## MATH 221 QUIZ 1, FALL 2013

Solve the following two problems, showing all your work.
(1) For which values of $a$ and $b$ does the graph of the function $f(x)=a x+b$ intersect the graph of the function $g(x)=x^{2}-2 x+1$ at exactly one point, and also pass through the point $(1,-1)$ ?

Answer: The line $y=a x+b$ passes through $(1,-1)$, so setting $y=-1$ and $x=1$,

$$
-1=a \cdot 1+b \Longrightarrow b=-a-1,
$$

so we can write

$$
y=a x-a-1 .
$$

Setting $y$ equal to $g(x)$ gives the points of intersection of $y=f(x)$ and $g(x)$ :

$$
a x-a-1=x^{2}-2 x+1 \Longrightarrow x^{2}-(a+2) x+a+2=0,
$$

so by the quadratic formula,

$$
x=\frac{(a+2) \pm \sqrt{(a+2)^{2}-4(a+2)}}{2} .
$$

We want to find when there is exactly one solution, that is, when the discriminant (the expression inside the square root) is zero:

$$
0=(a+2)^{2}-4(a+2)=a^{2}+4 a+4-4 a-8=a^{2}-4=(a+2)(a-2) .
$$

So $a= \pm 2$. Using $b=-a-1$, we get two solutions:

$$
y=2 x-3 \quad \text { or } \quad y=-2 x+1
$$

(2) Let $f$ be the function defined by the requirement that, for any $t$,

$$
y \text { is the largest of all }
$$

$$
y=f(t) \Longleftrightarrow \quad \text { possible solutions of }
$$

$$
y^{2}+4 t^{2}=t^{2} y+4 y
$$

Find a formula for $f(t)$.
Answer: Move everything to one side:

$$
y^{2}-t^{2} y-4 y+4 t^{2}=0
$$

Now factor:

$$
0=y^{2}-t^{2} y-4 y+4 t^{2}=y^{2}-\left(t^{2}+4\right) y+4 t^{2}=(y-4)\left(y-t^{2}\right) .
$$

So $y=4$ or $t=t^{2}$. The value of $f(t)$ is whichever of the two solutions is larger, so

$$
f(t)=\max \left(t^{2}, 4\right)= \begin{cases}t^{2} & \text { if } t>2 \text { or } t<-2, \\ 4 & \text { if }-2 \leq t \leq 2\end{cases}
$$

