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ABSTRACT 

There is no universal definition of stability for RNA secondary structures. In this paper 

we present an approach that is based on normalization of the equilibrium free energy to 

the length of the sequence: a segment of RNA is said to be stable if the ratio of the 

equilibrium free energy to the length of the segment is greater than a certain threshold 

value. Discarding the segments whose normalized equilibrium free energies are smaller 

than the threshold allows us to view the secondary structure at different levels of stability. 

Confined to only highly stable structures, the algorithm for secondary structure prediction 

admits a number of simplifications that make it computationally tractable for large 

sequences and advantageous over most other methods on genome-wide scale. This 

method was applied to Caenorhabditis elegans genome to localize the regions that 

encode for stable secondary structures. In particular, 36 of 56 previously reported micro-

RNAs were localized to 4% of the genome. A fraction of long (400 nt and longer) stable 

inverted repeats in the genomic sequence of C. elegans was found. Their distribution is 

very uneven and skewed towards the ends of chromosomes. This method can be used for 

genome-wide detection of transcription termination signals, putative micro-RNAs, and 

other regulatory elements that involve stable RNA secondary structures. 

 

Introduction 

Existing RNA folding algorithms fall into two major classes: MFOLD type algorithms 

and covariance models. MFOLD type algorithms find structures with the lowest 

equilibrium free energy and share a common dynamic programming core, while 

covariance models recognize positions that are covarying to maintain base 

complementarity and use the strategy of Hidden Markov Models [1]. The dynamic 

programming approach to RNA secondary structure prediction was pioneered about 30 

years ago. Nussinov presented a simple free energy function that is minimized when the 

secondary structure contains maximum number of complementary base pairs [2]. Tinoco 

calculated the free energy as a sum of independent energies for each of the loops in the 

structure, rather than for each of the complementary base pairs [3]. Zuker introduced 

more realistic free energy function that is based on experimentally determined 

thermodynamic parameters and takes into account coaxial stacking energies [4, 5]. 
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Zuker's algorithm requires )( 3nO  time and )( 2nO  memory for a sequence of length n but 

doesn't allow for pseudoknots.  

 

The output of an MFOLD type algorithm is a list of intramolecular base pairings (that is, 

the secondary structure) that corresponds to the lowest equilibrium free energy. The 

structure is derived from the recursively calculated dynamic programming matrix, whose 

entries are the minimal folding energies of all segments of the sequence. This matrix also 

contains information about all suboptimal structures. Suboptimal structures have energies 

that are nearly equal to the lowest equilibrium free energy and, therefore, are almost as 

thermodynamically stable as the optimal structure. Some of the base pairs are present in 

all or in the majority of suboptimal structures, while other pairings are specific for only 

few of them. This suggests that the secondary structure consists of core and variable 

parts.  

 

The definition of the core part, as being the segment that has the largest negative 

equilibrium free energy, is confronted with the following difficulty: longer segments have 

lower free energy because they have more bases to pair, and the segment with the largest 

negative free energy turns out to be the whole sequence. This leads us to the idea of 

normalization of the equilibrium free energy to the length of the segment. That is, in 

order to treat all parts of the sequence equitably we need to divide the equilibrium free 

energy of each segment by an appropriate quantity that is a function of length. In this 

work we explore only the case when this function is linear, since it is the most 

appropriate normalization in context of stability: the minimum equilibrium free energy 

over all possible sequences of length n  grows linearly with n . A linear normalization 

factor also has an advantage of scaling the free energies from zero to one and allows 

analytic development of statistical frameworks. The maximum number of base pairs 

approximation, which is discussed in the next section, makes this method 

computationally tractable for large sequences and advantageous over most other methods 

on genome-wide scale. 
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Method 

The free energies don't need to be calculated separately for each segment of the sequence, 

as they are already encrypted in the dynamic programming matrix provided by a 

secondary structure prediction tool. Denote the entries of this matrix by ijE . Once ijE  are 

known, we divide them by the lengths of corresponding segments. This transforms ijE  

to ijε , where 

1+−
=

ij
Eij

ijε . (1) 

The quantity of ijε has units of linear density of free energy and is referred to as the 

stability factor. If we now chose a threshold ε  for the stability factor and drop all 

segments that have values of ijε  smaller than ε  then the rest of the sequence will 

correspond to the stable part of the secondary structure. This stable part depends on ε  

and is called ε -stable.  Stable structures with different levels of stability are related to 

each other monotonically: if 21 εε > , then the 1ε -stable structure (as a set of base pairs) is 

a subset of the 2ε -stable structure.  

 

Before elaborating on these ideas, let us make a number of simplifications. First, if we are 

interested in highly stable secondary structures, that is, ones with only few bases 

unpaired, then we don't need much accuracy in the prediction of the equilibrium free 

energy and can roughly approximate it (up to a constant factor) with the maximum 

number of paired bases. This facilitates an increase in speed and the ability to manipulate 

the matrix ijE analytically.  Once the regions that have high density of equilibrium free 

energy are found, their secondary structures can be refined with MFOLD. Later we show 

that stem-loops are, in general, more stable than the other types of unknotted secondary 

structures. Branching structures usually have large unpaired regions at the points where 

they branch and, therefore, have smaller percentage of paired bases per unit length. By 

the same reason, the most stable stem-loops are ones that have long stems and short 

loops. We make use of these observations by considering only non-branching secondary 

structures. This allows us to implement the calculations of ijE in quadratic time and space 
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using simplified version of the original Nussinov algorithm [2]. If we confine ourselves 

to the stem-loops whose lengths are uniformly bounded by a constant k  then we won't 

need ijE for kij >− . In this case calculation of ijE can be done in linear time and space.  

 

From now on we consider only non-branching secondary structures and assume that ijE  

is the maximum number of complementary base pairs in the segment between bases i  

and j . It is clear that 10 +−≤≤ ijEij  and, therefore, 10 ≤≤ ijε for all i and j . This 

shows that the natural range of the stability threshold is from zero to one. As we will see 

later, the typical values of stability threshold for highly stable structures (that is, ones of 

interest to us) vary from 0.6 to 0.9.  

 

Approximation of the free energy with the maximum number of complementary bases 

allows us to answer important statistical questions. First, we estimate the probability 

distribution function of equilibrium free energies. Then we calculate the probability of 

occurrence of an n -long and ε -stable subsequence in a random sequence of a given 

length. From these results we infer the critical length of a stem-loop, whose presence in a 

sequence of given length is essentially non-random. Namely, the critical length (in bases) 

of a stem-loop 0n at the significance level α  is given by formula 

)(ln
lnln

0 ελ
α Nn −= , (2) 

where 

( )εεελ )1()( 1 −= −pe . (3) 

Here N  is the sequence length, ε  is the stability threshold, e  is the base of the natural 

logarithm, and p  is the parameter that describes the nucleotide composition of the 

sequence ( 25.0=p  for uniform distribution of bases). The reader is referred to appendix 

for detailed derivation of these formulae. Table 1 gives an example of calculations of 

critical stem-loop lengths for 25.0=p  and 810=N . 
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Results 

Based on the method described in the previous section we developed STLS — a program 

for prediction of stable RNA secondary structures.  The input of STLS consists of three 

components: nucleotide sequence, stability threshold, and other parameters. The first two 

arguments have obvious meaning. Description of other parameters is found in the STLS 

manual. The output of STLS tabulates stability factors, positions and secondary structures 

of all ε -stable segments. A copy of STLS can be obtained from our web site 

http://genomics10.bu.edu/dp/rna/stls/ or from the authors by request. In this section we 

give a number of tests for STLS and also list some of its applications. 

 

To test the accuracy of STLS predictions we generated 700 random 400-long nucleotide 

sequences with uniform distribution of bases. For each sequence we took the secondary 

structure sS predicted by STLS and compared it to the secondary structure vS  predicted 

by VIENNA algorithm [6]. As a quantitative measure of accuracy we usedσ , the ratio of 

the number of base pairs that belong to both sS  and vS  to the number of base pairs that 

belong to sS , that is svs SSS /I=σ , where S  denotes the cardinality of a set S . In 

other words, σ  is the specificity of the prediction of STLS with respect to the prediction 

of VIENNA. For ε =0.68, 0.72, 0.78, and 0.80 we obtained the following values ofσ : 

0.88, 0.91, 0.98, and 0.99 respectively. This indicates that the predictions of STLS are 

consistent with the predictions of the traditional method if the stability threshold is high 

enough.  

 

Another accuracy test was performed on the set of 56 micro-RNAs in Caenorhabditis 

elegans. Recall that micro-RNAs are small (about 22nt) regulatory RNAs that are 

generated from the common stem-loop precursors by the process requiring Dicer, a 

protein that cleaves the stem-loop [7]. These precursors are structures with short loops 

and long stems, which have only few small bulges or internal loops. This study was 

motivated by the challenge to determine whether STLS can find micro-RNA sequences in 

C. elegans genome. The complete sequence of C. elegans was obtained from the 

WORMBASE website [8] and then scanned with STLS using stability thresholds varying 
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from 0.68 to 0.82. For ε =0.68 it yielded approximately 44000 stable stem-loops, which 

together correspond to approximately 4% of the genome. It turned out that 36 of 56 

micro-RNAs (64.3%) were in our list.  

 

However, micro-RNAs correspond to only a small fraction of the stem-loops found by 

STLS. It is interesting to explore the rest of the list. We examined all 44000 stem-loops 

for their lengths, locations in chromosomes and membership in annotated functional parts 

of the genome. The distribution of length (figure 1) revealed that the most of them are 

short (less than 100nt). However, there is a large fraction of very long stable stem-loops 

(400 nt and longer), which can be seen at higher thresholds (ε =0.82).  In the next 

experiment we investigated the spatial density of stable stem-loops. Figure 2 shows that 

this distribution is very uneven and biased towards the ends of chromosomes. To verify 

this observation numerically, we subdivided all chromosomes into 250 bins of equal 

length and calculated the number of stem-loops in , and GC content iβ  for each bin. The 

values of Pearson correlation coefficient r  (for in  versus 5.02 −⋅ iβ ), Spearman rank 

correlation 'r , and 2χ statistics (for in ) are given in table 3. The P -values for 2χ  test with 

=n 249 degrees of freedom were computed using approximation by normal distribution 

with mean n  and standard deviation n2 . 

 

In an attempt to elucidate possible functions of the stem-loops found, we mapped them to 

annotated introns, exons, intergenic regions, 5'- and 3'-untranslated regions (5'UTRs and 

3'UTRs, respectively).  The quality of this analysis, however, is very dependent on the 

quality of the predictions of intron-exon boundaries and untranslated regions. As the 

actual length of the UTRs was not known, we used 180-long sequences upstream and 

downstream of the corresponding genes. The corresponding densities of the stable stem-

loops in introns, exons, genes (introns + exons), intergenic regions, 5'UTRs, and 3'UTRs 

were 23.4, 11.6, 16.3, 17.4, 7.9, and 10.8 bases of stem-loops per 1000 of bases of 

sequence, respectively. Note that introns have higher, while untranslated regions have 

lower values of stem-loop density compared to exons and intergenic regions. 
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Discussion 

A common argument against the maximum number of base pairs approach to the RNA 

secondary structure prediction problem is that the strands of a helix are held together by 

coaxial stacking interactions of paired bases rather than by hydrogen bonds. In the 

VIENNA package the energies of helices are calculated by adding stacking energies for 

each pair of neighboring base pairs. However, if we set the stability threshold at 0.78 or 

higher then the predictions of both VIENNA and STLS are essentially the same 

(specificity %98=σ ), although STLS doesn't take stacking energies into account. This 

happens because at high value of threshold we a priori confine ourselves to very long 

helices. In any double-stranded structure of length n  there are n  base pairings, and 1−n  

stacking interactions. Certainly, as n  increases, the differences between stacking energies 

of different base pairs average out yielding a quantity that is proportional to the number 

of stacking interactions. So, when the normalization is performed, the discrepancy 

between a purely base pairing energy function and the energy function that also takes 

stacking energies into account decreases as n  gets larger and nn /)1( −  becomes closer 

to one. This explains why lengthy stem-loops were correctly predicted by STLS at high 

threshold levels. Of course, the predictions of STLS and VIENNA differ more 

significantly when ε  is smaller than 0.78, which has to do with the fact that stacking 

doesn't treat all combinations of bases equally, while STLS scores them the same. Note 

that one of the advantages of STLS is increase in calculation speed (about 5000 fold for a 

500-long sequence). Thus, in the cases when lower thresholds are needed, one can use 

STLS for preliminary identification of the stable regions, and then refine their secondary 

structures with VIENNA or MFOLD. We also recall that STLS can use any matrix of 

free energies ijE  (for instance, the matrix generated by VIENNA) as an input.  

 

In the experiment with micro-RNAs we were able to localize about 64% of micro-

RNAs [7] to a list of 44,000 segments (approximately 4% of the genome) without any 

prior knowledge about their positions and relying solely on the hypothesis that they 

belong to stable stem-loops. This result, of course, is a usual interplay between sensitivity 

and specificity: the sensitivity drops dramatically when the specificity increases (table 2). 
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There was no micro-RNAs found for =ε 0.76. This fact might indicate that the stem-loop 

precursors of micro-RNAs have to be stable but slightly imperfect in order to be 

recognized by the cellular machinery and bypass degradation pathways. 

 

While micro-RNAs are needed to repress the translation of a target gene, the function of 

the other stem-loops, as well as their origin, remains unclear. Figure 1 shows that the 

most of them have length about 100nt, but there is also a fraction of longer (400 nt and 

above) stem-loops. According to table 1, the presence of these long stem-loops is 

qualified as essentially non-random. It is remarkable that they were seen at all four 

thresholds, separating from the short fractions when the threshold increases. The 

similarity of the peaks' structures in figure 1 (b), (c), and (d) suggests that these very long 

stem-loops are threshold independent. 

 

From now on we set =ε 0.82. The regularity of the peaks in figure 1 (d) suggests that 

such family of stem-loops might appear as a result of gene duplication or be developed 

by exogenous factors such as multiple incorporation of double-stranded genetic material 

into the same spot on DNA. The latter hypothesis is supported by the fact that the 

abscissas of peaks on figure 1 are almost multiple of each other. However, the spatial 

correlations between stem-loops' locations (figure 2) is indicative of generation through 

tandem duplication. Indeed, repetitive elements often have inverted repeats associated 

with them (in the form of LTRs), and as such would be expected to score highly in STLS. 

 

It is very remarkable that the distribution of stable stem-loops in C. elegans chromosomes 

is very uneven and biased towards their ends (see figure 2 and P-values in table 3). This 

finding is in good agreement with the results of Surzycki and Belknap on the distribution 

of MITE-like repeats in C. elegans [9] and with the fact that central regions of autosomes 

(chromosomes I-V) have higher density of genes than their arms [10]. One may expect a 

greater probability of paired bases in sequences that are either GC-rich or GC-poor, since 

the probability of any two bases being complementary is higher in such sequences. Our 

analysis (Pearson and Spearman statistics in table 3) showed that this was not 

contributing significantly. 



 10

 

Also, it is not entirely clear whether the clusters of stable stem-loops carry out any 

biological function. Recall that the density of the stable stem-loops in introns and 

intergenic regions is at least two times higher than in untranslated regions. This 

observation is not surprising because the untranslated regions usually contain important 

cis-elements that are responsible for protein-RNA interactions; secondary structures 

would potentially compete with or disrupt such interactions and therefore might be 

expected to be selected against in the UTR sequence. 

 

Conclusions 

We presented an efficient method for prediction of stable RNA secondary structure. The 

key part of the method relies on the normalization of the equilibrium free energy to the 

length of the sequence. In the class of stable secondary structures the algorithm was 

shown to have good performance for long sequences and the results are consistent with 

the other RNA secondary structure prediction methods. Using this method we located the 

regions in C. elegans genomic sequence that encode for stable secondary structures and 

characterized their distributions. In particular, we localized 64% of micro-RNAs 

previously reported by Lau in approximately 4% of the genome relying solely on the 

property of micro-RNAs to belong to the stable stem-loops. We report that there is a 

fraction of long (400nt and above) stable stem-loops in C. elegans genome; their 

distribution is very uneven and skewed towards the ends of chromosomes. The method 

we developed can be used for the detection of transcription termination signals and 

putative micro-RNAs, as well as many other regulatory elements that correspond to 

stable secondary structure. 
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Appendix 

We recall the formal language of secondary structures. Let ),( 1 nxxX K=  be a sequence 

of letters from the alphabet },,,{ GTCA=Ω . A secondary structure is a set S  of pairs 

),( ji  with nji ≤<≤1  such that for all Sjiji ∈)','(),,(  the condition 'ii =  implies 

'jj =  and vice versa. The relation“p ”, where  ),()','( jiji p  if jjii <<< '' , defines a 

partial order on S . A secondary structure is said to be non-branching if “p ” is a linear 

order, that is, if 'ππ p  or ππ p'  for all S∈',ππ . Consider the following additive energy 

function 

∑
∈

=
Sji

ji xxeSXE
),(

),(),( ,  

where ),( ⋅⋅e  is a scoring matrix. For simplicity, now we assume that 2),( =yxe if x  

and y  are Watson-Crick complementary bases and 0),( =yxe  otherwise. We define 

{ }branchingnonisSSXEXE
S

−= |),(max)( ,  

that is, )(XE  is the maximum number of complementary bases in the sequence X  over 

all possible non-branching secondary structures. 

 

For a given sequence X , the value of )(XE is calculated recursively by formula 

{ },),(,,max 1111 jijiijjiij xxeEEEE += −+−+   

where )),,(( jiij xxEE K= , nji K1, = . Then the matrix ijE  is transformed to the matrix 

ijε  using (1), and then all regions that have ijε  greater than a certain threshold value are 

identified. If the length of a stem-loop has a prior upper bound d , then in place of ijE  we 

consider the matrix kiiik EE +=' , which is also expressed recursively as 

{ }),(,,max '
21

'
1

'
11

'
kiikiikkiik xxeEEEE +−+−−+ += ,  

where dni −= K1  and dk K1= , and then it is transformed to the matrix ijε . 
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Now we want to calculate the probability of observing a stable stem-loop in a random 

sequence.  Suppose that X  is a sequence of independent random letters nxx ,,1 K  that 

came from the same (but not necessarily uniform) distribution. Let p  denote the 

probability that two independent random letters from this distribution are complementary. 

Then )(XEEn = is a random number that depends only on n  and p . 

 

We are ready to estimate the probability distribution of nE . Define )(kPn  as the 

probability that kEn ≥ . We may assume that k  is an even integer. For non-branching 

structures the event }{ kEn ≥  can be decomposed into the sum of smaller mutually 

exclusive. Namely, the outmost arc of a non-branching secondary structure that connects 

bases i  and j  can be placed in ln +−1  different ways, where 1+−= ijl , and there are 

n  possibilities for choosing the value of l . Since the probability that the outmost arc has 

length l  is smaller than or equal to p , we get 

∑
=

− −−≤
n

kl
ln kPlnkP )2()()( 2  (4) 

Applying (4) to itself recursively s  times, we get 

∑ ∑∑
=

−
=

−
=

−−−−≤
−1

2

1

1

)2()()()()( 21211

l

kl
sl

l

kl
ss

n

kl
n skPlllllnkP

s

s

s

K .  

This process will stop when sk 2= . To estimate )(kPn , we use the following continuous 

approximation 

∑ ∫
=

+

++
=−≈−

n

i

n

o

k
kk

kk
ndxxxniin

0

2

)1)(2(
)()( .  

Then we can estimate )(kPn  as 2/!
)()( k

k

n pk
knkP −≤ . Using the Stirling formula, we get 

2/)( kk
k

n pe
k

knkP 





 −≤ ,  

where e  is the base of the natural logarithm. Equivalently, if we denote nk / by ε  then 

( )n
nP )()( ελε ≤ , (5) 
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where )(ελ  is given by (3). Note that )(εnP  is the probability that a random sequence of 

length n  has stability factor greater than or equal toε . Now we fix ε  and consider )(εnP  

as a function of n . The inequality (5) gives us an upper limit estimate for )(εnP . We are 

interested in a range of ε  such that ( )n)(ελ decays when n  increases. This condition 

holds only if ( )pepe +=≥ 1/0εε . Particularly, for the uniform distribution we have 

25.0=p  and 57.00 =ε . The approximation for !k  assumes that the values of k  and, 

therefore, of n  are large enough. Thus, formula (5) effectively estimates only the “tail”' 

of the function )(εnP . 

 

It trivially follows from (5) that if nN >>  then the probability that a random sequence of 

length N  contains a n -long and ε -stable subsequence is )(εnPN ⋅ . Now we are 

interested in the critical value of n , at which the presence of a n -long and ε -stable 

subsequence in a sequence of length N  can be considered as non-random. Simple 

algebra proves that if nN >> , ( ) 1)( <<nN ελ  and n  is large enough,  then the critical 

value of n  at significance level α  is given by (2).  
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Figure 1. The molar (blue) and mass (green) distributions of lengths of stable stem-loops 

at the thresholds 0.72 (a), 0.78 (b), 0.80 (c), and 0.82 (d). The numerical value of the 

molar (respectively, mass) distribution function is the percentage of ε -stable stem-loops 

(respectively, nucleotides in ε -stable stem-loops), whose lengths range from x  to dx  

(here dx is 20 nucleotides). 

 
 

Figure 2. Distributions of stable stem-loops in the genome of C. elegans. Darker regions 

correspond to higher density of stem-loops. The same intensity scale is used for all six 

chromosomes. 

 

 

Table 1. Critical lengths of stem-loops at significance levelα , stability thresholdsε , 

sequence length 810=N  (genome size of C.  elegans), and probability of complementary 

pairing 25.0=p . 

 

 

Table 2. Percentage of micro-RNAs found in ε -stable stem-loops. Here ε  and 

“% of genome” denote the stability threshold and the percentage of bases that belong to 

ε -stable stem-loops relative to genome size, respectively. 

 

 

Table 3. Pearson correlation coefficient r , Spearman rank correlation 'r , and 2χ  for the 

number of stem-loops in the i -th bin ( 2501K=i ) as a function of deviation of GC 

content from the uniform distribution. The values of 2χ  are converted to z -score and 

P -values are shown. 
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ε  
α  

0.68 0.72 0.78 0.80 0.82 

0.05 70 46 28 24 21 

0.001 83 55 33 29 25 

0.00001 98 65 40 34 30 

Table 1. 

 

 

ε  % of micro-RNA % of the genome 

0.65 64.3 17.5 

0.68 64.3 4.0 

0.71 33.9 2.2 

0.74 7.1 1.1 

0.76 0 0.4 

Table 2. 

 

 

Chromosome I II III IV V X 
210⋅r  1.95 -0.62 -5.78 0.63 -9.10 2.82 

210'⋅r  -0.51 -14.12 -0.47 8.87 -2.95 -3.11 

2χ  1020 446 831 674 795 368 

z  34.45 8.77 25.98 18.97 24.41 5.51 

P -value 259107 −⋅  18107 −⋅  148108 −⋅  79102 −⋅  130101 −⋅  10102 −⋅  

Table 3. 


