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We prove a certain transcendence property of the unipotent Albanese map of a smooth variety, conditional
on the Ax–Schanuel conjecture for variations of mixed Hodge structure. We show that this property
allows the Chabauty–Kim method to be generalized to higher-dimensional varieties. In particular, we
conditionally generalize several of the main Diophantine finiteness results in Chabauty–Kim theory to
arbitrary number fields.

1. Introduction

Let X be a smooth, connected, positive-dimensional algebraic variety of good reduction over a non-
archimedean local field K/Qp, and let X/OK be a smooth integral model. If X is defined over a number
field F ⊂ K , and S is a finite set of primes of F such that X is defined over the ring of S-integers OF,S ,
a fundamental problem in arithmetic geometry is to study the set of S-integral points X (OF,S). In
particular, when X is a hyperbolic curve, X (OF,S) is finite by Faltings’ theorem [1983], and there are
major open problems around effective computation of X (OF,S) and optimal or uniform bounds on the
size of X (OF,S). More generally, when X is a variety of general type, Lang [1986, Conjecture 5.7]
conjectured that X (OF,S) is non-Zariski-dense in X .

This paper is concerned with one approach to studying integral or rational points on varieties, the
nonabelian Chabauty method. Most prior work in this method has placed substantial restrictions on the
base field (in many cases, limited to Q only). In this paper, we show how a Hodge-theoretic conjecture
of Klingler can be used to generalize the nonabelian Chabauty method to higher-dimensional varieties,
and hence, via restriction of scalars, to curves over arbitrary number fields. The nonabelian Chabauty
method produces p-adic analytic functions on which the set of integral points vanishes; the key to
proving finiteness or non-Zariski-density results in higher dimensions is to show that these functions are
independent of each other in a suitable sense.

We begin by briefly summarizing how the nonabelian Chabauty method works. Fix a basepoint
b ∈ X (OK ). Let 5dR be the de Rham fundamental group of X with basepoint b; denote the lower
central series of 5dR by (5dR)n+1

:= [5dR, (5dR)n], and let 5dR
n :=5

dR/(5dR)n+1. This group 5dR
n is a
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unipotent K -algebraic group with Hodge filtration F •5dR
n and a Frobenius action induced by comparison

with the crystalline fundamental group.
Kim [2009] proves that 5dR

n /F0 is a moduli space for admissible torsors of 5dR
n , i.e., torsors for 5dR

n

with Hodge filtration and Frobenius action that are trivializable separately for the Hodge filtration and the
Frobenius action (the trivial torsor corresponding to the case where the Hodge filtration and Frobenius
action are compatible). Kim then constructs the unipotent Albanese map, a rigid K -analytic map

jn : X (OK )→ (5dR
n /F0)(K )

defined by sending each x ∈ X (OK ) to the class of the path torsor PdR
b,x defined via the de Rham

fundamental groupoid. Kim [2009, Theorem 1] proves that the image of jn is Zariski-dense, and uses
this to formulate a nonabelian generalization of Chabauty’s method. The reason Zariski-density is useful
is that, if Z ⊆5dR

n /F0 is an algebraic subvariety of positive codimension, then j−1
n (Z) is a K -analytic

subvariety of lower dimension than dim X (and in particular, j−1
n (Z) is finite if X is a curve).

(In applications to integral or rational points over a number field F , the subvariety Z consists of the
torsors that arise from a global torsor via the localization map logp = D ◦ locp, defined as the composition

H 1
f (Gal(F/F),5ét

n ) H 1
f (Gal(Fv/Fv),5ét

n ) ResFv
Qp
(5dR

n /F0),
locp D

where locp is given by restricting the Galois action to the local Galois group, and D is a comparison map
arising from p-adic Hodge theory. The set of integral points factors through this subvariety via a global
étale realization of the unipotent Albanese map. However, for the purposes of this paper, the origin of the
subvariety Z is irrelevant.)

In this paper, we will see that the unipotent Albanese maps conditionally satisfy a much stronger
transcendence property, a K -analytic version of the Ax–Schanuel conjecture. From this, we deduce that,
for Z of high enough codimension, j−1

n (Z) is non-Zariski-dense (not just nondense in the K -analytic
topology). For simplicity, we only work on the residue disk U ⊆ X (OK ) containing the basepoint b
(which is harmless for finiteness results since X (OK ) is a finite union of residue disks); when we refer to
an algebraic subvariety of a residue disk, we mean the intersection of an algebraic subvariety of X with
the residue disk.

Theorem 1.1. Let X be a smooth, connected, positive-dimensional algebraic variety of good reduction
over a nonarchimedean local field K/Qp, and let X/OK be a smooth integral model. Let n ≥ 1, and
assume the Ax–Schanuel conjecture for the n-th canonical unipotent variations of mixed Hodge structure
on X (C) (under some fixed embedding K ↪→ C). Let V ⊆ X ×5dR

n /F0 be an algebraic subvariety. Let
0 ⊆ X × (5dR

n /F0)(K ) be the graph of jn . Let W be an irreducible analytic component of V ∩0 ∩ U .
Then

codimX×5dR
n /F0(W )≥ codimX×5dR

n /F0(V )+ codimX×5dR
n /F0(0)

unless prX (W ) is contained in a proper weakly special subvariety of X (in the sense of [Klingler 2017,
Definition 7.1]) with respect to the n-th canonical unipotent variation of mixed Hodge structure.
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(Note: In the case n = 1, the Ax–Schanuel conjecture is just the Ax–Schanuel theorem for abelian
varieties [Ax 1972, Theorem 1], and the weakly special subvarieties are translates of abelian subvarieties.
In particular, Theorem 1.1 and Corollary 1.2 are unconditional for n = 1.)

Corollary 1.2. In the setting of Theorem 1.1, let Z ⊆ 5dR
n /F0 be a closed algebraic subvariety of

codimension at least dim X. Then there is a finite subset S ⊆ U such that U ∩ j−1
n (Z) \ S is contained in a

finite union of proper weakly special subvarieties of X.

Proof. The proof closely follows [Lawrence and Venkatesh 2020, Corollary 9.2]. Let V = X × Z . Then
V ∩0 ∩U = (U ∩ j−1

n (Z))× Z . Since Z has only finitely many irreducible components, U ∩ j−1
n (Z)=

prX (V ∩0 ∩U) also has only finitely many irreducible analytic components.
Let W be an irreducible analytic component of V ∩0 ∩U . Applying Theorem 1.1, either prX (W ) is

contained in a proper weakly special subvariety of X , or

codimX×5dR
n /F0(W )≥ codimX×5dR

n /F0(V )+ codimX×5dR
n /F0(0)

= codimX (Z)+ dim(5dR
n /F0)≥ dim X + dim(5dR

n /F0).

In the latter case, W must be zero-dimensional.
Let S be the (finite) union of all of the zero-dimensional irreducible analytic components of V ∩0∩U .

Then U ∩ j−1
n (Z)\ S is a finite union of sets that are each contained in a proper weakly special subvariety

of X , completing the proof. �

The key input is the Ax–Schanuel conjecture for variations of mixed Hodge structure.

Conjecture 1.3 (Ax–Schanuel for variations of mixed Hodge structure). Let X be a smooth connected
algebraic variety over C, and fix a basepoint b ∈ X (C). Let HZ be a Z-variation of mixed Hodge structure
on X with generic Mumford–Tate group MTHZ

. Let 3 ⊆ MTHZ
(Z) be the image of the monodromy

representation π1(X, b)→ MTHZ
(Z) (after passing to a finite cover of X if necessary). Let G be the

Q-Zariski closure of 3 in MTHZ
(Z), and let D = D(G) be the weak mixed Mumford–Tate domain

associated to G. Let ϕ : X (C)→ 3\D be the period map of HZ. Let V ⊆ X × qD be an algebraic
subvariety, where qD is the compact dual of D. Let W be an irreducible analytic component of V ∩3 such
that the projection of W to X is not contained in any proper weakly special subvariety. Then

codimX× qD(W )≥ codimX× qD(V )+ codimX× qD(3).

To deduce Theorem 1.1 from Conjecture 1.3 (or from [Ax 1972, Theorem 1] in the n = 1 case), there
are two main steps:

(1) Show that the complex unipotent Albanese map is (almost) the period map for a variation of mixed
Hodge structure.

(2) Formally deduce properties of the p-adic unipotent Albanese map from corresponding properties of
the complex map.
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Once this has been done, we use Corollary 1.2 to deduce various Diophantine consequences via the
Chabauty–Kim method. Our main results for curves are in the following setting:

Situation 1.4. Let X be a smooth, geometrically connected, hyperbolic algebraic curve over a number
field F such that Conjecture 1.3 holds for the canonical unipotent variations of mixed Hodge structure
on X . Let S be a finite set of primes of F containing all primes of bad reduction for X . Suppose we are
in one of the following settings:

(1) The Fontaine–Mazur conjecture or the Bloch–Kato conjecture is true.

(2) X = P1
\ {p1, . . . , ps}, where s ≥ 3 and p1, . . . , ps ∈OF,S ∪ {∞}.

(3) X is a CM elliptic curve minus the origin.

(4) There exists a dominant regular map X F→ YF for some smooth projective curve Y over F of genus
g ≥ 2 such that the Jacobian variety of Y has CM over F .

Theorem 1.5. In Situation 1.4, let V ⊆ ResF
Q X be an irreducible, positive-dimensional closed Q-

subvariety. Let ϕ : V ′ → V be a surjective morphism of Q-varieties such that V ′ is smooth and ϕ
is birational. Suppose S also contains all primes lying above primes of bad reduction for V ′. Let p
be a rational prime that splits completely in F , such that p /∈ S for all p lying above p. Let V ′ be a
smooth S-integral model of V ′, let b ∈ V ′(OF,S) be a basepoint, and let U ⊆ V ′(OFp) be the residue disk
containing b. Let jV ′,n : U→ (5dR

V ′,n/F0)(Qp) be the unipotent Albanese map. Then for all sufficiently
large n, the Chabauty–Kim locus

UV ′,n := j−1
V ′,n

(
logp(H

1
f (Gal(Q/Q),5V ′,n))

)
⊆ U

is non-Zariski-dense in V ′.

For F = Q, the above result is already a theorem, due to [Kim 2005; 2009; 2010; Coates and Kim
2010; Ellenberg and Hast 2021] in the various cases of Situation 1.4.

Corollary 1.6. In Situation 1.4, let X be a smooth S-integral model of X. Then X (OF,S) is finite.

Proof. Let R be a smooth S′-integral model of R = ResF
Q X , where S′ is the set of primes of Z lying

below primes in S. Restriction of scalars is compatible with base change, so R(ZS′) = X (OF,S). To
prove finiteness of R(ZS′), it suffices to show that R(ZS′) is non-Zariski-dense in every irreducible,
positive-dimensional closed Q-subvariety V ⊆ R.

By resolution of singularities, we can construct a surjective proper morphism of smooth Q-varieties
ϕ : R′→ R such that ϕ is birational, the strict transform V ′ ⊆ R′ of V is smooth, and the exceptional
locus of ϕ is transverse to V ′. Let T be a finite set of rational primes such that S′⊆ T , the varieties R′, V ′,
and V and the map ϕ are defined over ZT , and R′ and V ′ have good reduction at every prime ` /∈ T . Let V ′

be a smooth T -integral model of V ′. Applying Theorem 1.5 to each residue disk of V ′, we see that V ′(ZT )

is non-Zariski-dense in V ′. Since ϕ is proper and is an isomorphism away from an exceptional locus
transverse to V ′, it follows that R(ZT )∩ V is non-Zariski-dense in V . But ZS′ ⊆ ZT , so we are done. �
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Dogra [2019] has independently proven unlikely intersection results closely related to those of this
paper, using purely p-adic (as opposed to complex Hodge-theoretic) methods.

The structure of this paper is as follows: In Section 2, we discuss mixed Hodge varieties, variations
of mixed Hodge structure, and the Ax–Schanuel conjecture, and we describe the unipotent Albanese
map over the complex numbers in terms of certain canonical variations of Hodge structure. In Section 3,
we transfer from the complex setting to the p-adic setting, using the results of Section 2 to deduce
Theorem 1.1. In Section 4, we note an implication for Chabauty’s method of the Ax–Schanuel theorem
for abelian varieties; this is the abelian analogue of the main results of this paper. In Section 5, we prove
Theorem 1.5 by making the necessary modifications to the proofs over Q. Some possible directions of
future work are discussed in Section 6.

Note added in proof. After this paper was accepted but prior to publication, Chiu [2021] and Gao
and Klingler [2021] posted preprints proving the Ax–Schanuel conjecture for variations of mixed Hodge
structure (Conjecture 1.3), which is the necessary input to make Theorem 1.1 unconditional.

2. Higher Albanese manifolds as period domains

In this section, we show that the complex unipotent Albanese map is almost the period map for the
canonical variation of Hodge structure, which assigns to each x ∈ X the truncated path algebra Pb,x :=

Zπ1(X; b, x)/J n+1 (where J is the augmentation ideal). The primary references are [Hain and Zucker
1987], [Bakker and Tsimerman 2019], and [Klingler 2017].

Let X be a smooth connected variety over C. Choose a point b ∈ X (C). Let 5 be the unipotent
completion of the fundamental group of X with basepoint b, and let 5n be the quotient of 5 by the
(n+1)-st level of the lower central series. This is an algebraic group over C that comes equipped with a
natural mixed Hodge structure.

The n-th higher Albanese manifold is the complex manifold

Albn(X) := π1(X, b)\5n(C)/F05n(C).

This does not depend on b, and is typically not an algebraic variety for n > 1. (For n = 1, this is the
classical Albanese variety.)

The unipotent Albanese map is the map

αn : X (C)→ Albn(X)

defined via Chen’s π1-de Rham theory by mapping x ∈ X (C) to the iterated integration functional
ω 7→

∫ x
b ω; the quotient by the topological fundamental group ensures this is independent of the choice

of path from b to x . This map does depend on b.
By [Hain and Zucker 1987, Proposition 4.22], the map x 7→ Pb,x defines a graded-polarizable variation

of mixed Hodge structure H on X (C), called the n-th canonical variation. This variation is unipotent in
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the sense that the variations of (pure) Hodge structure on the graded quotients for the weight filtration are
constant.

Let Mn be the generic Mumford–Tate group of the n-th canonical variation. The monodromy represen-
tation for the canonical variation is given by

ρ : π1(X, b)→ GL(Pb,x), β 7→ (γ 7→ γβ−1),

the right regular representation of π1(X, b) on the Pb,b-bimodule Pb,x . Since the canonical variations are
unipotent, the monodromy representation ρ is also unipotent. Let Gn be the Zariski closure of the image
of the monodromy representation. Then Gn is unipotent, so ρ factors through the unipotent completion
π1(X, b)→5. The kernel of ρ is J n+1

∩π1(X, b), so Gn ∼=5n .
The weak mixed Mumford–Tate domain D = D(5n) associated to the monodromy group 5n is the

5n(C)-orbit of the canonical mixed Hodge structure on Pb,b in the full period domain of graded-polarized
mixed Hodge structures on Pb,b. In particular, D is a homogeneous space for 5n(C), and is a mixed
Mumford–Tate domain in the sense of [Klingler 2017, §3.1].

As explained in [Hain and Zucker 1987, §5], the stabilizer of a point in D is F05n(C); thus, D ∼=
5n(C)/F05n(C). One quotient of D by a discrete group is the higher Albanese manifold:

Albn(X)= π1(X, b)\D.

Another such quotient is the connected mixed Hodge variety [Klingler 2017, §3]

Hod0(X,H , D) := Hod0
3(5n, D)=3\D,

where 3 = (5n(Q)∩GL(Pb,b)). The action of π1(X, b) on D factors through 5n(Q)∩GL(Pb,b), so
there is a natural covering map

Albn(X)→ Hod0(X,H ).

By [Hain and Zucker 1987, Corollary 5.20(i)], the period map

ϕn : X (C)→ Hod0(X,H )

factors through this covering map via the unipotent Albanese map αn . (Hain and Zucker are using a
different classifying space as the target of the period map, but the conclusion is the same since one just
has to show that ϕn(x) depends only on αn(x).)

Now we can immediately deduce:

Lemma 2.1. Let X be a smooth connected variety, and fix a point b ∈ X (C) and an integer n≥ 1. If n> 1,
assume Conjecture 1.3 for the n-th canonical variation on X. Let αn : X → Albn(X) be the unipotent
Albanese map with basepoint b. Let D = 5n(C)/F05n(C). Let V ⊆ X ×5n/F05n be an algebraic
subvariety. Let 0⊆ X (C)×D be the graph of αn pulled back via the covering map D→Albn(X). Let W
be an irreducible analytic component of V ∩0 such that the projection of W to X is not contained in any
proper weakly special subvariety. Then

codimX×D(W )≥ codimX×D(V )+ codimX×D(0).
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Proof. Applying Conjecture 1.3 (or [Ax 1972, Theorem 1] if n = 1), we obtain the lemma where the
higher Albanese manifold is replaced with the mixed Hodge variety Hod0(X,H ) associated to the n-th
canonical variation of Hodge structure. Since 5n(C)/F05n(C) is compatibly a covering space of both
Albn(X) and Hod0(X,H ), the graph 0 is the same in both cases, so this is in fact a special case of the
Ax–Schanuel conjecture. �

3. p-adic Ax–Schanuel for the unipotent Albanese map

In this section, we deduce Theorem 1.1 from Lemma 2.1 by transferring from the complex setting to the
p-adic setting. This argument closely follows (and was partly inspired by) Lawrence and Venkatesh’s
application [2020, §9] of Ax–Schanuel for a pure variation of Hodge structure, which they also use to
deduce Diophantine consequences (in their case for integral points in certain families of varieties).

Let X be a smooth, connected, positive-dimensional algebraic variety of good reduction over a
nonarchimedean local field K/Qp, and let X/OK be a smooth integral model. Fix a basepoint b∈X (OK ),
and let U ⊆ X (OK ) be the residue disk containing b. Let 5dR be the de Rham fundamental group of X
with basepoint b, and let 5dR

n be the quotient of 5dR by the (n+1)-st level of the lower central series.
Recall from the introduction the p-adic unipotent Albanese map

jn : U→ (5dR
n /F0)(K ).

Let V ⊆ X ×5dR
n /F0 be an algebraic subvariety, and let 0 ⊆ U × (5dR

n /F0)(K ) be the graph of jn .
Let W be an irreducible analytic component of V (K )∩0, and suppose

codimX×5dR
n /F0(W ) < codimX×5dR

n /F0(V )+ codimX×5dR
n /F0(0). (3-1)

To prove Theorem 1.1, we must show that the projection prX (W ) of W to X is contained in a proper
weakly special subvariety of X .

We work locally around an arbitrary point w ∈ V (K )∩ 0. The K -analytic local ring of X (OK )×

(5dR
n /F0)(K ) at w is isomorphic to some Tate algebra R = K 〈x1, . . . , xN 〉, and 0 is defined locally

near w by G1 = · · · = Gr = 0 for some G1, . . . ,Gr ∈ R.
The coordinates of the map jn (and hence the equations defining its graph 0) are given by the p-adic

iterated integration functionals x 7→
∫ x

b ω of depth n (where ω = ω1 · · ·ωn is given by the choice of
coordinate of the affine space 5dR

n /F0). These iterated integration functionals are defined locally by the
same differential equations in both the p-adic and complex analytic settings; hence, when the power series
G1, . . . ,Gr are viewed as complex power series (via an embedding K ↪→ C), they converge in a small
ball UC around w in X (C), and they locally define the graph 0′ of (a local lifting of) the holomorphic
unipotent Albanese map

αn :UC→ (5dR
n /F0)(C)= D,

which is also given by iterated integration (and hence by the same differential equations). Here, D is the
weak mixed Mumford–Tate domain from Section 2.
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Let I be the defining ideal of V as an algebraic subvariety of X × 5dR
n /F0. Choose functions

F1, . . . , Fs ∈ I such that the equations F1=· · ·=Fs=G1=· · ·=Gr=0, where s+ r=codim(V (K )∩0),
locally define an analytic variety of the same dimension as V (K )∩0 at w. (This is to avoid complications
if V (K )∩0 happens not to be an analytic locally complete intersection at w.) By the assumption on the
codimension (3-1), s < codim V .

Since F1, . . . , Fs are regular functions, we can view them over C without convergence issues; let
V ′ = {F1 = · · · = Fs = 0}. Consider any irreducible component W ′ of V ′ ∩0′. By construction, V ′ ∩0′

is locally a complete intersection at w, so

codimX×D(W ′)= s+ r < codimX×D(V )+ r = codimX×D(V ′)+ codimX×D(0
′).

By Lemma 2.1, prX (W
′) is contained in a proper weakly special subvariety of X . Since V ⊆ V ′, it

follows that prX (V (C)∩0
′) is contained in a finite union of such varieties, and using the fixed embedding

K ↪→ C, we obtain the same for prX (V (K )∩0). �

4. Implications for Chabauty’s method

In the case n= 1, motivated by Siksek’s heuristic argument [2013, §2], we note the following consequence
of the Ax–Schanuel theorem for abelian varieties [Ax 1972, Theorem 1]:

Proposition 4.1. Let V be a smooth, projective, geometrically connected variety over Q. Let A be the
Albanese variety of V . Let d = dim V , let g = dim A, and let r be the rank of A(Q). Let ι : V → A be
the Abel–Jacobi map associated to a chosen basepoint b ∈ V (Q). Let p be a prime of good reduction
for V . Let r + δ be the Zp-rank of the Bloch–Kato Selmer group H 1

f (Gal(Q/Q), Tp A). (Note that δ = 0
if XA[p∞] is finite, as is conjectured.)

Suppose r + δ ≤ g− d. Then
ι(V (Qp))∩ A(Q),

where the closure is in the p-adic analytic topology in A(Qp), is contained in a finite union of cosets of
proper abelian subvarieties of A.

Proof. We have a commutative diagram

V (Q) V (Qp)

A(Q)⊗Z Qp Lie(A)⊗Qp

H 1
f (Gal(Q/Q),51) (5dR

1 /F0)(Qp)

ι

logp

where 51 = Tp A⊗Zp Qp, and where logp is an algebraic map of Qp-varieties. We have

dim5dR
1 /F0

= dim A = g and dim H 1
f (Gal(Q/Q),51)= rankZp H 1

f (Gal(Q/Q), Tp A)= r + δ.
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Suppose r+δ≤ g−d . Then the image of logp is an algebraic subvariety of 5dR
1 /F0 of codimension at

least d . By Corollary 1.2 (which, recall, is known unconditionally in the case n= 1), there is a finite subset
S ⊆ V (Qp) such that ι−1(A(Q)) \ S is contained in a finite union of proper weakly special subvarieties
of V .

By comparison with the complex setting, weakly special subvarieties for the Albanese map are exactly
the pullbacks to V of bialgebraic subvarieties for the uniformization map of A, which are exactly the
cosets of abelian subvarieties, completing the proof. �

Remark 4.2. (1) If the condition r + δ ≤ g− d remains true upon restriction to any abelian subvariety
of A, then applying Proposition 4.1 inductively implies ι(V (Qp)) ∩ A(Q), and hence V (Q), is
finite. However, this does not always happen; see [Dogra 2019, §2.2] for a counterexample, which
demonstrates Siksek’s heuristic does not always work and refutes the conjecture made in the author’s
thesis [Hast 2018, Conjecture 5.1].

(2) The motivating case is when V = ResF
Q X is the restriction of scalars of a curve X/F with F a

number field. Let gX be the genus of X , and J the Jacobian variety of X . Then r is the rank of J (F),
d = [F :Q], and g− d = d(gX − 1).

(3) This is essentially proven in [Dogra 2019, Corollary 2.1], which Dogra proved independently while
this paper was in preparation. (Dogra doesn’t explicitly state in Corollary 2.1 that the Chabauty locus
is contained in a translate of a proper abelian subvariety, but that can be extracted from the proof.)

5. Implications for the Chabauty–Kim method

In this section, we deduce Theorem 1.5 from Corollary 1.2. The following lemma is the key intermediate
result:

Lemma 5.1. In Situation 1.4, let V ⊆ ResF
Q X be an irreducible, positive-dimensional closed subvariety.

Let ϕ : V ′ → V be a surjective morphism of Q-varieties such that V ′ is smooth and ϕ is birational.
Expand S (if necessary) to include all primes of bad reduction for V ′. Let p be a rational prime that splits
completely in F/Q such that p /∈ S for all p lying above p. Let5V ′,n be the depth n unipotent fundamental
group of V ′. Then

lim
n→∞

codim5dR
V ′,n/F0 logp

(
H 1

f (Gal(Q/Q),5V ′,n)
)
=∞.

In other words, the codimension of the image of the global Selmer variety inside the local Selmer
variety grows without bound as n→∞.

Before proving the lemma, we prove Theorem 1.5 assuming the lemma.

Proof of Theorem 1.5. Recall that the goal is to prove that the set

UV ′,n := j−1
V ′,n

(
logp(H

1
f (Gal(Q/Q),5V ′,n))

)
⊆ U,

where U ⊆ V ′(OFp) is the residue disk containing b, is non-Zariski-dense in V ′.
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Adopting the notation of Lemma 5.1, let Z be the image of the regular map

logp : H
1
f (Gal(Q/Q),5V ′,n)→5dR

V ′,n/F0.

By Lemma 5.1, if n is sufficiently large, then Z has codimension at least dim V ′. By Corollary 1.2, it
follows that j−1

V ′,n(Z) is contained in the union of a finite set and finitely many weakly special subvarieties
of V ′. In particular, j−1

V ′,n(Z) is non-Zariski-dense in V ′. �

Remark 5.2. Using the method of [Dogra 2019, §5], one can show additionally that the weakly special
subvarieties arising above are defined over a number field, hence (by induction on dimension) that Un

itself is finite. Since this is not needed to prove finiteness of X (OF,S), we do not do so here.

In the remainder of this section, we verify Lemma 5.1 in each of the cases of Situation 1.4.

5A. Generalities. Let X be a smooth, geometrically connected, hyperbolic algebraic curve over a number
field F . Let R = ResF

Q X , and let V ⊆ R be an irreducible, positive-dimensional closed subvariety. Let
ϕ : V ′→ V be a surjective regular map of Q-varieties such that V ′ is smooth and ϕ is birational.

Let S be a finite set of primes of Q containing all of the primes of bad reduction for X and for V ′.
Let p /∈ S be a rational prime that splits completely in F/Q. Let T = S ∪ {p}. Let GT = Gal(QT /Q),
where QT is the maximal algebraic extension of Q unramified outside T . Let 5V ′,n be the depth n
unipotent fundamental group of V ′.

We will prove that, in each of the cases of Situation 1.4, for a suitable quotient Un of 5V ′,n , we have
the following inequality of dimensions: there exists c < 1 such that

dim H 1
f (GT ,Un) < c · dim U dR

n /F0U dR
n .

This immediately implies the conclusion of Lemma 5.1.
In each case, the quotient Un will in fact be a quotient of the algebraic group

ϒn := ϒ/(ϒ ∩5
n+1
R ),

where ϒ is the image of the induced morphism 5V ′→5R of prounipotent fundamental groups, and the
superscript denotes the level of the lower central series of 5R . (This is the construction of [Ellenberg and
Hast 2021, §3.3], except here we start with the full prounipotent fundamental groups, not the metabelian
quotients.) Note that, by construction, 5V ′,n surjects onto ϒn , and ϒn is an algebraic subgroup of 5R,n .

In this subsection, before splitting into the different cases, we state some initial facts that apply in
general. These reductions closely follow those of [Kim 2009] and [Coates and Kim 2010].

First, we have an inequality

dim H 1
f (GT ,Un)≤ dim H 1(GT ,Un),

so it suffices to bound the latter dimension. We also have short exact sequences

0→ Zn→Un→Un−1→ 0,
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where Zn =U n/U n+1 is the n-th graded piece with respect to a filtration on U (for example, the filtration
induced by the lower central series filtration on 5R). Applying cohomology, we obtain an exact sequence

H 0(GT ,Un−1)→ H 1(GT , Zn)→ H 1(GT ,Un)→ H 1(GT ,Un−1).

By a weight argument, H 0(GT ,Un−1)= 0, so it follows that

dim H 1(GT ,UN )≤

N∑
n=1

dim H 1(GT , Zn).

Now that we have reduced to Galois cohomology with abelian coefficients, we can use standard tools
of Galois cohomology. By the global Poincaré–Euler characteristic formula,

dim H 1(GT , Zn)= dim H 0(GT , Zn)+ dim H 2(GT , Zn)+ dim Zn − dim Z+n ,

where Z+n is the subspace fixed by the action of complex conjugation on Zn . Again by a weight argument,
we have dim H 0(GT , Zn)= 0.

On the other side, we have

dim U dR
N /F0U dR

N = dim U dR
N − dim F0U dR

N =

N∑
n=1

dim Zn − dim F0U dR
N .

So, to prove Lemma 5.1, it suffices to show the following asymptotic inequalities:

(1)
∑N

n=1 dim Z+n ≥ c ·
∑N

n=1 dim Zn for some c > 0;

(2) dim F0U dR
n � dim Un for n� 1; and

(3) dim H 2(GT , Zn)� dim Zn for n� 1.

The first two turn out to be straightforward in general, while the bound on H 2 is difficult.

5B. Arbitrary hyperbolic curves, conditionally. Kim [2009] proves the dimension hypothesis for an
arbitrary curve X over Q of genus g ≥ 2, conditional on either the Bloch–Kato conjecture or the
Fontaine–Mazur conjecture. We generalize this to varieties V ′� V ⊆ R = ResF

Q X as above.
In this section, let Un =ϒn , as defined in Section 5A, and let Zn = (ϒ ∩5

n
R)/(ϒ ∩5

n+1
R ), where the

superscripts denote the lower central series.
Let Z X,n =5

n
X/5

n+1
X be the n-th graded piece of 5X , and likewise for Z R,n . Since RF ∼= X×[F :Q]F , we

have a dominant morphism V ′F → X×d
F , where d = dim V ′. By [Ellenberg and Hast 2021, Lemma 4.1],

this induces a surjection of prounipotent fundamental groups, hence a Gal(F/F)-equivariant surjection
Zn � Z⊕d

X,n , where Z X,n =5
n
X/5

n+1
X is the n-th graded piece of 5X .

We also have a Gal(Q/Q)-equivariant injection Zn ↪→ Z R,n (since by construction Zn is a subset
of Z R,n), and a Gal(F/F)-equivariant isomorphism Z R∼= Z⊕[F :Q]X,n . Putting these together yields dimension
bounds

d · dim Z X,n ≤ dim Zn ≤ [F :Q] · dim Z X,n.
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Let b1 = dim Z X,1, so that b1 = 2g if X is compact and b1 = 2g+ s − 1 if X is noncompact with s
punctures. By [Kim 2009, §3], in the limit as n→∞,

dim Z X,n =
bn

1

n
+ o(bn

1)

if X is noncompact and

dim Z X,n =
(g+

√
g2− 1)n

n
+ o(bn

1)

if X is compact, while

dim F05dR
X,n ≤ gn,

and, assuming the Fontaine–Mazur conjecture or the Bloch–Kato conjecture,

dim H 2(G F,T , Z X,n)≤ P(n)gn

for some polynomial P(n).
Since Zn has weight n, by comparison with complex Hodge theory, we have dim Z+n =

1
2 dim Zn for n

odd. The above dimension bounds on Zn and Z X,n then yield

N∑
n=1

dim Z+n ≥
∑
n≤N
n odd

dim Z+n =
1
2

∑
n≤N
n odd

dim Zn ≥ c
N∑

n=1

dim Zn

for some constant c > 0, as was to be shown.
Next, the injection U dR

n ↪→5dR
R,n
∼= (5dR

X,n)
⊕[F :Q] is compatible with the Hodge structures, so

dim F0U dR
n ≤ [F :Q] · dim F05dR

X,n = O(gn).

Since g < b1, it follows that F0U dR
n does not contribute to the asymptotic.

We can compare H 2(GT , Zn) to H 2(GT , Z X,n) using the idea of [Ellenberg and Hast 2021, Lemma
6.4]: The corestriction map

H 2(G F,T , Zn)→ H 2(GT , Zn)

is surjective because Zn is a divisible abelian group. By the semisimplicity theorem of Faltings and Tate,
Z X,1 is a semisimple G F,T -representation, and thus (Z⊗n

X,1)
⊕[F :Q] is semisimple. Therefore, the surjection

Z⊗n
X,1 � Z X,n splits and realizes Z X,n as a direct summand, so Z X,n is also semisimple.
The Gal(F/F)-equivariant injection Zn ↪→ Z⊕[F :Q]X,n therefore realizes Zn as a direct summand. Coho-

mology preserves direct summands, so

dim H 2(GT , Zn)≤ dim H 2(G F,T , Zn)≤ [F :Q] · dim H 2(G F,T , Z X,n)≤ P(n)gn.

Thus H 2(GT , Zn) also does not contribute to the asymptotic.
This completes the proof of Lemma 5.1 in case (1) of Situation 1.4. �
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5C. Genus zero. In this section, suppose X =P1
\{p1, . . . , ps} with s ≥ 3 and p1, . . . , ps ∈OF,S∪{∞}.

Then Z X,1 =Qp(1)s−1, and more generally, Z X,n =Qp(n)rn for some rn > 0.
As explained in [Kim 2005] and [Hadian 2011, §8], we have F05X = 0. Moreover, by the Soulé

vanishing theorem, H 1(GT ,Qp(2n))= 0 and dim H 1(GT ,Qp(2n+ 1))= 1 for any n ≥ 1. So

dim H 1
f (GT ,5X,n)≤

n∑
i=1

dim H 1(GT , Z X,i )= R+ r3+ r5+ · · ·+ r2bn/2c,

where R = dim H 1(GT ,Qp(1)). Since each ri is positive, for sufficiently large n, this is less than

dim5X,n/F0
= dim5X,n = (s− 1)+ r2+ · · ·+ rn.

To generalize to our setting, let Un =ϒn be the same quotient of 5V ′,n defined in Section 5A. Then,
as before, we have a Gal(Q/Q)-equivariant injection Un ↪→5R,n . Choosing an embedding X ↪→ A1

F as
an open subscheme, functoriality of restriction of scalars gives an open embedding R ↪→ A

[F :Q]
Q

, so R is
a rational variety.

Hence, by [Deligne and Goncharov 2005, Proposition 4.15], 5R is mixed Tate, and thus so is Un . So
we can apply the same Soulé vanishing argument as above to see that

∑n
i=1 dim H 1(GT , Zi )� dim Un .

This completes the proof of Lemma 5.1 in case (2) of Situation 1.4. �

5D. Punctured CM elliptic curves. In this section, suppose X = E \{O}, where E is a CM elliptic curve
over F , and O ∈ E is the identity. We generalize Kim’s results [2010, Theorem 0.1] to the setting of
Lemma 5.1.

Choose p to split as p = ππ in the CM field K . As described in [Kim 2010, §1], this gives a splitting

5X,1 ∼= Vπ (E)⊕ Vπ (E)

into the rational π -adic and π -adic Tate modules, which are one-dimensional and we take to be generated
by elements e and f , respectively. The Lie algebra L of 5X is the pronilpotent completion of the free
Lie algebra on generators e and f , and L has a Hilbert basis of Lie monomials in e and f .

As Kim shows, the Lie ideals L≥n,≥n generated by monomials of degree at least n in each generator
are Galois-equivariant. Let W be the quotient of 5X corresponding to the quotient Lie algebra L/L≥2,≥2.
Let Wn = W/W n+1 and Z X,n = W n/W n+1, where W • denotes the lower central series filtration of W .
Then we have a Gal(Q/Q)-equivariant isomorphism

Z X,n ∼=Qp(χ
n−2(1))⊕Qp(χ

n−2(1)),

where χ and χ are the Galois characters associated to the Galois actions on Vπ (E) and Vπ (E), respectively.
Let Un be the image of ϒn in Wn , and let Zn be the image of (ϒ ∩5n

R)/(ϒ ∩5
n+1
R ) in Z X,n . As

explained in [Kim 2010, §3], we have dim F0 ZdR
X,1 = dim F0 ZdR

X,2 = 1, while F0 ZdR
X,n = 0 for all n ≥ 3, so

the F0 term does not contribute to the asymptotic. Also, by [Kim 2010, Claim 3.1], H 2(GT , Z X,n)= 0
for all sufficiently large n. By the argument of Section 5B, it follows that H 2(GT , Zn) = 0 as well.
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(Since E has CM, we also do not need to appeal to the semisimplicity theorem, since 5X,1 is a direct
sum of Galois characters.)

In this setting, dim Zn is not growing: dim Z X,n = 2 for all n, so 2d ≤ dim Zn ≤ 2[F :Q]. So, what
we need to show is that dim Z+n < dim Zn for infinitely many n. But this follows by the same argument
as before: by comparison with complex Hodge theory, dim Z+n =

1
2 dim Zn for n odd. This completes the

proof of Lemma 5.1 in case (3) of Situation 1.4. �

5E. Curves dominating a curve with CM Jacobian. In [Ellenberg and Hast 2021], the dimension hy-
pothesis is proved for a smooth projective hyperbolic curve X over Q such that there exists a smooth
projective hyperbolic curve Y/Q with CM Jacobian and a dominant map f : XQ→ YQ (corresponding to
case (4) of Situation 1.4). We now verify Lemma 5.1 in this setting.

In this section, Un is the following quotient of ϒn: Let F ′/F be a Galois extension such that f is
defined over F ′, and let RY =ResF ′

Q (Y ). For any algebraic group W , let9W =5W/5
(3)
W be the metabelian

quotient (where the superscript in parentheses denotes the derived series). Let U be the image of 5V ′

in 9RY , and let Un =U/(U ∩9n+1
RY
).

Let Z X,n =9
n
Y /9

n+1
Y be the n-th graded piece of 9Y , and likewise for Z RY ,n . Let Zn = Z RY ,n ∩Un .

Since (RY )F ′ ∼= Y×[F
′
:Q]

F ′ , we have a dominant morphism V ′F ′→ Y×d
F ′ , where d = dim V ′. By [Ellenberg

and Hast 2021, Lemma 4.1], this induces a surjection of prounipotent fundamental groups, hence a
Gal(F ′/F ′)-equivariant surjection Zn � Zd

Y,n , where ZY,n =9
n
Y /9

n+1
Y is the n-th graded piece of 9Y .

We also have a Gal(Q/Q)-equivariant injection Zn ↪→ Z RY ,n , and a Gal(F ′/F ′)-equivariant isomor-
phism Z RY

∼= Z⊕[F
′
:Q]

Y,n . Putting these together yields dimension bounds

d · dim ZY,n ≤ dim Zn ≤ [F ′ :Q] · dim ZY,n.

Note that, as computed in [Coates and Kim 2010], we have dim ZY,n ∼ An2g−1 for some constant A > 0
in the limit as n→∞.

We obtain F0 ZdR
n = O(ng) exactly as in [Ellenberg and Hast 2021, Lemma 6.1]; note that since the

Hodge filtration is compatible with extension of the base field, it doesn’t actually matter whether p splits
completely in F ′.

Likewise, just as in [Ellenberg and Hast 2021, Lemma 6.4], we have dim H 2(GT , Zn) = O(n2g−2).
To briefly summarize the argument: Since the Jacobian of Y has CM, the Tate module ZY,1 splits as a
direct sum of characters, so the surjection Z⊗n

Y,1 � ZY,n splits, implying ZY,n is also semisimple. Thus the
inclusion Zn ↪→ Z⊕[F

′
:Q]

Y,n realizes Zn as a direct summand. Cohomology preserves direct summands, so

dim H 2(GT , Zn)≤ [F ′ :Q] · dim H 2(G F ′,T , ZY,n)= O(n2g−2).

Finally, it remains to show that dim Z+n ≥ c · dim Zn for some constant c > 0. This follows from a
minor modification of [Ellenberg and Hast 2021, §7]: We pick a Qp-basis of eigenvectors for the action
of complex conjugation on ZV ′,1, project this down to a Qp-basis of Z1, and then use the combinatorial
argument of [Ellenberg and Hast 2021, Lemma 7.3] to construct a sufficiently large subspace invariant
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under complex conjugation. The only modification is that we are using the surjection Un � U⊕d
Y,n , so the

argument is carried out for the direct sum of d copies of ZY,n . This just multiplies the dimensions by a
factor of d , which poses no problem for our application.

Putting these together, we have proven Lemma 5.1 in case (4) of Situation 1.4. �

6. Future directions

Assuming the Ax–Schanuel conjecture for variations of mixed Hodge structure, the above method can be
used to prove Lang’s conjecture on non-Zariski-density of rational points for any variety V satisfying the
asymptotic dimension hypothesis

lim
n→∞

codim5dR
V,n/F0 logp

(
H 1

f (Gal(Q/Q),5V,n)
)
=∞.

A natural question is thus which varieties of general type satisfy this condition.
Unfortunately, aside from the case of curves, many varieties of general type are simply connected, in

which case 5V,n is trivial and the dimension hypothesis cannot hold. It is an interesting problem to find
classes of varieties of general type for which the dimension hypothesis does hold, but Lang’s conjecture
is not already known. One useful test case may be varieties of the form Pn

\ D, where D is an effective
divisor; the Selmer varieties may be amenable to a more explicit description in such cases.

Another problem is to make this higher-dimensional method algorithmic. An interesting test case for
this would be restrictions of scalars of P1

\ {0, 1,∞} over a number field. Such an algorithm would
require both explicit computation of the special subvarieties occurring in the recursive construction in the
proof of Theorem 1.5, and a method for computing the finite “exceptional sets” at each stage.
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