MATH 114 QUIZ 3 SOLUTIONS 27 SEPTEMBER 2016

Solve the following two problems. Show all steps in your work.

(1) Find an equation for the line passing through the point $(3,2)$ and parallel to the line given by $5=4 y-2 x$.

If $5=4 y-2 x$, then $2 x+5=4 y$ (by adding $2 x$ to both sides), so $\frac{2}{4} x+\frac{5}{4}=y$ (by dividing both sides by 4). So our line has slope $\frac{2}{4}=\frac{1}{2}$, and therefore must be given by an equation of the form

$$
y=\frac{1}{2} x+c
$$

for some number c. Also, our line must pass through the point $(3,2)$; plugging $x=3$ and $y=2$ into the above equation, we get

$$
2=\frac{1}{2}(3)+c,
$$

so $c=2-\frac{3}{2}=\frac{4}{2}-\frac{3}{2}=\frac{4-3}{2}=\frac{1}{2}$. So the line passing through the point $(3,2)$ and parallel to the line $5=4 y-2 x$ is given by the equation

$$
y=\frac{1}{2} x+\frac{1}{2} .
$$

(2) For the following equation, list all the x-intercepts and y-intercepts, and test for each of the three kinds of symmetry discussed in class.

$$
18=9 x+2 y^{2}
$$

- The x-intercepts are the points where the line intersects the x-axis. The x-axis is the line $y=0$. If $y=0$, then

$$
18=9 x+2(0)^{2}=9 x
$$

so $2=x$. So there is exactly one x-intercept, the point $(2,0)$.

- The y-intercepts are the points where the line intersects the y-axis. The y-axis is the line $x=0$. If $x=0$, then

$$
18=9(0)+2 y^{2}=2 y^{2}
$$

so $9=y^{2}$, which means y is either 3 or -3 . So there are exactly two y-intercepts, the point $(0,3)$ and the point $(0,-3)$.

- An equation has symmetry across the x-axis if replacing y with $-y$ gives an equivalent equation. Replacing y with $-y$, we get

$$
18=9 x+2(-y)^{2} .
$$

Since $(-y)^{2}=y^{2}$, this is equivalent to the original equation.

- An equation has symmetry across the y-axis if replacing x with $-x$ gives an equivalent equation. Replacing x with $-x$, we get

$$
18=9(-x)+2 y^{2}=-9 x+2 y^{2}
$$

This is not equivalent to the original equation. Indeed, $x=2$ and $y=0$ is a solution to the original equation, but not to $18=-9 x+2 y^{2}$, so they can't be equivalent. (Equivalent equations have exactly the same set of solutions.)

- An equation has symmetry across the origin if replacing x with $-x$ and y with $-y$ gives an equivalent equation. Replacing x with $-x$ and y with $-y$, we get

$$
18=9(-x)+2(-y)^{2}=-9 x+2 y^{2}
$$

Exactly as above, this is not equivalent to the original equation.
In summary, the equation $18=9 x+2 y^{2}$ has x-intercept $(2,0)$, has y-intercepts $(0,3)$ and $(0,-3)$, has x-axis symmetry, does not have y-axis symmetry, and does not have origin symmetry.

