MATH 114 QUIZ 10 SOLUTIONS
 6 DECEMBER 2016

Solve the following two problems. Justify all of your work with clearly written mathematics.

(1) Compute the exact value of $\tan \left(\cos ^{-1}(4 / 5)\right)$.

By definition, $\cos ^{-1}(4 / 5)$ is the angle in the interval $[0, \pi]$ such that the corresponding point on the unit circle has x-coordinate $4 / 5$. Since $4 / 5>0$, this point is in the first quadrant, and has y-coordinate satisfying

$$
(4 / 5)^{2}+y^{2}=1
$$

by the Pythagorean theorem. So

$$
y^{2}=1-(4 / 5)^{2}=9 / 25=(3 / 5)^{2}
$$

and since (x, y) is in the first quadrant, $y>0$, so $y=3 / 5$. Hence,

$$
\tan \left(\cos ^{-1}(4 / 5)\right)=\frac{y}{x}=\frac{3 / 5}{4 / 5}=\frac{3}{4} .
$$

(2) Find all solutions to the equation $\sin (\theta)^{2}=5 \sin (\theta)^{2}-3$ in the interval $0 \leq \theta<2 \pi$.

The given equation is equivalent to

$$
4 \sin (\theta)^{2}=3
$$

so $\sin (\theta)^{2}=3 / 4$, meaning

$$
\sin (\theta)= \pm \sqrt{3 / 4}
$$

Let $(x, y)=(\cos (\theta), \sin (\theta))$ be the point on the unit circle corresponding to θ. Then $y=\sin (\theta)= \pm \sqrt{3 / 4}$, and by the Pythagorean theorem, $x= \pm 1 / 2$. Thus, the points $(0,0),(x, y)$, and $(-x, y)$ form an equilateral triangle, so (x, y) makes an angle of $\pi / 6$ with either the positive or negative y-axis (depending on whether y is positive or negative). So there are four possibilities for $\theta: \frac{\pi}{2}-\frac{\pi}{6}, \frac{\pi}{2}+\frac{\pi}{6}, \frac{3 \pi}{2}-\frac{\pi}{6}$, and $\frac{3 \pi}{2}+\frac{\pi}{6}$.

