MATH 114 QUIZ 9 SOLUTIONS
 22 NOVEMBER 2016

Solve the following two problems. Show all steps in your work. You may use the Pythagorean theorem without proof.

(1) Compute the exact values of $\cos (7 \pi / 4)$ and $\sin (7 \pi / 4)$.

By definition, $(\cos (7 \pi / 4), \sin (7 \pi / 4))$ is the point on the unit circle at angle $7 \pi / 4$. This corresponds to an isosceles right triangle with hypotenuse 1 in the fourth quadrant.

By the Pythagorean theorem, the side lengths of an isosceles right triangle with hypotenuse 1 are both $1 / \sqrt{2}$, since $c^{2}+c^{2}=1$ implies $c^{2}=1 / 2$, so $c=1 / \sqrt{2}$.

Since the point is in the fourth quadrant, the x-coordinate is positive and the y-coordinate is negative. Hence,

$$
\cos (7 \pi / 4)=\frac{1}{\sqrt{2}}
$$

and

$$
\sin (7 \pi / 4)=\frac{-1}{\sqrt{2}}
$$

(2) Compute the exact value of $3 \cos (2 \pi / 17) \cos (2 \pi / 17)+3 \sin (2 \pi / 17) \sin (2 \pi / 17)$.

Observe that

$$
\begin{aligned}
& 3 \cos (2 \pi / 17) \cos (2 \pi / 17)+3 \sin (2 \pi / 17) \sin (2 \pi / 17) \\
& =3 \cos (2 \pi / 17)^{2}+3 \sin (2 \pi / 17)^{2} \\
& =3\left(\cos (2 \pi / 17)^{2}+\sin (2 \pi / 17)^{2}\right)
\end{aligned}
$$

By the Pythagorean theorem and the definition of cosine and sine,

$$
\cos (t)^{2}+\sin (t)^{2}=1
$$

for every real number t; in particular, setting $t=2 \pi / 17$,

$$
\cos (2 \pi / 17)^{2}+\sin (2 \pi / 17)^{2}=1
$$

so

$$
3\left(\cos (2 \pi / 17)^{2}+\sin (2 \pi / 17)^{2}\right)=3 \cdot 1=3
$$

