MATH 221 QUIZ 8
NOVEMBER 11, 2013

Solve the following two problems, showing all your work.

(1) Use I'Hopital’s rule to compute the following limit:
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Since cos 7 = 0 and sin(7) = 0, we can use I'Hopital’s rule:
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(2) Consider the function
f(z) =In((cosz)?) .

Determine the intervals on which the function is increasing and on which it is de-

creasing.
To find these intervals, we need to find the stationary points and the vertical asymp-
totes. Vertical asymptotes, if any, must occur due to the fact that lim,\ g In(z) = —oc.

So, in particular, f has vertical asymptotes exactly when (cosz)? = 0, that is, when
x = § + mk for some integer k.
To find stationary points, we need to find the derivative:

f(x) = 4 In ((cosz)?)

dz
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= %&(;) = —2tan(z).

So f'(z) = 0 exactly when x = 7k for some integer k.

Since f is increasing when f'(x) = —2tan(xz) > 0 and decreasing when f'(z) =
—2tan(z) < 0, it follows that f is increasing when tan(x) < 0 and decreasing when
tan(z) > 0. Thus, f is increasing on the intervals [—g + 7k, Wk} for each integer k,
and decreasing on the intervals [7Tl€, 5+ Wk] for each integer k.



