MATH 114 QUIZ 6

25 OCTOBER 2016

Solve the following two problems. Show all steps in your work.

(1) Find all vertical, horizontal, and oblique asymptotes, if any, for the following function:

$$
F(x)=\frac{(3 x+6)\left(2 x^{2}+7 x-4\right)}{\left(x^{2}+6 x+8\right)(x-1)}
$$

Notice that

$$
x^{2}+6 x+8=(x+4)(x+2)
$$

and

$$
2 x^{2}+7 x-4=(2 x-1)(x+4) .
$$

(You can discover this by trial and error, the $a c$ method, the rational root theorem, completing the square, or the quadratic formula.) So for all x in the domain of F,

$$
F(x)=\frac{(3 x+6)(2 x-1)(x+4)}{(x+4)(x+2)(x-1)}=\frac{(3 x+6)(2 x-1)}{(x+2)(x-1)} .
$$

Also, $3 x+6=3(x+2)$, so

$$
F(x)=\frac{3(x+2)(2 x-1)}{(x+2)(x-1)}=\frac{3(2 x-1)}{(x-1)} .
$$

So F has only one vertical asymptote, at $x=1$. (Note that $2 x-1$ is not zero when $x=1$, so there's no more cancellation.) Also,

$$
F(x)=\frac{3(2 x-1)}{(x-1)}=\frac{(6 x-3)}{(x-1)}=\frac{(6 x-3) \frac{1}{x}}{(x-1) \frac{1}{x}}=\frac{6-\frac{3}{x}}{1-\frac{1}{x}}
$$

which approaches 6 as $x \rightarrow \infty$ or $x \rightarrow-\infty$. Thus, F has a horizontal asymptote at $y=6$, and no oblique asymptotes.
(2) Solve the following inequality. Check your answer by testing the inequality for at least two specific values of x. Write your answer in interval notation.

$$
3 \leq \frac{2 x-5}{x+4}
$$

The above inequality is equivalent to

$$
0 \leq \frac{2 x-5}{x+4}-3
$$

so we must first find where $\frac{2 x-5}{x+4}-3$ has zeroes or vertical asymptotes. Observe that

$$
\frac{2 x-5}{x+4}-3=\frac{2 x-5}{x+4}-\frac{3(x+4)}{x+4}=\frac{2 x-5-3(x+4)}{x+4}=\frac{-x-17}{x+4}
$$

Thus, there is a vertical asymptote when $x+4=0$, and a zero when $-x-17=0$. So we must test a point in each of the intervals $(-\infty,-17),(-17,-4)$, and $(-4, \infty)$:

- If $x=-20$, then

$$
\frac{-x-17}{x+4}=\frac{-(-20)-17}{-20+4}=\frac{20-17}{-20+4}=\frac{3}{-16}<0 .
$$

- If $x=-10$, then

$$
\frac{-x-17}{x+4}=\frac{-(-10)-17}{-10+4}=\frac{10-17}{-10+4}=\frac{-7}{-6}=\frac{7}{6}>0 .
$$

- If $x=0$, then

$$
\frac{-x-17}{x+4}=\frac{-0-17}{0+4}=\frac{-17}{4}<0
$$

Therefore,

$$
\frac{2 x-5}{x+4}-3=\frac{-x-17}{x+4}>0
$$

exactly when x is in the interval $(-17,-4)$. Including the zero at $x=-17$,

$$
\frac{2 x-5}{x+4}-3=\frac{-x-17}{x+4} \geq 0
$$

exactly when x is in the interval $[-17,-4)$. So

$$
3 \leq \frac{2 x-5}{x+4}
$$

if and only if x is in the interval $[-17,-4)$.

