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Abstract

We investigate rational points on higher genus curves over number fields using Kim’s

non-abelian Chabauty method. We provide an exposition of this method, including a

brief survey of the literature in the area. In joint work with Ellenberg, we then study the

Selmer varieties of smooth projective curves of genus at least two defined over Q which

geometrically dominate a curve with CM Jacobian. We extend a result of Coates and Kim

to show that the non-abelian Chabauty method applies to such a curve. By combining

this with results of Bogomolov–Tschinkel and Poonen on unramified correspondences, we

deduce that any cover of P1 with solvable Galois group, and in particular any superelliptic

curve over Q, has only finitely many rational points over Q.

We also present a strategy for generalizing the non-abelian Chabauty method to

real number fields: A conjecture on certain transcendence properties of the unipotent

Albanese map is formulated in the final two chapters of this thesis, together with a proof

that this conjecture allows a generalization of several major results in the non-abelian

Chabauty method to curves over a real number field.
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Chapter 1

Introduction

1.1 The big picture

Here is one of the central problems of number theory: Given a finite list of polynomial

equations, what can we say about the set of all integer or rational solutions to the

equations? More specifically:

(1) Are there any integer or rational solutions at all?

(2) Are there finitely or infinitely many?

(3) If finitely many, how many? (Related: How big can the solutions be?)

(4) Can we find all solutions, and prove that we’ve found all solutions? (You can start

searching, but how do you know when to stop searching for more?)

This problem has a geometric interpretation: If we consider not just integer or rational

solutions, but solutions valued in some larger set of numbers with more geometric structure

(real numbers, complex numbers, p-adic numbers, and so on), then the set of solutions

can itself be given geometric structure—a set of points, a curve, a surface, or a higher-

dimensional object. The integer or rational solutions then correspond to integral or

rational points, that is, points with integer or rational coordinates.
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In the present work, we’ll mostly look at the case of rational points on curves. A

remarkable theorem conjectured by Mordell in 1922 and proved by Faltings in 1983

tells us that there are only finitely many rational points on any curve whose genus is

at least 2. (For non-experts, you can picture the genus as the “number of holes” of the

curve. Taking into consideration all points with coordinates in the complex numbers, the

“curve” becomes two-dimensional over the real numbers—because the complex plane is a

two-dimensional plane—so it might look like a sphere (genus zero), or a torus (genus

one), or something like a torus but with multiple holes or handles.)

This still leaves some big open questions: How many rational points does any given

curve have? Is there some upper bound on the number of rational points that only

depends on the genus? Given equations for a curve, how can we provably find all the

rational points?

To give a sense of how hard this can be, here are a couple examples:

(1) Fermat’s famous “last theorem”, first conjectured in 1637, is equivalent to showing

that all curves of the form xn + yn = 1 with n > 3 have no rational solutions,

excluding the obvious ones where x or y is zero. It wasn’t proven until 1994, and

Wiles and Taylor’s proof requires techniques of algebraic geometry, number theory,

and representation theory that were totally unknown to Fermat.

(2) Diophantus’ Arithmetica, an Ancient Greek text on mathematics, poses a problem

that’s equivalent to finding rational points (x, y) on the curve y2 = x6 +x2 + 1. One

pair, (0,±1), is easy to see. Diophantus gave four less obvious points: (±1/2,±9/8).

But it wasn’t until Wetherell’s 1997 thesis that this was proven to be a complete

list of the rational points!
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Many different methods have been developed to investigate rational points on curves;

as of yet, we still don’t have a method that’s guaranteed to work for all curves. My

research is concerned with one particular method for studying rational points on curves—

called the non-abelian Chabauty method, or the Chabauty–Coleman–Kim method—which

we hope can be used to create such an algorithm, along with answers to some of the

other major questions about rational points.

So far, this method has had some notable successes, including provably computing

the set of rational points on some interesting curves where this hadn’t been done before.

The non-abelian Chabauty method has also yielded new proofs of Faltings’ theorem for

certain classes of curves; I recently proved one such result in joint work with Jordan

Ellenberg, and that result is one of the main topics of this thesis.

1.2 Technical introduction

Let F be a number field, let S be a finite set of primes of F , and let O = OF,S be the

ring of S-integers of F . Let Y be a smooth, geometrically integral, hyperbolic curve of

genus g over a number field F , and let Y be a smooth model of Y over O that admits a

smooth compactification over O. (Note that Y is hyperbolic if and only if one of the

following is true: g ≥ 2, or g = 1 and Y is affine, or g = 0 and the complement of Y in

its smooth proper model contains at least 3 points.) Our main object of study is the set

Y(O) of S-integral F -points of Y .

By Siegel’s theorem in the affine case, and Faltings’ theorem [Fal83] (formerly Mordell’s

conjecture) in the proper case, Y(O) is a finite set. Note that if Y is proper, then

Y(O) = Y (F ) by the valuative criterion for properness; we will focus mostly on this case.
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Even before Faltings, one knew finiteness of Y (F ) under certain conditions. One

early strategy, developed by Chabauty [Cha41], shows that Y (F ) is finite whenever the

Mordell–Weil rank of the Jacobian JY = Jac(Y ) is strictly smaller than g. More recently,

Kim [Kim05; Kim09; Kim12b; CK10] developed a non-abelian version of the Chabauty

method, in which the role of the Mordell–Weil group of the Jacobian is played by a p-adic

manifold called the Selmer variety, which we describe in §1.3 below. If this Selmer variety

has small enough dimension, one can conclude that Y(O) is finite. This “dimension

hypothesis” is the nonabelian analogue of the Chabauty condition

rank JY (F ) < g.

While there are many curves that fail to satisfy the Chabauty condition, it is at least

plausible to hope that every curve over every number field satisfies Kim’s dimension

hypothesis.

However, verifying the dimension hypothesis has been difficult, apart from certain

special classes of curves. Here are several classes for which the dimension hypothesis is

known:

(1) For arbitrary hyperbolic curves, conditional on either the Fontaine–Mazur conjecture

or the Bloch–Kato conjecture [Kim09];

(2) When g = 0 and F = Q [Kim05];

(3) When g = 0 and F is a totally real field [Kim12c];

(4) When Y is a CM elliptic curve minus the origin [Kim09, §4];

(5) When g ≥ 2, F = Q, the rank of JY (Q) is equal to g, the Neron–Severi group of
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JY has rank at least 2, and the p-adic closure of JY (Q) has finite index in JY (Qp)

[BDMTV17];

(6) When g ≥ 2, F = Q, and Y is a curve whose Jacobian has CM [CK10];

(7) When g ≥ 2, F = Q, and Y admits a dominant morphism, defined over Q̄, to curve

whose Jacobian has CM [EH18].

This last result, due to myself and Ellenberg, is one of the primary topics of this

thesis. To lay the groundwork for our theorem, let us first state the main theorem of

[CK10].

Theorem 1.1 ([CK10]). Let Y be a smooth projective curve over Q of genus at least 2

whose Jacobian is a CM abelian variety. Then Y satisfies the dimension hypothesis, and

in particular, Y (Q) is finite.

The central result of [EH18] is to generalize Theorem 1.1 to make it apply in slightly

greater generality, and to show how this change can be used to substantially expand the

class of curves over Q whose rational points can be proven finite via Kim’s method. The

following result is a corollary of Theorem 1.3, the main result of [EH18].

Corollary 1.2. Let Y/Q be a smooth superelliptic curve yd = f(x) of genus at least 2.

Then Y (Q) is finite.

Of course, this result is a special case of Faltings’ theorem. However, the non-abelian

Chabauty method is a fundamentally different way of proving finiteness, whose full scope

one would like to understand. In particular, Chabauty methods are more amenable than

others to providing explicit upper bounds on the number of rational points (cf. [Col85;

KRZ16; BD18a]).
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The above theorem is called a corollary because it follows from the main theorem of

our paper, which modestly generalizes Theorem 1.1.

Theorem 1.3. Let Y and X be smooth projective curves over Q of genus at least 2.

Suppose there is a dominant map fK : YK → XK for some finite Galois extension K/Q,

and suppose the Jacobian JX of X is a CM abelian variety. Then Y (Q) is finite.

Remark 1.4. We do not quite prove the dimension hypothesis for Y itself, but rather

for what one might call a “relative Selmer variety” attached to fK . Our method is

in some sense the non-abelian analogue of a method used in a paper of Flynn and

Wetherell [FW99]. In that paper, the authors study certain genus 5 curves Y/Q which

admit a dominant map f to an elliptic curve E; however, the elliptic curve, whence also

the map, is defined over a cubic extension K. The proof then proceeds by considering

the map from Y to the Weil restriction of scalars ResKQ E, which is an abelian 3-fold

defined over Q; since the rank of E(K) is the same as that of (ResKQ E)(Q), it suffices to

show that E(K) has rank less than 3. Our argument has a similar structure, utilizing

the map afforded by f from Y to the variety ResKQ X. We will state the “real version” of

our theorem, a bound on the dimension of local Selmer varieties, as Theorem 1.5 in §1.3

below, once we’ve set up the necessary definitions.

The interest of Theorem 1.3 would be limited without a supply of curves satisfying its

conditions. Fortunately, such a fund of examples is supplied by a theorem of Bogomolov

and Tschinkel [BT02] (see also [BQ17]) which shows that every hyperelliptic curve

has an étale cover which geometrically dominates a curve over Q with CM Jacobian.

Poonen [Poo05] generalized this theorem to a more general class of curves, including
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all superelliptic curves.1 By now it is well-understood that one can control the rational

points of a variety Y by controlling the rational points of the twists of an étale cover of

Y . This circle of ideas will allow us to derive Corollary 1.2 from Theorem 1.3.

In §1.3, we briefly sketch Kim’s nonabelian Chabauty method. In §2, we define certain

quotients of the étale and de Rham fundamental groups. In §2.4, we prove surjectivity

of certain maps between fundamental groups. In §2.5, we define Selmer varieties and

unipotent Albanese maps associated to the algebraic groups of §2, and we present the

key diagram involving Selmer varieties. In §3.1 and §3.2, we prove the bounds needed

for the dimension hypothesis, which we prove in §3.3. Finally, in §3.5, we combine our

results with a theorem of Poonen [Poo05] to deduce finiteness of Y (Q) for several classes

of curves, including hyperelliptic and superelliptic curves.

Note that the above method, along with most of the known Diophantine finiteness

results deduced from the non-abelian Chabauty method, only apply to Q-points. This

might seem surprising, since the (abelian) method of Chabauty and Coleman applies to

curves over arbitrary number fields. In contrast, there seem to be more serious difficulties

in generalizing the non-abelian case to arbitrary number fields. We will discuss these

difficulties in chapter 4, including an apparent dichotomy between the real and totally

imaginary cases.

In chapter 5, we propose a conjecture on the unipotent Albanese map, reminiscent

of the Ax–Schanuel conjecture. We show that, conditional on this conjecture, several

finiteness results for Q-points using the non-abelian Chabauty method can be generalized

to F -points for any real number field F .
1Thanks to Isabel Vogt for informing us of this result.
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1.3 A sketch of Kim’s method

The fundamental idea of the Chabauty [Cha41] method is to embed Y in its Jacobian

variety JY by the Abel–Jacobi map associated to a rational point b ∈ Y (F ), then study

how the Fp-points of Y (where p is a prime of F ) interact with the F -points of JY . This

is illustrated by the commutative diagram

Y (F ) Y (Fp)

JY (F ) JY (Fp).

(1.1)

By the Mordell–Weil theorem, JY (F ) is a finitely-generated abelian group of some rank

r. In the case where r < g and p is an unramified prime of F of good reduction for Y ,

Chabauty proved that the image of Y (Fp) in the Qp-vector space JY (Fp)⊗Z Qp is dense,

while the image of JY (F ) in JY (Fp)⊗Z Qp is contained in the vanishing of some nonzero

form f ; thus Y (F ) lies in the vanishing locus of f in Y (Fp). By the Zariski-density,

f |Y (Fp) is nonzero, so its vanishing locus, whence also Y (F ), is finite.

Although Faltings’ result subsumes Chabauty’s, this method is still of interest:

Coleman [Col85] refined Chabauty’s method to show that, when r < g as above, if p is

an unramified prime of good reduction for Y , of residue characteristic at least 2g, then

#Y (F ) ≤ Np + 2g(
√
Np + 1)− 1.

In the case where r ≤ g − 3, Stoll [Sto15], Katz, Rabinoff, and Zureick-Brown [KRZ16]

extended Coleman’s method to primes of bad reduction, obtaining a uniform bound

(depending only on g and [F : Q]) on the cardinality of Y (F ) for such curves. This bound

is very explicit; for example, when F = Q, the bound is #Y (Q) ≤ 84g2 − 98g + 28.

Unfortunately, Chabauty’s method does not apply when r ≥ g. Minhyong Kim’s idea
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(see [Kim05], [Kim09], [Kim12b], [CK10]), motivated in large part by Grothendieck’s

anabelian philosophy and the section conjecture, was to develop a “non-abelian Chabauty”

method, in which the Jacobian of Y is replaced by a geometric object capturing a larger

piece of the fundamental group, allowing a version of Chabauty’s argument to go through

even when the rank of JY (F ) is large.

The description of Kim’s method that follows is largely drawn from [Kim09].

Remaining in the abelian context for a moment, we have a cohomological version of

the commutative diagram (1.1):

Y (F ) Y (Fp)

H1
f (GF , Vp) H1

f (Gp, Vp) Lie(JY )⊗Qp Fp,

where GF and Gp are the absolute Galois groups of F and Fp, respectively; Vp is the Qp-

Tate module of JY ; and H1
f denotes the pro-p-Selmer group, i.e., the space of GF -torsors

of Vp that are unramified at the good primes of Y and crystalline at p.

Kim’s non-abelian Chabauty method replaces Vp, which is essentially equivalent to the

abelianization of the geometric (étale) fundamental group of Y , with the Qp-pro-unipotent

completion (i.e., Malcev completion) ΠY of the geometric fundamental group of Y . In

order to work with schemes of finite type, we truncate after finitely many steps of the

lower central series, and denote by ΠY,n the quotient of ΠY by the (n + 1)-st level of

the lower central series of ΠY . Kim [Kim09] showed that, for each n ≥ 1, the spaces of

torsors H1
f (GF ,ΠY,n) and H1

f (Gp,ΠY,n) are represented by algebraic varieties over Qp,

called the (global and local) Selmer varieties of Y .

Likewise, Lie(JY )⊗Qp Fp is replaced with

ΠdR
Y /F 0ΠdR

Y .
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Here, ΠdR
Y is the de Rham fundamental group of Y , classifying unipotent vector bundles

with integrable connection [Del89], and the de Rham realization ΠdR
Y /F 0ΠdR

Y is the moduli

space of “admissible” torsors for ΠdR
Y with separately trivializable Hodge structure and

Frobenius action [Kim09, Prop. 1]. Restricting to the Tannakian subcategory generated

by bundles of unipotency class at most n, we obtain finite-level versions

ΠdR
Y,n/F

0ΠdR
Y,n,

which are represented by algebraic varieties over Qp.

As in the abelian case, there are analogues of the Abel–Jacobi map — which Kim calls

the (local and global) unipotent Albanese maps — fitting into a commutative diagram

Y (F ) Y (Fp)

H1
f (GF ,ΠY,n) H1

f (Gp,ΠY,n) ResFp

Qp(ΠdR
Y,n/F

0ΠdR
Y,n)locp D

Kim showed that the image of Y (Fp) under the unipotent de Rham Albanese map is

Zariski-dense in the de Rham local Selmer variety. Suppose the image of the localization

map logp := D ◦ locp is non-Zariski-dense; equivalently, there is an algebraic function F

on ResFp

Qp(ΠdR
Y,n/F

0ΠdR
Y,n) which vanishes on the image of logp. Since the image of Y (Fp) is

Zariski dense, the pullback f of F to Y (Fp) is nonzero. But the image of Y (F ) in Y (Fp)

lies in the vanishing of f , which is necessarily finite; so Y (F ) is finite as well.

Since logp is algebraic, it suffices for the desired non-Zariski-density to prove the

following “dimension hypothesis” for n� 0:

dimH1
f (GF ,ΠY,n) < dim ResFp

Qp(Π
dR
Y,n/F

0ΠdR
Y,n) (DHn,p)

More generally, it will suffice in our work to prove this for a certain quotient Ψn of ΠY,n:

dimH1
f (GF ,Ψn) < dim ResFp

Qp(Ψ
dR
n /F 0ΨdR

n ) (DHΨn,p)
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Such a statement has been proved in several special cases; most relevant to us is the case

[CK10] where Y is projective of genus at least two, F = Q, and the Jacobian of Y is

isogenous over Q̄ to a product of CM abelian varieties. (See [Kim12b] for an overview of

some contexts where the method has been carried through successfully.)

In the present work, we weaken one hypothesis on Y : instead of requiring that Y

itself have CM Jacobian, we require only that Y admit a dominant map onto such a curve

after extension of the base number field. By combining this with theorems of Poonen

[Poo05] and Bogomolov and Tschinkel [BT02] on the existence of certain unramified

correspondences, we deduce that any curve admitting a map to P1 with solvable Galois

group has only finitely many Q-points. (See §3.5 for the precise statement.)

Theorem 1.5. Let Y and X be smooth projective curves over Q of genus at least 2.

Suppose there is a dominant map fK : YK → XK for some finite Galois extension K/Q

of degree d. Let p be a prime of good reduction for both Y and X. Let S be a set of

primes such that Y and X both have good reduction outside T = S ∪ {p}. Suppose also

that there is a number field L/K and a constant B > 0 (depending on X and T ) such

that for all n ≥ 1,
n∑
i=1

dimH2(GL,T , U
n
X/U

n+1
X ) ≤ Bn2g−1,

where UX is the quotient of ΠX by the third level of its derived series. Then for n� 0,

dimH1
f (GQ,W[n]) < dimW dR

[n] /F
0W dR

[n] , (DHW[n],p)

where W[n] is the quotient of ΠY defined in §2.3. In particular, the image of logp is

non-Zariski-dense, so Y (Q) is finite.

Remark 1.6. By [CK10, Thm. 0.1], the hypotheses of Theorem 1.5 are satisfied whenever

the Jacobian JX of X is isogenous over Q̄ to a product of CM abelian varieties.
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1.4 A survey of the literature

Now that we have set up the notation and described the non-abelian Chabauty method,

we provide a brief survey of some major results proved thus far. We do not attempt

to comprehensively mention all results in the area, only some selected highlights that

provide a sense of the big picture and active directions of research.

1.4.1 Chabauty’s method

As previously mentioned, Chabauty’s method started with the 1941 work of Chabauty

[Cha41], and gained renewed attention with Coleman’s 1985 paper [Col85] making the

method explicit using p-adic analysis at a prime p of good reduction for the curve.

Theorem 1.7 ([Cha41]). Let C be a smooth projective curve of genus g over a number

field F . Let J be the Jacobian of C, and let j : C → J be the Abel–Jacobi map (a.k.a.

the Albanese map) associated to a rational point b ∈ C(F ). Let v be a finite prime of F

of good reduction for C. Suppose the rank r of the Mordell–Weil group J(F ) is less than

g. Then the intersection

j(C(Fv)) ∩ J(F )

is finite, where J(F ) denotes the p-adic closure in J(Fv). In particular, the subset C(F )

is finite.

Theorem 1.8 ([Col85]). Under the hypotheses of Theorem 1.7, assuming the residue

characteristic of v is at least 2g, we have

#C(F ) ≤ Nv + 2g(
√
Nv + 1)− 1.
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By extending to primes of bad reduction and using tropical geometry to handle the

combinatorics of the reductions mod p, one can refine this further to a uniform bound

on the number of rational points of low rank:

Theorem 1.9 ([KRZ16, Thm. 1.1]). Let d ≥ 1 and g ≥ 3 be integers. There exists an

explicit constant N(g, d) such that for any number field F of degree d and any smooth,

proper, geometrically connected genus g curve X/F of Mordell–Weil rank at most g − 3,

we have

#X(F ) ≤ N(g, d).

In particular, one can take N(g, 1) = 84g2 − 98g + 28.

An inherent restriction of this method is that J(F ) must be p-adically non-dense in

J(Fv). This does hold in some cases where r ≥ g, for example as in [FW99], which deals

with rational points on bielliptic genus 2 curves using a variant of Chabauty’s method.

However, this condition on J(F ) simply fails for some curves.

1.4.2 Kim’s non-abelian generalization

See [Kim12b] for an expository overview and discussion of the motivation for Kim’s

method. (I found this to be a good introduction to this area of research.)

A promising approach to overcoming the restriction on the rank in Chabauty’s

method came with Kim’s 2005 paper [Kim05], which replaces the Jacobian with a space

constructed from a larger, non-abelian piece of the fundamental group to give a new

proof of Siegel’s S-unit theorem.

Theorem 1.10 ([Kim05]). Let C = P1 \ {0, 1,∞}. Let S be a finite set of rational



14

primes, and p /∈ S another prime. Then C(ZS) is finite, where ZS ⊂ Q is the ring of

S-integers.

Kim put this into the general framework described above in 2009 [Kim09], formulating

a dimension hypothesis at each index of unipotency n (with n = 1 being equivalent

to Chabauty’s method) sufficient for the method to work in general, and proved this

dimension hypothesis conditional on one of several conjectures in Galois cohomology.

Theorem 1.11 ([Kim09, §3]). Let C be a smooth connected hyperbolic curve over Q.

Assume one of the following conjectures: the Fontaine–Mazur conjecture, the Bloch–Kato

conjecture, or (in the affine case) the weak Jannsen conjecture. Then the dimension

hypothesis holds for C at sufficiently large index of unipotency n. In particular, the set

of integral points of C is finite.

In principle, conditional on some more conjectures, this can be turned into an effective

algorithm for computing integral or rational points [Kim12a]. Such conjectures imply

that the method determines the set of rational points exactly—i.e., a unipotent analogue

of Grothendieck’s section conjecture—and this is investigated further, and verified in

some special cases, in [BDCKW17].

Much of the work on Kim’s method has been in proving the dimension hypothesis

unconditionally for larger classes of curves, and making the method more explicit in

various ways (for example, by bounding the number or height of points identified by the

method, or using the method to construct and implement practical algorithms for finding

integral/rational points). The same paper included one such result of the former type:

Theorem 1.12 ([Kim09, §3]). Let C be a CM elliptic curve of rank 1 minus the origin

over Q. Then the dimension hypothesis holds for C at index of unipotency n = 2. In
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particular, the set of integral points of C is finite.

This was generalized to higher genus—with no assumption on the rank—shortly

thereafter by Coates and Kim.

Theorem 1.13 ([CK10]). Let C be a smooth projective curve over Q of genus at least 2

whose Jacobian has CM over Q̄. Then the dimension hypothesis holds for C at sufficiently

large index of unipotency n. Hence, the set of rational points of C is finite.

The CM hypothesis in the above theorems is useful because it ensures that the

p-adic Tate module decomposes as a direct sum of Galois characters. In all cases

mentioned so far, the strategy for proving the dimension hypothesis involves using the

Euler characteristic formula to reduce the problem to bounding the dimension of an H2

group in Galois cohomology, a Hodge filtered piece of the de Rham fundamental group,

and an Archimedean piece related to the action of complex conjugation. The dimension

of the H2 piece can be reduced by various duality theorems to a problem in Iwasawa

theory (see [CK10, §3] for details); the Tate module decomposing as a direct sum of

characters ensures the relevant Iwasawa module is commutative, thus avoiding problems

in noncommutative Iwasawa theory beyond the reach of currently known techniques.

The latest development I am aware of in this direction is Theorem 1.5, exposited in

this thesis, which extends Theorem 1.13 to curves that geometrically dominate a CM

curve over Q. In combination with the work of Bogomolov, Tschinkel, and Poonen on

unramified correspondences (see sections 3.4 and 3.5), this yields a new proof of finiteness

of Q-points on solvable curves (a class that includes hyperelliptic and superelliptic curves).

This is still relying on the CM hypothesis: the dominant morphism provides a piece of

the Jacobian that has CM, and this is sufficient to essentially lift the dimension estimates
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of [CK10] (up to some asymptotically negligible factors) to the Selmer varieties of the

dominating curve.

1.4.3 Explicit bounds and algorithms

Another major direction of research is in making the method more explicit in various

ways. In the more computational work in the literature, the class of curves is often much

more restricted; most of the work is for the case n = 2, where the computations are more

tractable, and this leads to conditions on the rank of the Jacobian, as well as some other

technical hypotheses.

One example of such a result is in [BDMTV17], which provides an algorithm for prov-

ably computing a finite subset of C(Qp) containing C(Q) under the following conditions:

(1) The Mordell–Weil rank r of the Jacobian J = Jac(C) is equal to the genus g;

(2) The rank ρ of the Néron–Severi group NS(J) is greater than 1;

(3) The p-adic closure of J(Q) has finite index in J(Qp); and

(4) There are enough rational points in C(Q) to satisfy a technical hypothesis (which

we won’t explain here, but which is satisfied for many curves of interest).

As an application, they prove that the seven known rational points of Xs(13), the split

Cartan modular curve of level 13, are all the rational points, which was not previously

known.

In a related work [BD18b], a similar approach is used to prove finiteness of C(F )

for any imaginary quadratic field F under the same hypotheses r = g, ρ > 1, and
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[J(Qp) : J(Q)] <∞ (where r and ρ are now the Mordell–Weil rank and Néron–Severi

rank over F , not Q).

In the direction of explicit bounds on the number of rational points, Balakrishnan

and Dogra [BD18a] have used the non-abelian Chabauty method at n = 2 to provide

such a bound for Q-points when r = g, under the assumption of a technical hypothesis

(which is always true conditionally on a conjecture of Bloch and Kato). The bound

depends only on the prime p, the genus g, and local constants nv defined in terms of the

reduction data of the curve at bad primes.

1.4.4 Alternate frameworks and generalizations

A few authors have reformulated the non-abelian Chabauty method in ways that may be

useful for future applications and generalizations. One recent reformulation is due to

Betts [Bet17], who uses cosimplicial groups and techniques of homotopical algebra to

construct local Selmer varieties and a unipotent Albanese map for any variety at any

prime, including primes of bad reduction and Archimedean places.

This raises the prospect of studying global Selmer varieties at primes of bad reduction,

which one hopes could lead to a non-abelian analogue of results such as those of [KRZ16].

(Of course, there are significant technical obstacles to such a generalization, but it is

reassuring to know that the main objects of the theory can at least be constructed.)

Another recent paper, due to Brown [Bro17], reformulates the non-abelian Chabauty

method in terms of motivic periods. This leads to more concrete descriptions of some of

the objects of the theory, while also highlighting how some of the main results of [Kim09]

and related papers can be recast in terms of an elementary lemma in linear algebra and
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the comparison between de Rham and Betti cohomology.

Finally, in a recent paper [Kim17], Kim draws an analogy between Selmer varieties and

the moduli spaces of gauge fields (principal bundles with connection) arising in quantum

field theory. Under this analogy, Selmer varieties can be thought of as parametrizing

arithmetic gauge fields, with rational points mapping under the unipotent Albanese map

to rational gauge fields. Kim speculates on, and provides some heuristic evidence for, a

“least action principle” for arithmetic gauge fields that should identify rational gauge

fields in the same way the equations of motion in mechanics are identified by minimizing

a certain “action” functional. This analogy to physics, if formalized, might lead to new

methods for efficiently finding rational points on curves.
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Chapter 2

Fundamental groups and Selmer

varieties

The Selmer varieties that play a central role in the non-abelian Chabauty method are

constructed as moduli spaces of torsors for various fundamental groups attached to the

curve. The two main fundamental groups that appear are:

(1) The Qp-unipotent étale fundamental group, which carries a Gal(F̄ /F )-action in-

duced by the usual Galois action on the geometric étale fundamental group.

(2) The de Rham fundamental group, which carries a Frobenius action (induced by

comparison with a crystalline fundamental group defined via lifting from the residue

field) and a Hodge structure.

The Galois action on the unipotent étale fundamental group provides information about

rational points on the curve, while the de Rham fundamental group is more suitable for

certain dimension computations; a comparison theorem allows us to relate torsors over

the two.

In this chapter, we outline the constructions of these fundamental groups and the

notation that will be used in the rest of the paper. In section 2.3, we also construct

some quotients and subquotients of these fundamental groups attached to a map between
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curves; these will be used in later chapters to prove certain cases of the dimension

hypothesis.

Finally, in section 2.4, we prove a lemma about functorially induced maps between

the unipotent étale and de Rham fundamental groups that will be useful later on.

2.1 Étale realizations

This section and the one that follows are essentially review of the objects constructed in

[Kim09].

We briefly recall the definition of the Qp-pro-unipotent étale fundamental group. Let

S be a scheme over a field F of characteristic zero, and let S̄ := S ×SpecF Spec F̄ . Let

b ∈ S(F ) be a point. Denote by ΠS the p-adic unipotent completion [HM03, Appendix

A.2] of the geometric étale fundamental group πét
1 (S̄, b). Then ΠS is a pro-unipotent

group scheme over the field Qp, with an action of GF := Gal(F̄ /F ) induced by the action

of GF on S̄.

One can also interpret ΠS as the fundamental group of the Tannakian category

Unét
p (S̄) of unipotent Qp-smooth sheaves on the étale site of S̄ with fiber functor eb

given by the fiber at b. Indeed, Unét
p (S̄) is equivalent to the category of unipotent

Qp-representations of πét
1 (S̄, b), which is equivalent to the category of Qp-representations

of ΠS by the universal property of unipotent completion.

Given a geometric point s ∈ S(F̄ ), we have the path torsor

P ét
S (s) = Iso⊗(eb, es).

If s ∈ S(F ), then P ét
S (s) also has an action of GF .



21

Given a pro-unipotent algebraic group U , we denote the lower central series U1 = U

and Un+1 = [U,Un], and the derived series by U (1) = U and U (n+1) = [U (n), U (n)]. Also

denote Un = U/Un+1.

Let

US := ΠS/Π(3)
S

be the metabelianization of ΠS. This is again a pro-unipotent Qp-group scheme with

GF -action.

2.2 De Rham realizations

We will also need the “de Rham realizations” of the above algebraic groups, whose

definitions we now recall. Let L be a field of characteristic zero and let X be a smooth

L-scheme. As in [Kim09, §1], let Un(X) be the Tannakian category of unipotent vector

bundles with integrable connection on X.

For each n ≥ 1, let 〈Unn(X)〉 be the full Tannakian subcategory of Un(X) generated

by bundles with connection (V ,∇V : V → ΩX/L⊗V) with index of unipotency at most n,

i.e., such that there exists a filtration

V = Vn ⊇ Vn−1 ⊇ · · · ⊇ V1 ⊇ V0 = 0

stabilized by the connection ∇V and such that each (Vi/Vi−1,∇V) is a trivial bundle with

connection (i.e., given by pullback of a bundle with connection on SpecL).

Given an L-scheme S and a base point b ∈ X(L), we have a morphism bS : S → XS

and hence fiber functors

enb (S) : Unn(X ×L S)→ VectS
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sending each bundle V in Unn(X ×L S) to the fiber VbS . Let ΠdR
X,n be the unipotent

algebraic group over L representing the functor given on L-schemes S by

S 7→ Aut⊗(enb (S)),

the group of tensor-compatible automorphisms of the functor enb (S). Likewise define ΠdR
X

as the pro-unipotent algebraic group representing the functor S 7→ Aut⊗(eb(S)), where

eb(S) : Un(X ×L S)→ VectS is the fiber functor at bS.

Given another point x ∈ X(L), we have path torsors

P dR
X,n(x) = Iso⊗(enb , enx).

Now suppose L = Fp is the completion of a number field F at a prime p of good

reduction for X. As explained in [Kim09, §1], via comparison with the crystalline

fundamental group, ΠdR
X,n can be equipped with a compatible Hodge structure and

Frobenius action; we will always consider ΠdR
X,n with these extra structures.

As in the previous section, let

UdR
X,n := ΠdR

X,n/(ΠdR
X,n)(3)

be the metabelianization of ΠdR
X,n.

2.3 Restriction of scalars

Now we come to the main new construction in our paper.

Suppose we are given quasiprojective F -varieties Y and X, a finite Galois extension

K/F of degree d, and a K-morphism fK : YK → XK . Then the restriction of scalars

ResKF XK is represented by a quasiprojective variety [BLR90, Thm. 7.6.4]. By the
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universal property of restriction of scalars, fK corresponds to an F -morphism f : Y →

R := ResKF XK . Unipotent completion is functorial, so f induces a map

Uf : UY → UR

equivariant for the GF -actions on UY and UR.

Remark 2.1. Unipotent completion commutes with finite products, so since RK
∼= X×dK

(the d-fold direct product of XK with itself), we have a GK-equivariant (but not neces-

sarily GF -equivariant) isomorphism UR ∼= (UX)×d. Similarly, we have a GK-equivariant

isomorphism UdR
R
∼= (UdR

X )×d that preserves the Hodge structure and Frobenius action.

Let W ⊆ UR be the image of Uf , i.e., the smallest subgroup scheme of UR through

which the morphism Uf factors. (This is well-defined by [Mil17, Thm. 5.39].) We expect

that in many cases, W is the whole of UR, but we won’t need this for our argument.

For each n ≥ 1, let W [n] := W ∩ Un
R (where Un

R is the n-th level of the lower central

series of UR, and the intersection is as subgroup schemes of UR), and

W[n] := W/W [n+1].

(We use square brackets to avoid confusion with the lower central series of W itself.) By

construction, this induces surjections

πn : UY,n → W[n]

of unipotent Qp-algebraic groups equivariant for the GF -actions on UY,n and W[n].

Similarly, for the de Rham realization, f induces a map UdR
f : UdR

Y → UdR
R whose

image we denote W dR. For each n ≥ 1, let (W dR)[n] := W dR ∩ (UdR
R )n and W dR

[n] :=

W dR/(W dR)[n+1], and let πdR
n : UdR

Y,n → W dR
[n] be the induced surjection. These maps are

compatible with the Hodge filtration and Frobenius action.
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2.4 Functorial properties of fundamental groups

The following lemma about functorially induced morphisms of unipotent fundamental

groups will be useful later on.

Lemma 2.2. Let L/Qp be an unramified extension. Let f : Y → X be a morphism

of smooth irreducible varieties over L such that, for some dense open X ′ ⊆ X, the

restriction f |f−1(X′) : f−1(X ′) → X ′ is finite étale. Then the induced maps ΠY → ΠX

and ΠdR
Y → ΠdR

X of Qp-unipotent étale and de Rham fundamental groups are surjective.

Proof. We proceed by comparison between the étale fundamental groups over an algebraic

closure of L, the Qp-pro-unipotent fundamental groups, and the de Rham fundamental

groups.

Let y0 ∈ Y and x0 ∈ X ′ be points such that f(y0) = x0, and let ȳ0 and x̄0 be

geometric points over y0 and x0, respectively. Let Ȳ , X̄, X̄ ′ be the base changes to L̄. By

functoriality, we have a commutative diagram of étale fundamental groups

πét
1 (f−1(X̄ ′), ȳ0) πét

1 (X̄ ′, x̄0)

πét
1 (Ȳ , ȳ0) πét

1 (X̄, x̄0)

f∗

f∗

in which the vertical maps are induced by restriction of étale covers to dense open

subschemes. An étale cover of a smooth scheme is smooth, hence connected étale covers

of smooth schemes are irreducible. Thus, the restriction of a connected cover to an dense

open subscheme is connected, which implies surjectivity of the vertical maps by [Stacks,

Lemma 0BN6]. By Grothendieck’s Galois theory, the image of the top horizontal map

has finite index, hence the bottom horizontal map also has finite index.

https://stacks.math.columbia.edu/tag/0BN6
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Taking Qp-pro-unipotent completions [HM03, Appendix A] gives the morphism of

Qp-unipotent étale fundamental groups πQp
1 (f) : ΠY → ΠX , where ΠY := π

Qp
1 (Ȳ , ȳ0) and

ΠX := π
Qp
1 (X̄, x̄0). Now we need another lemma.

Lemma 2.3. Let ϕ : H → Γ be a morphism of topological groups whose image has finite

index in Γ. Let k be a topological field of characteristic zero. Then continuous k-unipotent

completion induces a surjective morphism of k-pro-unipotent groups ϕun : Hun � Γun.

Proof. Let γ1, . . . , γn ∈ Γ be representatives of the left H-cosets of Γ. By construction,

the image of Γ in Γun(k) is Zariski-dense in Γun. Since Γ = ⋃n
i=1 γi · ϕ(H), taking Zariski

closures, we obtain

Γun =
n⋃
i=1

γi · ϕ(H).

Since k has characteristic zero, Γun is connected, so in fact ϕ(H) = Γun. The image of a

homomorphism of group schemes is closed, so

Γun = ϕ(H) = ϕun(Hun) = ϕun(Hun),

proving surjectivity of ϕun.

Returning to the proof of Lemma 2.2: The image of f∗ has finite index, so Lemma

2.3 implies πQp
1 (f) is surjective, proving the first claim.

By Olsson’s non-abelian p-adic Hodge theory [Ols11, Thm. 1.8], there is a comparison

isomorphism

ΠdR
Y ⊗L Bcr ∼= ΠY ⊗Qp Bcr,

and likewise for X in place of Y . Since Bcr is faithfully flat over Qp and L, surjectivity

of ΠY → ΠX implies surjectivity of the map of de Rham fundamental groups

πdR
1 (f) : ΠdR

Y � ΠdR
X .
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This completes the proof of Lemma 2.2.

This same map πdR
1 (f) is also given by taking de Rham fundamental groups of the

pullback functor f ∗ : Un(X) → Un(Y ) of categories of unipotent vector bundles with

integrable connection.

2.5 Selmer varieties and unipotent Albanese maps

Here, we describe the étale and de Rham realizations of the Selmer varieties, summarizing

the relevant parts of [Kim09]. We also describe the unipotent Albanese maps that act as

replacements for the Abel–Jacobi map.

For the remainder of the paper, Y and X are smooth projective curves of genus g ≥ 2

defined over Q, and there is a dominant map fK : YK → XK defined over K. Let g be

the genus of X, and fix a rational prime p that splits completely in K and is of good

reduction for Y and X. Let Vp := TpJX ⊗Zp Qp be the Qp-Tate module of JX . Let S

be a set of rational primes such that X and Y both have good reduction away from

S, and let T = S ∪ {p}. Denote the absolute Galois group of any number field L by

GL; let GT be the Galois group Gal(QT/Q), where QT is the maximal subfield of Q̄

unramified outside T ; and fix an embedding Q̄ ↪→ Q̄p, which determines an injection

Gp := Gal(Q̄p/Qp) ↪→ GQ.

The étale realization H1
f (GT , UY,n) is the moduli space of G-torsors for UY,n that

are unramified away from T and crystalline at p, and likewise for H1
f (Gp, UY,n) with

Gp-torsors replacing G-torsors.

The de Rham realization UdR
Y,n/F

0UdR
Y,n is the moduli space of torsors for UdR

Y,n with

Frobenius structure and Hodge filtration that are admissible, i.e., separately trivializable
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for the Frobenius structure and the Hodge filtration [Kim09, Prop. 1].

For each n ≥ 1, let j ét,glob
n , j ét,loc

n , jdR
n be the unipotent Albanese maps defined in

[Kim09] as follows: Fix a base point b ∈ Y (Q). Then j ét,glob
n (resp. j ét,loc

n ) sends each

y ∈ Y (Q) (resp. y ∈ Y (Qp)) to the class of the path torsor [P ét
Y (y)] in H1

f (GT , UY,n)

(resp. H1
f (Gp, UY,n)). Likewise, jdR

n sends each y ∈ Y (Qp) to the class of the path torsor

[P dR
Y,n(y)] in UdR

Y,n/F
0UdR

Y,n.

We have the following commutative diagram:

Y (Q) Y (Qp)

H1
f (GT , UY,n) H1

f (Gp, UY,n) UdR
Y,n/F

0UdR
Y,n

H1
f (GT ,W[n]) H1

f (Gp,W[n]) W dR
[n] /F

0W dR
[n]

jét,glob
n jét,loc

n

jdR
n

locp

πét,glob
n

D

πét,loc
n πdR

n

locp,W D

Here, the vertical maps πét,glob
n , πét,loc

n , and πdR
n are functorially induced by πn. As proved

in [Kim09], if the image of the algebraic map logp,W := D ◦ locp,W — and hence the

image of logp := D ◦ locp — is not Zariski-dense, then Y (Q) is finite.
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Chapter 3

Rational points on solvable curves

3.1 Bounds for local and global Selmer varieties

With the basic setup now in place, we turn to our main goal, which is to show that the

image of the global Selmer variety in the de Rham local Selmer variety is not Zariski

dense. This has two parts: giving an upper bound for the dimension of the global Selmer

variety (filling the role played by the Mordell–Weil group in classical Chabauty) and

giving a lower bound for the dimension of the de Rham local Selmer variety (filling the

role classically played by the genus.)

We begin with a few remarks about the structure of W . As mentioned in Remark

2.1, there is a GK-equivariant isomorphism of Qp-algebraic groups

UR,n ∼= U×dX,n.

Composing the map W[n] ↪→ UR,n with projection onto the first coordinate UX,n under

the above isomorphism yields a GK-equivariant map

W[n] → UX,n

which is functorially induced by fK : YK → XK , hence is surjective by Lemma 2.2.

Counting dimension, we obtain

dimUX,n ≤ dimW[n] ≤ dimUR,n = d · dimUX,n.
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We can also take graded pieces: define Z[n] := W [n]/W [n+1], which fits into an exact

sequence

0→ Z[n] → W[n] → W[n−1] → 0

of Qp[GQ]-modules. Similarly, write Zn(UR), Zn(UY ), and Zn(UX) for the n-th graded

pieces (with respect to the lower central series) of the other algebraic groups. By

construction of W[n], we obtain as above a GQ-equivariant injection

Z[n] ↪→ Zn(UR)

and a GK-equivariant surjection

Z[n] � Zn(UX).

3.1.1 Lower bounds for the de Rham local Selmer variety

In order to obtain lower bounds for the dimension of W dR
[n] /F

0W dR
[n] , we will need upper

bounds for the dimension of the filtered piece F 0W dR
[n] .

Lemma 3.1. There is a constant A (depending only on X, T , and d) such that, for all

n ≥ 1,

dimF 0W dR
[n] ≤ Ang.

Proof. The GK-equivariant inclusion

W dR
[n] ↪→ (UdR

X,n)×d

is compatible with the Hodge structures, hence induces an inclusion of Hodge filtered

pieces

F 0W dR
[n] ↪→ F 0(UdR

X,n)×d = (F 0UdR
X,n)×d.



30

By the proof of [CK10, Thm. 2], there is a constant A′ such that dimF 0UdR
X,n ≤ A′ng for

all n ≥ 1. Thus,

dimF 0W dR
[n] ≤ d · dimF 0UdR

X,n ≤ dA′ng.

3.1.2 Upper bounds for the global Selmer variety

In this section, we show that the dimension of the global cohomology space H1(GT ,W[n])

can be bounded by the dimension of “abelianizations” coming from the graded pieces

Z[n], which can in turn be studied using the Euler characteristic formula.

Lemma 3.2. For all n ≥ 1, H0(GT , Z[n]) = 0.

Proof. The injection Z[n] ↪→ Zn(UR) induces an injection

H0(GT , Z[n]) ↪→ H0(GT , Zn(UR)).

Since Zn(UR) is a quotient of U⊗nR,1 = H1(R,Qp)⊗n, Zn(UR) has Frobenius weight n, so

H0(GT , Zn(UR)) = 0.

Lemma 3.3. For all n ≥ 1,

dimH1(GT ,W[n]) ≤
n∑
i=1

dimH1(GT , Z[i]).

Proof. By Lemma 3.2, H0(GT ,W[n]) ⊆ H0(GT ,W[n−1]) for each n ≥ 2, so

H0(GT ,W[n]) ⊆ H0(GT ,W[1]) = H0(GT , Z[1]) = 0.

By the claim in the proof of [Kim05, Prop. 2] (noting that the proof works without

modification for the filtration W [n], not just for the lower central series), the exact

sequence

0→ Z[n] → W[n] → W[n−1] → 0
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induces an exact sequence

0 = H0(GT ,W[n−1])→ H1(GT , Z[n])→ H1(GT ,W[n])

→ H1(GT ,W[n−1]) δ→ H2(GT , Z[n]),

by which we mean that H1(GT ,W[n]) is a H1(GT , Z[n])-torsor over the subvariety of

H1(GT ,W[n−1]) given by the kernel of the boundary map δ. Thus,

dimH1(GT ,W[n]) ≤ dimH1(GT ,W[n−1]) + dimH1(GT , Z[n]),

and the result follows by induction.

Using Lemma 3.2, the Euler characteristic formula [Mil06, Thm. I.5.1] implies that

for each n ≥ 1,

dimH1(GT , Z[n]) = dimH2(GT , Z[n]) + dimZ[n] − dimZ+
[n],

where Z+
[n] denotes the positive eigenspace of the action of complex conjugation on Z[n].

So to bound H1(GT , Z[n]), we can work instead with H2(GT , Z[n]) and Z+
[n].

We now turn to the problem of bounding the dimension of H2(GT , Z[n]).

Lemma 3.4. Suppose there is a number field L/K and a constant B (depending only

on X and T ) such that, for all n 6= 1,

n∑
i=1

dimH2(GL,T , Zi(UX)) ≤ Bn2g−1.

Then for all n ≥ 1,
n∑
i=1

dimH2(GT , Z[i]) ≤ dBn2g−1,

where d = [K : Q].
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Proof. Since GL,T ≤ GT is a subgroup of some finite index m, we have a corestriction

map

H2(GL,T , Z[i])→ H2(GT , Z[i])

for each i. Precomposing corestriction with restriction yields multiplication by m. Since

Z[i] is a divisible abelian group, multiplication by m is an automorphism, so the above

corestriction map is surjective, and it suffices to bound dimH2(GL,T , Z[i]).

By the semisimplicity theorem of Faltings and Tate, the Qp-Tate module Z1(UX) =

Vp = TpJX ⊗Zp Qp is a semisimple GL-representation. Hence, (V ⊗ip )⊕d is semisimple. As

in [CK10], we have a surjection V ⊗ip � Zi(UX) which splits, realizing Zi(UX) as a direct

summand of V ⊗ip .

We also have an inclusion of Qp[GL,T ]-modules

Z[i] ↪→ Zi(UX)⊕d.

But Zi(UX)⊕d is semisimple, so Z[i] is in fact a direct summand. Since cohomology

preserves direct summands, it follows that

dimH2(GL,T , Z[i]) ≤ d · dimH2(GL,T , Zi(UX)).

Summing the above over all 1 ≤ i ≤ n, we are done.

Remark 3.5. Suppose the Jacobian JX of X is isogenous over Q̄ to a product of CM

abelian varieties. Then there is a number field L/K such that:

• The complex multiplication and decomposition of JX are defined over L;

• K(JX [p]) ⊆ L; and
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• the image Γ of the associated Galois representation

ρL : Gal(L̄/L)→ GL(Vp)

is isomorphic to Zrp for some integer r.

By [CK10, Thm. 1], there is a constant B (depending on X and T ) such that

n∑
i=1

dimH2(GL,T , Zi(UX)) ≤ Bn2g−1,

so the conclusion of Lemma 3.4 holds. In this case, Vp is isomorphic as a GL-representation

to a direct sum of characters, so we also do not need to appeal to the semisimplicity

theorem in the proof of Lemma 3.4. (In particular, the results of §3.5 do not rely on the

semisimplicity theorem.)

3.2 Bounding the invariants of complex conjugation

We need a lower bound on the dimension Z+
[i], the subgroup of Z[i] on which complex

conjugation acts as the identity. We begin with a combinatorial lemma.

Lemma 3.6. Let k be a field not of characteristic 2. Let V be a k-vector space of finite

dimension m. Let c : V → V be a linear involution which is not multiplication by ±1.

Then

lim
n→∞

dim Symn(V )+

dim Symn(V ) = 1
2 .

Proof. Define an = dim Symn(V )+ − dim Symn(V )−. Since dim Symn(V ) =
(
n+m−1
m−1

)
,

which is a polynomial in n of degree m − 1, it suffices to show that to show that

an = O(nm−2). Write m+,m− for the dimension of the +1 and −1 eigenspaces of c on V .
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Then we have a generating function identity
∞∑
n=0

ant
n = (1− t)−m+(1 + t)−m− =

m+∑
i=1

Ai
(1− t)i +

m−∑
i=1

Bi

(1 + t)i ,

where Ai, Bi ∈ Q are given by partial fraction decomposition. The power series coefficients

of (1± t)−i are of order O(ni−1), so an = O(nmax{m+,m−}−1). Since max{m+,m−} < m,

we have an = O(nm−2), completing the proof.

Remark 3.7. Lemma 3.6 is equivalent to the following combinatorial statement: Suppose

we have a ≥ 1 labelled bins colored blue, b ≥ 1 labelled bins colored green, and n

indistinguishable balls. Then for n� 0, out of all the ways to place the n balls into the

a+ b bins, approximately half result in the total number of balls in green bins being even.

Coates and Kim [CK10, proof of Cor. 0.2, pp. 847–848] prove the special case of

Lemma 3.6 where a = b, in which case there are additional symmetries that simplify the

problem.

Lemma 3.8. There is a constant C > 0 (depending only on X and T ) such that, for all

n ≥ 1,
n∑
i=1

dimZ+
[i] ≥ Cn2g.

Proof. Let c ∈ GQ be a complex conjugation. We may choose a Qp-basis f̄1, . . . , f̄2g(Y )

of Z1(UY ) (in other words, of the Qp-Tate module of Y ) such that c(f̄i) = ±f̄i for each

i = 1, . . . , 2g(Y ). Let f̃i be lifts of f̄i to UY . Recall the GQ-equivariant map

Uf : UY → W.

Let fi := Uf (f̃i).

We also have a surjective homomorphism W � UX . Recall that the Galois action

on W was defined to be the one inherited from the Galois action on UY ; since the map
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Y → X is defined only over K, the map UY → UX , whence the map W → UX , is

equivariant only for the Galois group GK , not the whole of GQ. In particular, if K is

not totally real, the map from W to UX is not equivariant for complex conjugation. We

will see that this doesn’t matter; using the purely combinatorial Lemma 3.6, we can

lower-bound the conjugation-invariant part of Z[i] using only the group structure of W ,

no matter what the action of c is, as we now explain.

After reordering f1, . . . , f2g(Y ) if necessary, we may assume that f1, . . . , f2g project

to a basis a1, . . . , a2g of Z1(UX). The projection of fi to Z1(W ) is an eigenvector for c;

again reordering if necessary, we may assume the eigenvalue is +1 for i = 1, . . . , s and

−1 for i = s+ 1, . . . , 2g.

Let L ⊆ Lie(W ) be the Lie subalgebra generated by f1, . . . , f2g, and let Ln denote the

n-th level of the lower central series of L. Let L[n] be the subspace of Z[n] generated by

Ln. The homomorphism W � UX induces a homomorphism L[n] � Zn(UX). By [CK10,

proof of Cor. 0.2, p. 847], a basis for Zn(UX) when n ≥ 2 is given by elements of the form

[. . . [ai1 , ai2 ], ai3 ], . . . ], ain ]

with i1 < i2 and i2 ≥ i3 ≥ . . . ≥ in. In particular, this means the elements

[. . . [fi1 , fi2 ], fi3 ], . . . ], fin ]

are linearly independent in L[n]. Note that c acts on such an element by ±1; more

precisely, it acts as (−1)k where k is the number of the i1, . . . , in which are greater than

s. Write Vn < L[n] for the space spanned by the elements above.

We now consider three cases.

If s = 2g, then c acts as 1 on Vn. So dim V +
n = dimL[n], which is bounded below by

Cn2g−1 for all n. This proves the lemma in this case.
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If s = 0, then c acts as −1 on Vn. So dim V +
n = dimL[n] for all even n, and the lemma

follows again.

Now suppose 0 < s < 2g. Consider the space V1,n < Vn spanned by

[. . . [f1, fi2 ], fi3 ], . . . ], fin ].

This basis for V1,n is naturally in bijection with the set of monomials xi2 . . . xin of degree

n− 1 in the variables x1, x2, . . . , x2g; thus dim V1,n is on order n2g−1 as n grows. A basis

for V +
1,n is given by those monomials whose total degree in x1, . . . , xs is even. Lemma 3.6

tells us precisely that

dim V +
1,n = (1/2) dimV1,n + o(dim V1,n) ≥ Cn2g−1

Once again, the lemma follows.

3.3 Proof of Theorem 1.5

Our goal is to prove that, for n sufficiently large,

dimH1
f (GT ,W[n]) < dimW dR

[n] /F
0W dR

[n] .

Recall that H1
f (GT ,W[n]) is a subvariety of H1(GT ,W[n]); it thus suffices to bound

the dimension of the latter variety, which by Lemma 3.3 and the Euler characteristic

formula is bounded above as follows:

dimH1(GT ,W[n]) ≤
n∑
i=1

(
dimZ[i] + dimH2(GT , Z[i])− dimZ+

[i]

)
= dimW[n] +

n∑
i=1

dimH2(GT , Z[i])−
n∑
i=1

dimZ+
[i].
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By Lemma 3.4, the contribution of ∑n
i=1 dimH2(GT , Z[i]) is O(n2g−1). By Lemma

3.8, we know ∑n
i=1 dimZ+

[i] is bounded below by a multiple of n2g. Putting these facts

together, we have

dimH1(GT ,W[n]) ≤ dimW[n] − Cn2g

for some C > 0.

On the other hand, by Lemma 3.1, we have

dimF 0W dR
[n] = O(ng)

Thus, for n large enough, we have

dimH1
f (GT ,W[n]) ≤ dimH1(GT ,W[n]) < dimW[n] − dimF 0W dR

[n] = dimW dR
[n] /F

0W dR
[n]

which is the desired result.

Remark 3.9. The difficulty in applying the same technique over a number field F other

than Q is that

dimZ[n] − dimZ+
[n]

in the Euler characteristic formula is replaced with

∑
v real

(dimZ[n] − dimZ+,v
[n] ) +

∑
v complex

dimZ[n],

where the sums are over the real and complex places of F , and Z+,v
[n] is the 1-eigenspace

of the complex conjugation associated to a real place v. For our argument to go through,

this sum needs to be strictly smaller than dimZ[n]. Obviously this is impossible if F has

a complex place, and even if F is totally real, the summands corresponding to real places

should have size about (1/2) dimZ[n] for large n, which blocks the method from working
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when F is larger than Q. It would be interesting to see if there were any hope of making

the method work in the “boundary case” where F is a real quadratic extension of Q.

This is not merely an artefact of the “abelianization” that replaces W with its graded

pieces; the long exact sequence in the proof of Lemma 3.3 shows that this abelianization

can add at most ∑n
i=1 dimH2(GF,T , Z[n]) to the dimension, so dimH1(GF,T ,W[n]) is still

too large.

In chapter 4, we discuss an approach to overcoming this obstacle: By choosing p to

be inert (rather than completely split) in F/Q, the leading term in the dimension count

is enlarged by exactly the factor [F : Q] needed for the argument to go through with

only minor modifications, provided F has a real embedding. This comes at a cost: the

dimension of C(Fp) as a Qp-analytic space becomes [F : Q] instead of 1, so the dimension

hypothesis no longer automatically implies finiteness. In chapter 5, we motivate and pose

a conjecture that refines [Kim09, Thm. 1] and implies finiteness in this more general

setting.

3.4 Unramified correspondences

One of the main tools used in [EH18] to prove finiteness of Q-points of solvable curves

is the notion of unramified correspondences, due to Bogomolov and Tschinkel [BT02].

In this chapter, we give an overview of the main results and conjectures on unramified

correspondences and relate it to finiteness questions for points on hyperbolic curves.

Definition 3.10. Let V and W be irreducible algebraic varieties over a field k. An

unramified correspondence from V to W is a triple (Z, f, g), where Z is an irreducible

algebraic variety, f : Z → V is an étale k-morphism, and g : Z → W is a dominant
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k-morphism.

We write V ⇒ W if there exists an unramified correspondence from Vk̄ to Wk̄.

Conjecture 3.11 ([BT07, Conj. 3.1]). Let C and C ′ be smooth projective curves of

genus at least 2 over Q̄. Then C ⇒ C ′.

In other words, the fundamental group of a hyperbolic curve is so big that the set of

the curve’s étale covers dominates any other curve.

This conjecture is very far from being proven, but some special cases are known.

Definition 3.12. Let Cn be the hyperelliptic curve with affine model y2 = xn − 1.

Note that Cmn ⇒ Cm for all m,n. One can deduce [BT02] from Belyi’s theorem

[Bel79] that for every curve C ′/Q̄, there exists n such that Cn ⇒ C ′.

Theorem 3.13 ([BT04, Prop. 2.4]). Let H be a hyperelliptic curve over Q̄. Then

H ⇒ C6 and H ⇒ C8.

Theorem 3.14 ([BT04, Thm. 1.2]). Let k = Q̄, m ≥ 6, and n ∈ {2, 3, 5}. Then

Cm ⇒ Cmn.

Theorem 3.15 ([Poo05, Thm. 1.7]). Let C be a curve of genus g(C) ≥ 2 over an

algebraically closed field of characteristic zero. Let G be a subgroup of Aut(C). Let

D = C/G, and assume D is of genus g(D) ≤ 2. Suppose also that at least one of the

following holds:

(1) g(D) ∈ {1, 2}.

(2) G is solvable.
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(3) There are two distinct points of D above which the ramification indices are not

coprime.

(4) There are three points of C above which the ramification indices are divisible by

2, 3, `, respectively, where ` is a prime with either ` ≤ 89 or

` ∈ {101, 103, 107, 131, 167, 191} .

Then there exists a hyperbolic hyperelliptic curve H such that C ⇒ H.

Corollary 3.16 ([Poo05, Cor. 1.8]). Let C satisfy the hypotheses of Theorem 3.15. (In

particular, C could be any projective hyperbolic curve over Q̄ such that there exists a

Galois morphism C → P1 with solvable Galois group.) Then there exists a hyperelliptic

hyperbolic curve H such that C ⇒ H.

Remark 3.17. Since the relation ⇒ is transitive, to prove Conjecture 3.11, it would

suffice to do the following:

(1) Generalize Theorem 3.14 to allow n to be any prime (instead of just 2, 3, or 5); and

(2) Generalize Theorem 3.15 to allow C to be any projective hyperbolic curve.

3.5 Application to superelliptic curves

We now combine Theorem 1.5 with results of Poonen [Poo05] and Bogomolov and

Tschinkel [BT02] to prove finiteness of C(Q) whenever C is a smooth proper curve over

Q of genus at least 2 such that there exists a map C → P1 with solvable automorphism

group (e.g., when C is superelliptic).
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Theorem 3.18. Let C be a smooth proper curve over Q such that C ⇒ X for some

curve X over Q such that the Jacobian of X has potential CM. Then C(Q) is finite.

Proof. Since C ⇒ X, there exists an étale cover π : Y → C and a dominant morphism

f : Y → X defined over Q̄, and hence over some Galois extension L/Q of finite degree

m. Let Y1, . . . , Ym be the Galois conjugates of Y , and let Z be a connected component

of the Q-scheme Gal(L/Q)\(Y1 t · · · t Ym). Then Z is a connected (but not necessarily

geometrically connected) finite étale cover of C defined over Q. Let Z̃ → Z → C be the

Galois closure of the connected étale cover Z → C.

By the Chevalley–Weil theorem [Ser89, §4.2] there is a finite set of twists Z̃τ/Q, each

with a Q-rational map πτ to C, such that C(Q) is covered by πτ (Z̃τ (Q)). (See e.g. [Vol12,

p. 2].) Let {W1, . . . ,Wν} be the set of all connected components of the twists Z̃τ such

that Wi(Q) is nonempty. By [Stacks, Tag 04KV], each Wi is geometrically connected.

Each Wi is a smooth, proper, geometrically connected curve over Q with a dominant

Q̄-morphism to X. Because X has potential CM, the theorem of Coates–Kim [CK10,

Thm. 0.1]) implies that the hypotheses of Theorem 1.5 hold for each Wi. Hence, Wi is

finite for all i, so C(Q) ⊆ ⋃νi=1 π
τ (Wi(Q)) is also finite.

As in the previous section, let C6 be the smooth projective model of the curve with

affine equation y2 = x6 − 1.

Corollary 3.19. Let C be a smooth projective curve over Q of genus at least 2. Suppose

CQ̄ satisfies the hypotheses of Theorem 3.15. Then C(Q) is finite. In particular, if C is

a smooth superelliptic curve yd = f(x) of genus at least two, C(Q) is finite.

Proof. Immediate from Theorem 3.18, Corollary 3.16, and the fact that the Jacobian of

C6 is isogenous to the product of elliptic curves y2 = x3 − 1 and y2 = x3 + 1, which both

https://stacks.math.columbia.edu/tag/04KV
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have CM by the ring of integers of Q(
√
−3).

Remark 3.20. In [BT07, Conj. 3.1], Bogomolov and Tschinkel conjecture that C ⇒ C ′

for any smooth projective curves C and C ′ over Q̄ of genus at least 2. If this conjecture

is true, our method applies to show finiteness of C(Q) for every such curve C over Q.
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Chapter 4

Generalization to real number fields

In much of the existing literature on the Chabauty–Kim method — including [Kim09],

[CK10], and [EH18] — the so-called “dimension hypothesis” that is central to the theory

is only proved for curves defined over Q, and the conclusions are about Q-points of

the curves. This assumption on the base field is because of substantive difficulties in

generalizing to arbitrary number fields, not merely out of convenience.

In this chapter, we show that for any number field F with a real embedding F ↪→ R,

assuming the prime p is inert in F/Q, the difficulty is only in controlling the simultaneous

vanishing of multiple p-adic analytic functions on the curve, and not in producing such

functions that vanish on the set of F -points. In particular, we prove that the dimension

hypothesis over F holds for sufficiently large n in three major cases where it has already

been proved over Q: for arbitrary curves conditional on one of several conjectures [Kim09],

for curves with CM Jacobian [CK10], and for curves geometrically dominating a curve

with CM Jacobian [EH18].

We conclude in each of these cases that finiteness of F -points on the curve follows

from a certain transcendence conjecture on the unipotent Albanese map that gives exactly

the required control over the simultaneous vanishing of the p-adic analytic functions

produced by this method. We motivate and give a precise formulation of this conjecture

in chapter 5. In summary, we prove the following:
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Theorem 4.1. Assume Conjecture 5.1. Let F be a number field with a real embedding

F ↪→ R. Let C be a smooth projective curve over F of genus g ≥ 2. Let p be a rational

prime that is inert in F/Q and is of good reduction for C. Suppose one of the following

is true:

(1) Conjecture 2 of [Kim09] is true for C. (By [Kim09, §3], this follows from either

the Fontaine–Mazur or Bloch–Kato conjectures.)

(2) There is a smooth projective curve X/F of genus ≥ 2 such that the Jacobian of X

has CM and there exists a dominant morphism C → X defined over Q̄.

Then for all sufficiently large n, the intersection

C(Fp) ∩H1
f (GT , Un)

inside H1
f (Gp, Un) is a finite set. (Note that C(F ) is a subset of the above set.)

The non-abelian Chabauty method over a number field F requires an inequality of

dimensions

dimH1
f (GT , Un) < dim ResFvQp(U

dR
n /F 0UdR

n ),

of Qp-varieties called Selmer varieties. (Here, v is a prime of F above p; we will define

the rest of the notation shortly.) An Euler characteristic argument on graded pieces Zn

of the unipotent group U reduces the problem to an inequality

[F : Q] dimZn −
∑

ι : F ↪→R
dimZι,+

n + dimH2(GT , Zn)

< [Fv : Qp] dimZn − [Fv : Qp] dimF 0ZdR
n ,

which has been proved when F = Q in each of the aforementioned cases. Note that

[Fv : Qp] ≤ [F : Q], with equality if and only if p is inert in F/Q. The highest order term
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on each side comes from dimZn, so the above inequality will fail for sufficiently large n

unless p is inert.

Now suppose p is inert in F/Q. Then the inequality reduces to

dimH2(GT , Zn) + [F : Q] dimF 0ZdR
n <

∑
ι : F ↪→R

dimZι,+
n ,

which is clearly only possible if there exists a real embedding ι : F ↪→ R. (Over a totally

imaginary number field, non-Zariski-density of the image of the localization map—if it is

true at all—must follow from something other than this dimension-counting argument.)

This observation motivates the remainder of the paper, where we show that, under these

circumstances, the arguments of [Kim09], [CK10], and [EH18] for the most part still

carry through for higher genus curves over F ; we provide the necessary modifications for

the arguments that need to be changed.

Let F be a number field with an embedding ι : F ↪→ R. Let C be a smooth projective

curve over F of genus g ≥ 2. Let p be a rational prime which is inert in F and such that

C has good reduction at p. Our goal is to apply the Chabauty–Kim method to C at the

prime p for the same classes of curves for which this method can be applied when F = Q.

We first recall the setup of [Kim09]: Let S be a finite set of primes of F containing

all archimedean primes and all primes of bad reduction for C, and let T = S ∪ {p}.

Let FT be the maximal subfield of F̄ unramified outside T . Let GT = Gal(FT/F ). Let

Gp = Gal(F̄p/Fp), and choose an embedding FT ↪→ F̄p, inducing an inclusion Gp ↪→ GT .

Let b ∈ C(F ) be an F -rational point, and let b̄ be a geometric point lying over

b. Let C̄ := C ×SpecF Spec F̄ . Let Π be the Qp-pro-unipotent completion of the étale

fundamental group πét
1 (C̄, b̄). (Equivalently, Π is the fundamental group of the Tannakian

category of unipotent smooth Qp-sheaves on C̄ with fiber functor given by the fiber at
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b.) Note that GT and Gp act on Π.

Given a Qp-pro-unipotent group U with an action of a profinite group G, define the

functor H1(G,U) for each Qp-algebra R by

H1(G,U) : Qp-Alg→ Set∗,

R 7→ H1(G,U(R)).

Also let H1
f (G,U) be the subfunctor of crystalline torsors, i.e., those that trivialize after

base change to U ⊗Qp Bcr.

For each n ≥ 1, let Un be the n-th level of the lower central series of U (so U1 = U

and Un+1 = [U,Un]), and let Un := U/Un+1.

By [Kim09] and [CK10], for each n ≥ 1, we have that H1
f (G,Ψ) is representable by an

algebraic variety, where G is either GT or Gp, and Ψ is either Πn or the metabelianization

Un = Πn/Π(3)
n (where the superscript denotes the derived series).

Just as in [Kim09] and [CK10] (see also [EH18, §2] for a brief exposition), our aim is

to prove the asymptotic dimension hypothesis

dimH1
f (GT ,Ψn)� dim ResFpQp(Ψ

dR
n /F 0ΨdR

n )

for a quotient Ψn of Πn (usually something like the metabelianization of Πn).

Remark 4.2. Unlike over Q (or more generally, when p is totally split in F/Q), the

dimension hypothesis does not directly imply finiteness of Y (F ); the output of the

argument is a nonzero Qp-analytic function on Y (Fp) that vanishes on Y (F ), and Y (Fp)

is [Fp : Qp]-dimensional as a Qp-analytic space.

The situation isn’t hopeless, though, because the difference in dimensions between the

global and local Selmer varieties grows arbitrarily large with n. This gives us arbitrarily
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many algebraically independent functions on ResFpQp(UdR
n /F 0UdR

n ) that vanish on the

image of the global Selmer variety.

One might hope that any [F : Q] of these functions pull back to Qp-analytic functions

on Y (Fp) whose simultaneous vanishing is zero-dimensional. In chapter 5, we explore

this question further and pose a conjecture that implies this (and hence gives a new

conditional proof of finiteness of C(F )).

4.1 Arbitrary hyperbolic curves, conditionally

In [Kim09], Kim proves the dimension hypothesis for an arbitrary curve X over Q of

genus g ≥ 2, conditional on either the Bloch–Kato conjecture or the Fontaine–Mazur

conjecture. We generalize this to number fields F with a real place by proving [Kim09,

Prop. 2] over such a number field.

Theorem 4.3. Let F be a number field with a real embedding. Let X be a smooth

hyperbolic curve over F . Let p be a rational prime, inert in F/Q and of good reduction

for X. Let Vn = H1
ét(X̄,Qp)⊗n(1). Define

Sel0T (Vn) := ker
(
H1(GT , Vn)→

⊕
w∈T

H1(Gw, Vn)
)
,

and suppose Sel0T (Vn) = 0. (Note that this follows from either the Bloch–Kato or the

Fontaine–Mazur conjecture, as shown in [Kim09, §3].) Then there exists c < 1 such that,

for all sufficiently large n,

dimH1
f (GT ,Πn) < c · dim ResFpQp(Π

dR
n /F 0ΠdR

n ).
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Proof. The argument is essentially the same as for [Kim09, Prop. 2], with some modifica-

tions. The Euler characteristic formula becomes

dimH1(GT , Z
n/Zn+1)− dimH2(GT , Z

n/Zn+1)

= [F : Q] dim(Zn/Zn+1)−
∑

ι : F ↪→R
dim(Zn/Zn+1)ι,+,

where the latter superscript refers to the 1-eigenspace of the complex conjugation

corresponding to ι. Since p is inert in F , we have [Fp : Qp] = [F : Q], so

dimQp(Zn/Zn+1 ⊗Qp Fp) = [F : Q] dimQp(Zn/Zn+1).

There is at least one embedding ι : F ↪→ R, and the corresponding term dim(Zn/Zn+1)ι,+

has dimension 1
2 dim(Zn/Zn+1) (by the same comparison with complex Hodge theory as

in the proof of [Kim09, Prop. 2]). Hence, it suffices to show that dimH2(GT , Z
n/Zn+1)

does not contribute to the asymptotic, which is shown in [Kim09, Lemma 6], the proof

of which works over any number field.

4.2 Curves with CM Jacobian

In this section, we provide the necessary modifications to [CK10] to generalize the main

result to real number fields.

For the remainder of this section, assume Jac(C) is isogenous over F̄ to a product

of CM abelian varieties. Let K be the compositum of the CM fields Ki of the simple

factors of Jac(C). As in [CK10], the quotient we use to prove the dimension hypothesis

is Ψ = Un, the metabelianization of ΠC,n, for n � 0. We follow the same strategy as

[CK10], modified in certain places to account for the fact that C is over F instead of
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Q and that we do not have control over the splitting behavior of p in K (because p is

assumed to be inert in F ).

For each n ≥ 1, we have the short exact sequence

0→ Zn → Un → Un−1 → 0.

Since U1 = Vp Jac(C) is a quotient of Un−1 and has trivial stabilizer under a lift of

Frobenius, we have H0(GT , Un−1) = 0. Hence, we obtain an exact sequence

0 = H0(GT , Un−1)→ H1(GT , Zn)→ H1(GT , Un)→ H1(GT , Un−1).

So

dimH1
f (GT , Un) ≤ dimH1(GT , Un) ≤

n∑
i=1

dimH1(GT , Zi).

By the global Poincaré–Euler characteristic formula (noting that H0(GT , Zi) = 0),

dimH1(GT , Zi) = [F : Q] dimZi −
∑

ι : F ↪→R
dimZι,+

i + dimH2(GT , Zi),

where ι ranges over real places of F , and Zι,+
i is the 1-eigenspace of the action of the

complex conjugation associated to ι on Zi. So

n∑
i=1

dimH1(GT , Zi) = [F : Q] dimUn −
n∑
i=1

∑
ι : F ↪→R

dimZι,+
i +

n∑
i=1

dimH2(GT , Zi).

We compare this to

dim ResFpQp(U
dR
n /F 0UdR

n ) = [Fp : Qp] dimUdR
n − [Fp : Qp] dimF 0UdR

n

= [F : Q] dimUn − [F : Q] dimF 0UdR
n .

We will see that, as in [CK10], the highest-order term in both the above formulas is

dimUn. This motivates our assumption that p is inert in F : comparison of leading
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coefficients shows the dimension hypothesis is impossible unless [Fp : Qp] = [F : Q],

which means p cannot split in F . (This does not rule out the possibility of p being

ramified rather than inert; the generalization to the ramified setting poses additional

technical difficulties which the author hopes to investigate in future research.)

The proof of the bound

dimF 0UdR
n = O(ng)

from [CK10, Proof of Corollary 0.2] holds without modification in our setting. Indeed,

the only non-combinatorial input to that argument is that F 0UdR
1 is g-dimensional, which

is still true when the base field is Fp instead of Qp.

Similarly, the bound

dimZι,+
i ≥ Cn2g−1

for some constant C > 0 can be proved exactly as in [CK10]; their proof is purely

combinatorial and can be applied to the complex conjugation associated to each ι.

To complete the strategy of [CK10], it remains to prove

dimH2(GT , Zn) = O(n2g−2).

This is the part that requires modification: [CK10, Proof of Theorem 0.1] relies on the

decomposition of U1 as a direct sum of characters, but as one can see from [CK10, §1],

this relies on the splitting of p in K; in general,

ResKiQ (Gm)⊗Q Qp

is a torus, but not necessarily a split torus over Qp. However,

ResKiQ (Gm)⊗Q L
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is a split torus over some finite Galois extension L/Qp, so U1 ⊗Qp L is a direct sum of

L-valued Galois characters χ1, . . . , χ2g. To use this fact, we need a lemma in Galois

cohomology.

Lemma 4.4. Let K be a p-adic field. Let V be a K[GT ]-module such that H0(GT , V ) = 0

and dimK V <∞. Let L be a Galois extension of K. Let VL = V ⊗K L with GT acting

trivially on L. Then

dimK H
2(GT , V ) = dimLH

2(GT , VL).

Proof. The actions of GT and Γ = Gal(L/K) on VL commute, so

0 = H0(GT , V ) = H0(GT × Γ, VL) = H0(GT , VL)Γ,

so by Galois descent, H0(GT , VL) = 0. Part of the inflation-restriction exact sequence for

GT ⊆ GT × Γ acting on VL is

H1(Γ, V GT
L )→ H1(GT × Γ, VL)→ H1(GT , VL)Γ → H2(Γ, V GT

L ),

and since V GT
L = 0, we obtain

H1(GT × Γ, VL) ∼= H1(GT , VL)Γ.

The inflation-restriction exact sequence for Γ ⊆ GT × Γ acting on VL gives exactness of

0→ H1(GT , V )→ H1(GT × Γ, VL)→ H1(Γ, VL)GT ,

but VL ∼= LdimK V as a Γ-module, so H1(Γ, VL) = 0. Thus,

H1(GT , V ) ∼= H1(GT × Γ, VL) ∼= H1(GT , VL)Γ,

so dimK H
1(GT , V ) = dimLH

1(GT , VL) by Galois descent.
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By the Euler characteristic formula [Mil06, I, Thm. 5.1] and the fact that involutions

are diagonalizable over any field, χ(GT , V ) = χ(GT , VL). Since we have already shown

equality of dimensions for the H0 and H1 terms, we are done.

In particular,

dimQp H
2(GT , Zn) = dimLH

2(GT , Zn ⊗Qp L),

and the proof of [CK10, Thm. 0.1] applies without modification to the latter: the same

weight argument reduces the problem to Iwasawa theory, and the remainder of the proof

is the same. (We verify below that the setup in [CK10, §1] encounters no difficulties

when the representations are allowed to take values in extensions of Qp.)

We have now proven all the necessary bounds to carry out the argument of [CK10,

Proof of Cor. 0.2].

Theorem 4.5. Let F be a number field with an embedding F ↪→ R. Let C be a smooth

projective curve over F of genus g ≥ 2 such that Jac(C) has potential CM. There exists

c < 1 such that, for all n sufficiently large,

dimH1
f (GT , Un) < c · dim ResFpQp(U

dR
n /F 0UdR

n ).

4.2.1 “Preliminaries on complex multiplication”

In this subsection, we fully replicate the contents of [CK10, §1], adapted to our level of

generality and notation. The author claims no originality in what follows; this is purely

to ensure that nothing goes wrong when we generalize to an inert prime in a real number

field.
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Let L/F be a finite extension with the property that the isogeny decomposition

J := Jac(C) ∼
∏
i

Ai

as well as the complex multiplication on each Ai are defined over L. We assume further

that L ⊃ F (J [p]), so that L∞ := L(J [p∞]) has Galois group Γ ∼= Zrp over L. Denote by

GL,T the Galois group Gal(LT/L), where LT is the maximal extension of L unramified

outside the primes dividing those in T .

As a representation of GL,T , we have

V := TpJ ⊗Qp
∼=
⊕
i

Vi,

where Vi := TpAi ⊗Qp.

Let m be a modulus of L that is divisible by the conductor of all the representations

Vi. Each factor representation

ρi : GL,T → (Ki ⊗Qp)∗ ⊂ Aut(Vi)

corresponds to an algebraic map

fi : Sm → ResKiQ (Gm),

where Sm is the Serre group of L with modulus m, and ResKiQ is the restriction of scalars

from Ki to Q. That is, there is a universal representation

εp : GL,T → Sm(Qp)

such that

ρi = fi ◦ εp : GL,T → Sm(Qp)→ ResKiQ (Gm)(Qp) = (Ki ⊗Qp)∗.
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Since we have made no assumptions about the splitting type of p in Ki, the algebraic

torus

ResKiQ (Gm)⊗Qp

might be non-split. However, for some finite extension k/Qp, we have

ResKiQ (Gm)⊗ k ∼=
∏
j

[Gm]k.

Thus, extending scalars to k, each of the algebraic characters

fij = prj ◦ ρi : [Sm]k → [ResKiQ (Gm)]k ∼=
∏
j

[Gm]k
prj→ [Gm]k

correspond to Galois characters

χij = fij ◦ εp : GL,T → k∗

in such a way that

ρi ∼=
⊕
j

χij

after extension of scalars to k.

Recall that Sm fits into an exact sequence

0→ Tm → Sm → Cm → 0

with Cm finite and Tm an algebraic torus. Hence, there is an integer N such that the

kernel of the restriction map on characters

X∗([Sm]k)→ X∗([Tm]k)

is killed by N . Since X∗([Tm]k) is a finitely-generated torsion-free abelian group, so is the

image of X∗([Sm]k). Let {β′1, . . . , β′d} be a basis for the subgroup of X∗([Tm]k) generated
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by the restrictions fij|[Tm]k as we run over all i and j. Then the set {β′1, . . . , β′d} can be

lifted to characters {β1, . . . , βd} of [Sm]k so that each fNij is a product

fNij =
∏
κ

βnijκκ

for integers nijκ. For ease of notation, we now change the indexing and write {f1, . . . , f2g}

for the set of fij and {χi}2g
i=1 for the characters of GL,T that they induce. We have shown

that there are integers nij such that

fNi =
∏
j

β
nij
j .

Thus, if we denote by ξi the character

βi ◦ εp : GL,T → k∗,

then

χNi =
∏
j

ξ
nij
j .

Lemma 4.6. The characters ξi are Zp-linearly independent.

Proof. Suppose ∏
i

ξaii = 1

for some ai ∈ Zp as a function on GL,T (and the choice of p-adic log such that log(p) = 0).

Then ∏
i

βaii = 1

as a (k∗-valued) character on εp(GL,T ). As noted in [Ser68, II.2.3, Remark], the image

of the map εp : GL,T → Sm(Qp) is Zariski-dense, so in fact the above equation holds
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everywhere on Tm. Since the βi|[Tm]k = (β′i)N are Z-linearly independent, for each j

there exists a cocharacter

cj : [Gm]k → [Tm]k

such that βi ◦ cj = 1 for i 6= j and

βj ◦ cj : [Gm]k → [Gm]k

is nontrivial and hence an isogeny. So for all x ∈ k×, we have

βj(cj(x))aj = 1.

Since p-adic exponentiation is injective within its radius of convergence, if caj = 1,

then either aj = 0 or logp(c) = 0. But logp(c) = 0 if and only if c is a rational power of p

times a root of unity, so if caj = 1 for uncountably many c, then aj = 0. Combining this

observation with the above, we obtain aj = 0 and are done.

4.3 Unramified correspondences and solvable curves

In this section, we provide the necessary modifications to [EH18] to generalize the main

result to real number fields.

Let Y and X be smooth projective curves over F of genus at least 2. Suppose there is

a dominant map fK : YK → XK for some finite Galois extension K/F , and suppose that

Jac(X) is a CM abelian variety. Let p be a rational prime, inert in F/Q, such that Y and

X both have good reduction at p. Let W be the image of the induced map UY → UR,

where R = ResKF (XK), and let W[n] be the quotient defined as in [EH18, §3.3].

We assume also that p is unramified in K/Q, which is only needed to use Olsson’s

comparison isomorphism in the proof of [EH18, Lemma 4.1]. This assumption could be
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dropped if we instead use the comparison isomorphism

ΠdR
Y ⊗L BdR ∼= ΠY ⊗Qp BdR,

which should hold for any local field L/Qp, not just unramified extensions (and, for that

matter, regardless of the reduction type of Y at p). However, to my knowledge, a proof

of this comparison isomorphism is not present in the published literature at this time; it

seems to be “folklore” that it could be extracted from Beilinson and Bhatt’s work on

derived p-adic Hodge theory (perhaps by reconstructing the fundamental groups from

the corresponding E∞-algebras).

Requiring p to be inert in F and applying the same modifications to the Euler

characteristic formula as in the previous section, all the arguments needed for the main

result of [EH18] can still be carried out in this level of generality.

(There are two arguments in [EH18], namely the proofs of Lemmas 6.1 and 6.2, that

use that p splits completely in K, but both of these assumptions are unnecessary. For

Lemma 6.1, the Hodge filtration is compatible with extending the base field (and this

does not change the dimensions), so we can carry out the same argument using the

de Rham fundamental group over F̄p. For Lemma 6.2, the vanishing of H0 follows by

examining the Frobenius weights, just as in the case F = Q. See Lemmas 3.1 and 3.2 of

this thesis for the appropriately modified proofs.)

Theorem 4.7. Let S be a finite set of primes of F such that both Y and X have good

reduction outside T = S ∪ {p}. Suppose there is a number field L/K and a constant

B > 0 (depending on X and T ) such that for all n ≥ 1,

n∑
i=1

dimH2(GL,T , U
n
X/U

n+1
X ) ≤ Bn2g−1.
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Then there exists c < 1 such that, for all sufficiently large n,

dimH1
f (GT ,W[n]) < c · ResFpQp(dimW dR

[n] /F
0W dR

[n] ).
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Chapter 5

Transcendence properties of the

unipotent Albanese map

In this chapter, we discuss transcendence properties of the unipotent Albanese map

jdR
n : X (OFv)→ SeldR

n (X/Fv) := ResFvQp(U
dR
X,n/F

0UdR
X,n).

This is a p-adic analytic map given in coordinates by iterated p-adic integration in the

sense of [Bes02]. By [Kim09, Thm. 1], the image of jdR
n is Zariski-dense. As a consequence,

any nonzero algebraic function on SeldR
n (X/Fv) pulls back to a nonzero p-adic analytic

function on X (OFv).

As discussed in Remark 4.2, this is insufficient to deduce finiteness of X (OFv) when

p does not split completely in F/Q, because X (OFv) is [Fv : Qp]-dimensional as a

Qp-manifold. We propose a stronger conjecture that is sufficient to deduce finiteness.

Conjecture 5.1. Let X be a smooth hyperbolic curve with integral model X over a number

field F . Let v be an unramified finite prime of F such that X has good reduction at v.

Let δ ≤ d = [Fv : Qp]. Let Z ⊆ SeldR
n (X/Fv) be a closed algebraic subvariety such that,

for each intermediate subfield Qp ⊆ K ⊆ Fv and each curve X ′/K such that X ′Fv ∼= X,

the codimension of Z ∩ SeldR
n (X ′/K) in SeldR

n (X ′/K) is at least min{δ, [K : Qp]}. (We
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identify SeldR
n (X ′/K) with the subvariety of SeldR

n (X/Fv) fixed by Gal(Fv/K).) Then

dimQp(jdR
n (X (OFv)) ∩ Z) ≤ d− δ.

Remark 5.2. One might initially conjecture (and by this I mean I did initially conjecture)

that Z merely has to be of codimension δ. However, this is false: if X is defined over

Qp and Z = SeldR
n (X/Qp) is embedded “diagonally” as SeldR

n (X/Fv)Gal(Fv/Qp), then the

dimension of Z is (1/d) · dim SeldR
n (X/Fv), but X (Zp) ⊆ Z ∩ X (OFv).

Assuming Conjecture 5.1, we can apply the results of chapter 4 to deduce finiteness

of X(F ) for real number fields F under certain conditions on X (namely, X dominates a

curve with CM Jacobian, or X is arbitrary if we assume one of several conjectures in

Galois cohomology).

Corollary 5.3. Let F/Q be a number field of degree d. Let X be a smooth projective

hyperbolic curve over a number field F . Let v be an unramified finite prime of F such

that X has good reduction at v. Suppose that for each subfield K ⊆ F and each curve

X ′/K such that X ′F ∼= X, we have

dimH1
f (GK,T , UX,n) ≤ dim ResKQp(U

dR
X,n/F

0UdR
X,n)− [K : Qp]

for all sufficiently large n. Suppose also that Conjecture 5.1 holds for X whenever δ ≤ d.

Then X(F ) is finite.

Proof. By Conjecture 5.1 and the main commutative diagram, jdR
n (X(F )) is zero-

dimensional and compact, hence finite.

In the remainder of this chapter, we motivate and provide evidence for Conjecture

5.1. A few preliminary remarks:
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(1) Intuitively, the conjecture says that jdR
n is “purely transcendental”, in the sense

that it remains non-algebraic even after restricting to an algebraic subvariety of

the target (assuming the restriction is still positive-dimensional).

(2) The conjecture in codimension 1 is a reformulation of [Kim09, Thm. 1], which

underlies the existing results over Q.

(3) This conjecture is formally similar to the Ax–Schanuel theorem, conjectured for

variations of Hodge structure in [Kli17] and proved in [BT17]. However, while the

period map for so-called “Hodge varieties” is surjective, the unipotent Albanese

map jdR
n is not, necessitating the restriction δ ≤ d on codimension.

5.1 The Ax–Schanuel theorem

The classical Ax–Schanuel theorem, conjectured by Schanuel and proved by Ax, is as

follows.

Theorem 5.4 ([Ax71]). Let f1, . . . , fn ∈ tC[[t]] be linearly independent over Q. Then

the field extension

C(t) ⊂ C(t, f1, . . . , fn, e
f1 , . . . , efn)

has transcendence degree at least n.

This has a geometric reformulation:

Theorem 5.5 ([Tsi15]). Let W ⊂ Cn × (C×)n be an algebraic subvariety. Let D ⊂

Cn × (C×)n be the graph of the complex exponential map exp: Cn → (C×)n. Let U be an

irreducible component of W ∩D of larger than expected dimension, i.e., such that

codimU < codimW + codimD,
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where the codimensions are relative to Cn × (C×)n. Then the projection of U to (C×)n is

contained in a coset of a proper subtorus of (C×)n.

In this formulation, generalizations to Shimura varieties [MPT17] and Hodge varieties

[BT17] have been formulated and proved. The most general version I am currently aware

of is the following:

Theorem 5.6 (Ax–Schanuel for variations of Hodge structures, [BT17]). Let X be a

smooth algebraic variety over C supporting a pure polarized integral variation of Hodge

structures. Let D be the weak Mumford–Tate domain associated to this variation of Hodge

structures, and let

φ : X → Γ\D

be the period map, where Γ is the image of monodromy acting on D. Let Ď be the compact

dual of D, which is a projective variety containing D in the Archimedean topology. Let

W = X ×Γ\D D. Let V ⊂ X × Ď be an algebraic subvariety. Let U be an irreducible

analytic component of V ∩W of larger than expected dimension, i.e., such that

codimU < codim V + codimW,

where the codimensions are relative to X× Ď. Then the projection of U to X is contained

in a proper weak Mumford–Tate subvariety (in the sense defined in [BT17]).

Note that in each case, there is some class of “special subvarieties”: cosets of subtori for

(C×)n, weakly special subvarieties for Shimura varieties, weak Mumford–Tate subvarieties

for Hodge varieties, etc. The various Ax–Schanuel theorems are all to the effect that

intersections of larger than expected dimension must be “explained” by containment in a

proper special subvariety.
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In our setting, we are concerned with rational points on certain varieties—in particular,

restrictions of scalars of curves, which become Cartesian powers of curves after base

change—and there is another notion of “special subvariety”: those subvarieties which are

not of general type. This is motivated by the geometric Lang conjecture:

Conjecture 5.7. Let X be a variety of general type. Then the union of all irreducible,

positive-dimensional subvarieties of X not of general type is a proper closed subvariety

of X.

Caporaso, Harris, and Mazur [CHM97] show that, in combination with the weak

Lang conjecture, this implies a strong uniformity statement on the number of rational

points of higher genus curves over number fields.

Anyway, one cannot hope for a statement such as Conjecture 5.1 to hold for arbitrary

varieties because of the presence of such positive-dimensional exceptional subvarieties.

For example, the symmetric square of a hyperelliptic curve contains a copy of P1.

(Nonetheless, Chabauty’s method has been applied to count rational points outside the

“exceptional set” for symmetric powers of curves; see, for example, [Par16] and [GM17].

It would be very interesting to see an application of non-abelian Chabauty to symmetric

powers of curves.)

Fortunately, for a Cartesian power of a curve, which is what arises in our application,

there are no positive-dimension subvarieties not of general type, which is why Conjecture

5.1 is formulated without any provision for special subvarieties analogous to those

occurring in various versions of the Ax–Schanuel theorem.
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