MATH 221 QUIZ 6 OCTOBER 28, 2013

Solve the following two problems, showing all your work. Do not use theorems that haven't been covered in this class yet.

(1) A cube increases in size so that the edge length of the cube increases at a constant rate of $7 \mathrm{~mm} / \mathrm{s}$ (millimeters per second). How fast is the volume of the cube changing when the edge length is 40 mm ?

Let $\ell=\ell(t)$ denote the edge length at time t, and $V=V(t)$ the volume of the cube at time t. Then $V=\ell^{3}$, so, implicitly differentiating,

$$
\frac{d V}{d t}=\frac{d}{d t} \ell^{3}=3 \ell^{2} \frac{d \ell}{d t}
$$

By assumption, $\frac{d \ell}{d t}=7 \mathrm{~mm} / \mathrm{s}$, so when $\ell=40 \mathrm{~mm}, \frac{d V}{d t}=3 \cdot 40^{2} \cdot 7 \mathrm{~mm}^{3} / \mathrm{s}$.
(2) Determine the intervals where the following function is increasing and where it is decreasing:

$$
f(x)=\frac{x+1}{x^{2}+1}
$$

First, we find the derivative:

$$
f^{\prime}(x)=\frac{1 \cdot\left(x^{2}+1\right)-2 x \cdot(x+1)}{\left(x^{2}+1\right)^{2}}=\frac{-x^{2}-2 x+1}{\left(x^{2}+1\right)^{2}}
$$

Since $x^{2}+1 \neq 0$ for any real number $x, f(x)$ has no vertical asymptotes, so $f(x)$ can only change from increasing to decreasing or vice versa when $f^{\prime}(x)=0$. Let us find all such points: if $f^{\prime}(x)=0$, then

$$
\frac{-x^{2}-2 x+1}{\left(x^{2}+1\right)^{2}}=0
$$

so, multiplying by the denominator,

$$
-x^{2}-2 x+1=0
$$

This is a quadratic equation, so by the quadratic formula,

$$
x=\frac{2 \pm \sqrt{(-2)^{2}-4 \cdot(-1) \cdot 1}}{2 \cdot(-1)}=-1 \pm \frac{\sqrt{8}}{2}=-1 \pm \sqrt{2} .
$$

These are the critical (stationary) points of f.
To determine whether f is increasing or decreasing, we check whether f is positive or negative in the intervals $(-\infty,-1-\sqrt{2}),(-1-\sqrt{2},-1+\sqrt{2})$, and $(-1+\sqrt{2},+\infty)$. Since $1<\sqrt{2}<2$, values of $x=-3,-1,1$ will suffice:

$$
\begin{aligned}
f^{\prime}(-3) & =\frac{-(-3)^{2}-2(-3)+1}{\left((-3)^{2}+1\right)^{2}}=\frac{-9+6+1}{(9+1)^{2}}<0 \\
f^{\prime}(-1) & =\frac{-(-1)^{2}-2(-1)+1}{\left((-1)^{2}+1\right)^{2}}=\frac{-1+2+1}{(1+1)^{2}}>0 \\
f^{\prime}(1) & =\frac{-1^{2}-2(1)+1}{\left(1^{2}+1\right)^{2}}=\frac{-1-2+1}{(1+1)^{2}}<0
\end{aligned}
$$

MATH 221 QUIZ 6 OCTOBER 28, 2013
So f is decreasing on $(-\infty,-1-\sqrt{2})$, increasing on $(-1-\sqrt{2},-1+\sqrt{2})$, and decreasing on $(-1+\sqrt{2},+\infty)$.

