MATH 114 QUIZ 5 SOLUTIONS
 18 OCTOBER 2016

Solve the following two problems. Show all steps in your work.

(1) Solve the following inequality. Write your answer in interval notation.

$$
2 x^{2}-5<x+10
$$

Subtracting $x+10$ from both sides, the above inequality is equivalent to

$$
2 x^{2}-x-15<0
$$

To find where $2 x^{2}-x-15$ can transition from positive to negative, we first find where

$$
2 x^{2}-x-15=0
$$

To do this, we factor $2 x^{2}-x-15$. Using the $a c$ method, we want to factor $2(-15)=$ -30 as a product of two numbers whose difference is -1 ; we can use -6 and 5 . Keeping this in mind, observe that
$2 x^{2}-x-15=2 x^{2}-6 x+5 x-15=2 x(x-3)+5(x-3)=(2 x+5)(x-3)$.
So $2 x^{2}-x-15=0$ if and only if $2 x+5=0$ or $x-3=0$, which is to say, exactly when $x=-\frac{5}{2}$ or $x=3$.

This partitions the real line into three regions: $\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2}, 3\right)$, and $(3, \infty)$. To solve the original inequality, we must determine whether $2 x^{2}-x-15$ is positive or negative on each of these regions. We do so by trying a number in each region, namely $-3,0$, and 4 :

- $2(-3)^{2}-(-3)-15=2 \cdot 9+3-15=6>0$
- $2(0)^{2}-0-15=-15<0$
- $2(4)^{2}-4-15=2 \cdot 16-4-15=13>0$

So $2 x^{2}-x-15<0$ exactly when x is in the interval $\left(-\frac{5}{2}, 3\right)$. (The endpoints are not included because we don't want the cases where $2 x^{2}-x-15$ is equal to zero.)
(2) Consider a rectangle with one vertex at the origin, one vertex on the positive x-axis, one vertex on the positive y-axis, and one vertex on the line $2 x+y=6$. What is the largest area that such a rectangle could possibly have?

Write (a, b) for the upper right vertex of the rectangle. Then the area of this rectangle is $a b$. We know that $2 a+b=6$, so $b=6-2 a$, so the area is

$$
a b=a(6-2 a)=6 a-2 a^{2} .
$$

The answer we want is the largest possible value of $6 a-2 a^{2}$, which occurs at the vertex of the parabola

$$
y=6 x-2 x^{2}
$$

Completing the square, we have

$$
\begin{aligned}
6 x-2 x^{2} & =-2\left(x^{2}-3 x\right)=-2\left(x^{2}-3 x+\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}\right) \\
& =-2\left(x^{2}-3 x+\left(\frac{3}{2}\right)^{2}\right)+2\left(\frac{3}{2}\right)^{2} \\
& =-2\left(x-\frac{3}{2}\right)^{2}+2 \cdot \frac{9}{4}=-2\left(x-\frac{3}{2}\right)^{2}+\frac{9}{2} .
\end{aligned}
$$

So the vertex occurs at $\left(\frac{3}{2}, \frac{9}{2}\right)$. This tells us the largest possible area is $\frac{9}{2}$.

