x, x− π} π + x

Concatenation soft α1 − π2 β2 − π1 max{λ1 − π2, λ2 − π1} π1 + π2

rigid α1 − π2 β2 − π1 max{β1 + α2, λ1 − π2, λ2 − π1} π1 + π2

Closing soft/soft max{λ1 − π2, λ2 − π1}
soft/rigid max{β1 + α2, λ1 − π2, λ2 − π1}
rigid/rigid max{α1 + β2, β1 + α2, λ1 − π2, λ2 − π1}

5 Conclusion

Riboregulators and micro RNAs represent one of those few cases in molecular biology where functional
relationship between genes can indeed be established from sequence data. Prediction of targets of
regulatory non-coding RNAs is a logical and pertinent task at the current state of art. The method
developed in this work provides a generic framework for this problem. It has been shown to agree
with several known examples of RNA regulation, yielded a number of interesting refinements to their
structures, and allowed to predict novel targets. Although the inherent computational complexity
precludes applications of this method on genome-wide scale, it still can be used for the analysis of
antisense regulatory systems in sequenced organisms and for the design of artificial riboregulators such
as antisense drugs.
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[3] C. Gaspin, J. Cavaillé, G. Erauso, and J.-P. Bachellerie. Archaeal homologs of eukaryotic methy-
lation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. J. Mol. Biol., 297:895–
906, 2000.

[4] T. Tuschl. Functional genomics: RNA sets the standard. Nature, 421:220–221, 2003.

[5] E. Massé, N. Majdalani, and S. Gottesman. Regulatory roles for small RNAs in bacteria. Curr
Opin Microbiol., 6(2):120–4, 2003.



Full Paper LaTeX2ε Template 9

[6] S. Altuvia, E. Gerhart, and H. Wagner. Switching on and off with RNA. Proc. Natl. Acad. Sci.
USA, 97(18):9824–9826, 2000.

[7] S. Altuvia, A. Zhang, L. Argaman, A. Tiwari, and G. Storz. The Escherichia coli OxyS regulatory
RNA represses fhlA translation by blocking ribosome binding. The EMBO Journal, 17(20):6069–
6075, 1998.

[8] L. Argaman and S. Altuvia. fhlA repression by OxyS RNA: kissing complex formation at two
sites results in a stable antisense-target RNA complex. J Mol Biol., 300(5):1101–12, 2000.

[9] R. A. Lease and M. Belfort. A trans-acting RNA as a control switch in Escherichia coli: DsrA
modulates function by forming alternative structures. Proc. Natl. Acad. Sci. USA, 97(18):9919–
9924, 2000.

[10] F. Repoila, N. Majdalani, and S. Gottesman. Small non-coding RNAs, co-ordinators of adaptation
processes in Escherichia coli: the RpoS paradigm. Molecular Microbiology, 48(4):855, 2003.

[11] F. A. Kolb, C. Malmgren, E. Westhof, C. Ehresmann, B. Ehresmann, E. G. H. Wagner, and
P. Romby. An Unusual Structure Formed by Antisense-Target RNA Binding Involves an Extended
Kissing Complex with a Four-Way Junction and a Side-by-Side Helical Alignment. RNA, 6:311–
324, 2000.

[12] E. Masse and S. Gottesman. A small RNA regulates the expression of genes involved in iron
metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA, 99(7):4620–4625, 2002.

[13] M. Lagos-Quintana, R. Rauhut, W. Lendeckel, and T. Tuschl. Identification of novel genes coding
for small expressed RNAs. Science, 294:853–857, 2001.

[14] N. C. Lau, L. P. Lim, E. G. Weinstein, and D. P. Bartel. An abundant class of tiny RNAs with
Probable Regulatory Roles in Caenorhabditis elegans. Science, 294:858–862, 2001.

[15] R. C. Lee and V. Ambros. An extensive class of small RNAs in Caenorhabditis elegans. Science,
294:862–864, 2001.

[16] S. F. Altschul, W. Gish, W. Miller, E. W. Meyers, and D. J. Lipman. Basic local alignment search
tool. J. Mol. Biol., 215:403–410, 1990.

[17] M. W. Rhoades, B. J. Reinhart, L. P. Lim, C. B. Burge, B. Bartel, and D. P. Bartel. Prediction
of plant microRNA targets. Cell, 110(4):513–20, 2002.

[18] A. Stark, J. Brennecke, R. B. Russell, and S. M. Cohen. Identification of Drosophila MicroRNA
Targets. PLoS Biol., 3:E60, 2003.

[19] A. J. Enright, B. John, U. Gaul, T. Tuschl, C. Sander, and D. S. Marks. MicroRNA targets in
Drosophila. Genome Biol., 5(1):R1. Epub, 2003.

[20] A. E. Walter, D. H. Turner, J. Kim, M. H. Lyttle, P. Muller, D. H. Mathews, and M. Zuker.
Coaxial Stacking of Helixes Enhances Binding of Oligoribonucleotides and Improves Predictions
of RNA Folding. Proceedings of National Academy of Sciences, 91:91, 1994.

[21] D. Pervouchine, J. Graber, and S. Kasif. On the normalization of RNA equilibrium free energy
to the length of the sequence. Nuc. Ac. Res., 31(9):e49, 2003.

[22] E. Rivas and S. Eddy. A dynamic programming algorithm for RNA structure prediction including
pseudoknots. J. Mol. Biol., 285:2053–2068, 1999.



10 Pervouchine D.

[23] http://math.bu.edu/people/dp/prj/iris.

[24] M. Zucker and D. Sankoff. RNA secondary structures and their prediction. Bull. Math. Biol.,
46:46, 1984.

[25] D. Mathews, J. Sabina, M. Zucker, and H. Turner. Expanded Sequence Dependence of Ther-
modynamic Parameters Provides Robust Prediction of RNA Secondary Structure. Journal of
Molecular Biology, 288:911–940, 1999.

[26] R. Nussinov, G. Pieczenik, J. Griggs, and D. J. Kleitman. Algorithms for Loop Matching. Journal
of Applied Mathematics, 35(1):68–82, 1978.

[27] J. Leydold and P. F. Stadler. Minimal Cycle Bases of Outerplanar Graphs. Elec. J. Comb.,
5:209–222, 1998.

[28] J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: improving the sensitivity of pro-
gressive multiple sequence alignment through sequence weighting,position-specific gap penalties
and weight matrix choice. Nucleic Acids Res., 22:4673–4680, 1994.

[29] D. Pervouchine. Drawing RNA structures with pseudoknots (currently in preparation),
http://math.bu.edu/people/dp/prj/rnadraw.

[30] M. L. Urbanowski, L. T. Stauffer, and G. V. Stauffer. The gcvB gene encodes a small untranslated
RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia
coli. Molecular Microbiology, 37(4):856, 2000.

[31] M. Faubladier, K. Cam, and J. P. Bouche. Escherichia coli cell division inhibitor DicF-RNA of
the dicB operon. Evidence for its generation in vivo by transcription termination and by RNase
III and RNase E-dependent processing. J Mol Biol, 212(3):461–71, 1990.

[32] F. Tetart and J. P. Bouche. Regulation of the expression of the cell-cycle gene ftsZ by DicF
antisense RNA. Division does not require a fixed number of FtsZ molecules. Mol Microbiol.,
6((5):615–20, 1992.

[33] J. D. Watson and F. H. C. Crick. A Structure for Deoxyribose Nucleic Acid. Nature, 171:737,
1953.

[34] R. J. Wilson. Introduction to Graph Theory. London: Longman, 1975.


