MATH 114 QUIZ 8 SOLUTIONS 15 NOVEMBER 2016

Solve the following two problems. Show all steps in your work.

(1) Find all real numbers r such that the following equation is true. Check your answers.

$$
\log _{5}(r)-\log _{5}(7)=\log _{5}(r+3)-2 \log _{5}(7)
$$

Suppose r is a solution to the above equation. Using properties of logarithms, we have:

$$
\log _{5}(r)-\log _{5}(7)=\log _{5}(r / 7)
$$

and

$$
\log _{5}(r+3)-2 \log _{5}(7)=\log _{5}(r+3)-\log _{5}\left(7^{2}\right)=\log _{5}\left(\frac{r+3}{7^{2}}\right)
$$

so

$$
\log _{5}\left(\frac{r}{7}\right)=\log _{5}\left(\frac{r+3}{7^{2}}\right)
$$

The base 5 logarithm has an inverse function, the base 5 exponential, so $\log _{5}$ is one-to-one. Therefore,

$$
\frac{r}{7}=\frac{r+3}{7^{2}}
$$

Solving this, we obtain $7 r=r+3$, so $6 r=3$, so $r=1 / 2$. And, indeed,

$$
\begin{aligned}
\log _{5}(1 / 2+3)-2 \log _{5}(7) & =\log _{5}(7 / 2)-2 \log _{5}(7) \\
& =\log _{5}(7)-\log _{5}(2)-2 \log _{5}(7)=-\log _{5}(2)-\log _{5}(7)
\end{aligned}
$$

while

$$
\log _{5}(1 / 2)-\log _{5}(7)=\log _{5}\left(2^{-1}\right)-\log _{5}(7)=-\log _{5}(2)-\log _{5}(7)
$$

so $r=1 / 2$ really is a solution (and the only solution).
(2) Find the domain, range, and any asymptotes of the following function:

$$
g(x)=5-\log _{2}(4-x)
$$

For x to be in the domain of g, we must have $4-x>0$, so the domain is $(-\infty, 4)$.
The range can be computed in two ways. ${ }^{1}$ One way is to observe that the graph $y=g(x)$ can be obtained from $y=\log _{2}(x)$ by transformations. Here's one such sequence of transformations:
(a) Shift left 4 units: $y=\log _{2}(4+x)$
(b) Reflect across y-axis: $y=\log _{2}(4-x)$
(c) Reflect across x-axis: $y=-\log _{2}(4-x)$
(d) Shift up 5 units: $y=5-\log _{5}(4-x)=g(x)$

[^0]The range of $\log _{2}$ is \mathbb{R}, and neither shifts nor reflections change this, so the range of g is still \mathbb{R}.

Another approach is to compute the inverse function g^{-1}, whose graph is

$$
x=g(y)=5-\log _{2}(4-y) .
$$

Solving for y, we obtain:

$$
\begin{aligned}
& x=5-\log _{2}(4-y) \\
& \log _{2}(4-y)=5-x \\
& 4-y=2^{5-x} \\
& 4-2^{5-x}=y
\end{aligned}
$$

So $g^{-1}(x)=4-2^{5-x}$, which has domain \mathbb{R}. The domain of the inverse function is the range of the original function, so we again find the range of g is \mathbb{R}.

As for asymptotes, we can use the above transformations: $\log _{2}$ has a vertical asymptote at $x=0$ and no other asymptotes. Shifting left moves the asymptote to $x=-4$, reflecting across the y-axis moves the asymptote to $x=4$, and the reflection across the x-axis and the upward shift don't affect the asymptote. So, g has a vertical asymptote at $x=4$ and no other asymptotes.

[^0]: ${ }^{1}$ Probably more than two ways, actually, but two ways that you've learned in this class.

