MATH 114 QUIZ 4 SOLUTIONS
 11 OCTOBER 2016

Solve the following two problems. Show all steps in your work.

(1) Consider the quadratic function g given by

$$
g(x)=6 x-5-2 x^{2}
$$

for all real numbers x. Complete the square to find the axis of symmetry and the vertex of the function:

$$
\begin{aligned}
g(x) & =-2 x^{2}+6 x-5=-2\left(x^{2}-3 x\right)-5 \\
& =(-2)\left(x^{2}-3 x+\left(\frac{3}{2}\right)^{2}\right)-(-2)\left(\frac{3}{2}\right)^{2}-5 \\
& =-2\left(x-\frac{3}{2}\right)^{2}+2\left(\frac{3}{2}\right)^{2}-5 \\
& =-2\left(x-\frac{3}{2}\right)^{2}+\frac{9}{2}-5=-2\left(x-\frac{3}{2}\right)^{2}-\frac{1}{2} .
\end{aligned}
$$

This tells us the axis of symmetry is $x=3 / 2$ and the vertex is $(3 / 2,-1 / 2)$.
Since the leading coefficient, -2 , is negative, the parabola $y=g(x)$ faces downward, so g has no minimum. The maximum of g occurs when $x=3 / 2$, and the maximum value is $-1 / 2$.
(2) Suppose h is a linear function with x-intercept $(3 / 7,0)$ and y-intercept $(0,3)$. Give a sequence of transformations (shifting, compressing, stretching, and/or reflections) that transforms the line $y=x$ into the line $y=h(x)$.

The slope of the line $y=h(x)$ is

$$
\frac{3-0}{0-\frac{3}{7}}=\frac{3}{\frac{-3}{7}}=3 \cdot \frac{7}{-3}=-7
$$

The y intercept is given, so

$$
h(x)=-7 x+3
$$

for all real numbers x. We give the following sequence of transformations:

- Start with $y=x$.
- Stretch by a factor of 7 vertically: $y=7 x$.
- Reflect across the x-axis: $y=-7 x$.
- Shift up by 3 units: $y=-7 x+3=h(x)$.

