MATH 221 QUIZ 7
 NOVEMBER 4, 2013

Solve the following problem, showing all your work.

Consider the function

$$
f(x)=x^{3}+\frac{1}{x^{2}}
$$

Find all (horizontal, vertical, or slant) asymptotes, zeros, stationary/critical points, inflection points, and any other information you need to accurately graph the function. Draw an accurate graph of the function, clearly labelling all the information you just found.

- Vertical asymptote at $x=0$.
- No horizontal asymptotes:

$$
\lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty}\left[x^{3}+\frac{1}{x^{2}}\right]=\lim _{x \rightarrow \pm \infty} x^{3}= \pm \infty
$$

- No slant asymptotes:

$$
\lim _{x \rightarrow \pm \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \pm \infty}\left[x^{2}+\frac{1}{x^{3}}\right]=\lim _{x \rightarrow \pm \infty} x^{2}=\infty
$$

- Zeros:

$$
\begin{aligned}
x^{3}+\frac{1}{x^{2}} & =0 \\
x^{5}+1 & =0 \\
x^{5} & =-1 \\
x & =-1 .
\end{aligned}
$$

(There are also four other complex-valued solutions to $x^{5}=-1$, but we only care about the real-valued solution, $x=-1$.)

- First and second derivatives:

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-\frac{2}{x^{3}} \\
f^{\prime \prime}(x) & =6 x+\frac{6}{x^{4}}
\end{aligned}
$$

- Critical points:

$$
\begin{aligned}
3 x^{2}-\frac{2}{x^{3}} & =0 \\
3 x^{5}-2 & =0 \\
x^{5} & =\frac{2}{3} \\
x & =\sqrt[5]{\frac{2}{3}} .
\end{aligned}
$$

- Inflection points:

$$
\begin{aligned}
6 x+\frac{6}{x^{4}} & =0 \\
6 x^{5}+6 & =0 \\
x^{5} & =-1 \\
x & =-1 .
\end{aligned}
$$

- Local min/max: There's only one critical point, and it occurs at $x=\sqrt[5]{\frac{2}{3}}>0$. Note that, for any $x>0$,

$$
f^{\prime \prime}(x)=6 x+\frac{6}{x^{4}}>0
$$

Thus, f is convex at the critical point, and so it is a local minimum.

- Convex or concave: check values of $f^{\prime \prime}(x)$ for, say, $x=-2, x=-0.5$, and $x=1$ (or any other suitable values).

