MATH 114 QUIZ 7 SOLUTIONS
 8 NOVEMBER 2016

Solve the following two problems. Show all steps in your work.

(1) Which real numbers x satisfy $\frac{1}{9^{x}}=3^{4 x-5}$? Check your answers.

Suppose x is a real number such that

$$
\frac{1}{9^{x}}=3^{4 x-5}
$$

Since $9=3^{2}$, we have $9^{x}=\left(3^{2}\right)^{x}=3^{2 x}$, so

$$
3^{-2 x}=\frac{1}{3^{2 x}}=\frac{1}{9^{x}}=3^{4 x-5}
$$

Exponentiation is one-to-one (the base 3 logarithm is the inverse function), so this implies

$$
-2 x=4 x-5
$$

Adding $2 x+5$ to both sides gives us $5=6 x$, so $x=\frac{5}{6}$.
Checking our answer,

$$
4 \cdot \frac{5}{6}-5=\frac{20}{6}-5=\frac{20}{6}-\frac{30}{6}=\frac{-10}{6}
$$

so $3^{4 \cdot \frac{5}{6}}=3^{-10 / 6}$, while

$$
\frac{1}{9^{5 / 6}}=9^{-5 / 6}=\left(3^{2}\right)^{-5 / 6}=3^{-10 / 6}
$$

so $x=\frac{5}{6}$ is indeed a solution.
(2) Find the range and any horizontal asymptotes of the function $F(x)=10-e^{2 x-6}$. Also, what's $F(3)$?

As $x \rightarrow-\infty$, we have $2 x-6 \rightarrow-\infty$, so $e^{2 x-6} \rightarrow 0$, so $F(x) \rightarrow 10$, giving a horizontal asymptote at $y=10$. However, $e^{2 x-6}>0$ for all x, so $F(x)<10$ for all x.

As $x \rightarrow \infty$, we have $2 x-6 \rightarrow \infty$, so $e^{2 x-6} \rightarrow \infty$, so $F(x) \rightarrow-\infty$ (notice that $e^{2 x-6}$ is subtracted in the formula for F).

Putting these together, $F(x)$ can be any real number less than 10: the range is $(-\infty, 10)$.

Finally, $F(3)=10-e^{2 \cdot 3-6}=10-e^{0}=10-1=9$.

