MATH 221 QUIZ 2 SEPTEMBER 23, 2013

Solve the following two problems, showing all your work.
(1) Using the epsilon-delta $(\varepsilon-\delta)$ definition of limit, prove that

$$
\lim _{x \rightarrow 2} \frac{x}{3-x}=2
$$

Proof. Let $\varepsilon>0$ be arbitrary. Let $\delta>0$ be some value that we will choose later. For any x such that

$$
0<|x-2|<\delta
$$

we want to show that

$$
\left|\frac{x}{3-x}-2\right|<\varepsilon
$$

To do so, observe that

$$
\begin{aligned}
\left|\frac{x}{3-x}-2\right| & =\left|\frac{x}{3-x}-\frac{2(3-x)}{3-x}\right|=\left|\frac{x-2(3-x)}{3-x}\right|=\left|\frac{x-6+2 x}{3-x}\right| \\
& =\left|\frac{3 x-6}{3-x}\right|=\left|\frac{3(x-2)}{3-x}\right|=3 \cdot|x-2| \cdot \frac{1}{|3-x|}
\end{aligned}
$$

By assumption, $|x-2|<\delta$. Also, if $\delta \leq \frac{1}{2}$, then

$$
|x-2|<\frac{1}{2} \Longrightarrow \frac{3}{2}<x<\frac{5}{2} \Longrightarrow-\frac{3}{2}>-x>-\frac{5}{2} \Longrightarrow \frac{3}{2}>3-x>\frac{1}{2}
$$

hence

$$
\frac{1}{|3-x|}=\frac{1}{3-x}<2 .
$$

Therefore, applying these bounds, we obtain

$$
\left|\frac{x}{3-x}-2\right|=3 \cdot|x-2| \cdot \frac{1}{|3-x|}<3 \cdot \delta \cdot \frac{1}{|3-x|}<3 \cdot \delta \cdot 2=6 \delta \leq \varepsilon,
$$

assuming for the last step that $\delta \leq \frac{\varepsilon}{6}$. Combining the two assumptions we made of δ, we see that choosing

$$
\delta=\min \left(\frac{1}{2}, \frac{\varepsilon}{6}\right)
$$

makes our assumptions valid. This concludes the proof.
(2) Find the following limit (using any methods you've learned so far from lecture, homework, or the course text):

$$
\lim _{x \rightarrow 3} \frac{\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{x}}}{x-3} .
$$

To find the limit, observe that, for any positive $x \neq 3$,

$$
\begin{aligned}
\frac{\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{x}}}{x-3} & =\frac{\left(\frac{\sqrt{x}-\sqrt{3}}{\sqrt{3} \cdot \sqrt{x}}\right)}{x-3} \\
& =\frac{\sqrt{x}-\sqrt{3}}{(x-3) \sqrt{3 x}} \\
& =\frac{(\sqrt{x}-\sqrt{3})(\sqrt{x}+\sqrt{3})}{(x-3) \sqrt{3 x}(\sqrt{x}+\sqrt{3})} \\
& =\frac{|x|-|3|-\sqrt{3 x}+\sqrt{3 x}}{(x-3) \sqrt{3 x}(\sqrt{x}+\sqrt{3})} \\
& =\frac{x-3}{(x-3) \sqrt{3 x}(\sqrt{x}+\sqrt{3})} \\
& =\frac{1}{\sqrt{3 x}(\sqrt{x}+\sqrt{3})} .
\end{aligned}
$$

Since the function

$$
f(x)=\frac{1}{\sqrt{3 x}(\sqrt{x}+\sqrt{3})}
$$

is continuous at $x=3$, we now can take the limit as follows:

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{x}}}{x-3} & =\lim _{x \rightarrow 3} \frac{1}{\sqrt{3 x}(\sqrt{x}+\sqrt{3})}=\frac{1}{\sqrt{3 \cdot 3}(\sqrt{3}+\sqrt{3})} \\
& =\frac{1}{3 \cdot 2 \cdot \sqrt{3}}=\frac{1}{6 \sqrt{3}}=\frac{\sqrt{3}}{18} .
\end{aligned}
$$

