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1 Algebraic sets, affine varieties, and the Zariski topology

List of topics:
(1) Algebraic sets
(2) Hilbert basis theorem

(3) Zariski topology

1.1 Algebraic sets
Fix a field k. Consider k", the set of N-tuples in k.

Definition 1.1. An affine algebraic subset of kY is the common zero locus of a collection of
polynomials in k[xq, ..., zN].
That is: Fix S C k[z1,...,zy| any subset. Then

V(S)={p=\,.... ) €LY | flp) =0VYfeS}.
Ezample 1.2. (1) Lines in R% V(y — mx — b) C R2
(2) Rational points on a cone (arithmetic geometry): V(z? + y* — 2?) C Q?

(3) All linear subspaces of £V are affine algebraic sets.

2

(4) V(det(z;;) — 1) = SL,(C) = {n x n matrices /C of det1} C C"

(5) sly(R) = {(‘ZC 3})

(6) Point in &V: {(a1,...,an)} =V(zy —ay,..., 28 — ay).

trace = O} C R?*2

(1) Viw,y) = 0,00 =V ({a" + 9,5 oy, ) TR
Remark 1.3. S CT C klxy,...,zn| = V(5) D V(T).

1.2 Hilbert basis theorem

Theorem 1.4 (Hilbert basis theorem). Every affine algebraic set in k™ can be defined by
finitely many polynomials.

Proof requires a lemma:

Lemma 1.5. Let {fa}\cp € K[z1,...,2n] and let I C klxy, ..., x| be the ideal generated by
the {fa}rep- Then V(S) =V(I).



Proof. We know V(S) D V(I). Take p € V(S). We want to show that given any g € I, we
have g(p) = 0.
Take g € I, 80 g =11 f1 + -+ + rifi, where f; € S and r; € k[xq,...,zx]. So

9(p) = ri(p) fr(p) + -+ r(p) fi(p) = 0
since fi(p) =0fori=1,...,t. Hence p € V(I). O

Proof of Theorem[I.4. Take any S C k[zy,...,xy], I = (S) ideal generated by S. We have
V(S) = V(I) by Lemma [L.5] But every ideal in a polynomial ring in finitely many variables
is finitely generated. Hence

V(S) = V() = V(g1 -, 9),
where ¢y, ..., g; generate I. O]
Remark 1.6 (Algebra black box). e R is Noetherian if every ideal is f.g.
e Thm: R Noetherian = R[z] Noetherian.

o klxy,...,xn_1][xn] = k[z1,...,2y], use induction.

1.3 Zariski topology

Definition 1.7 (topology). A topology on a set X is a collection of distinguished subsets,
called closed sets, satisfying:

(1) @ and X are closed.
(2) An arbitrary intersection of closed sets is closed.
(3) A finite union of closed sets is closed.
Ezample 1.8. (1) On R, the Euclidean topology.
(2) On R, cofinite: closed sets are finite sets, and R, &.

Definition 1.9 (Zariski topology). The Zariski topology on k% is defined as the topology
whose closed sets are affine algebraic sets.

1.3.1 Proof that affine algebraic sets form closed sets on a topology on k"
(1) o =V(1), kN =V(0).
(2) WTS: {Vi} closed sets = (1,5 Vi closed. Write V) = V(7). Then

Nv=Nvay=v(Un)=v(Xn)

AEA AEA AEA AEA



(3) WTS: Finite union of closed sets are closed. By induction, suffices to show V(fi, ...

V(g1,--.,9s) is an algebraic set.

Note:
V(flvaft)UV(gla795):V<{flgj}1€{l ..... t})

je{l,...,s}

Proof on quiz.

Ezample 1.10. Zariski topology on k' is the cofinite topology. Since k[x] is a PID,

V=V({fi,.... fi)) = V(F) = {roots of f},
which is finite if f # 0.

2 Ideals, Nullstellensatz, and the coordinate ring
Today:

(1) ideal of V/
(2) Hilbert’s Nullstellensatz
(3) Regular functions
(4) coordinate ring

2.1 Ideal of an affine algebraic set
Affine algebraic subset of £V:
14 :V((flaaft)) - kN
Consider the map

{ideals in k[z1,...,2y]} — {(affine) algebraic subsets of k"}
I— V().

Note 2.1. e This map is order reversing: [ C J = V(J) C V(I).
e Surjective.

e Not injective: e.g., (z,y), (2%, y?).
Remark 2.2 (algebra). R commutative ring, I C R any ideal.

Definition 2.3. The radical of I is the ideal

RadI:{fER‘fNEIforsomeN}.

e Sanity check: show this is an ideal.

>ft)U



o [ is radical if Rad I = 1.
Lemma 2.4. Let I C k[xy,...,zn|. Then
V(I) =V(Rad ).

Proof. I CRadl = V(RadI) C V(I).
So take p € V(I) C k. Need to show Vf € Rad I that f(p) = 0. We have f € Rad] —>
fY¥ € Rad I, so

N
(f)” =f"p) =0 = flp)=0. O
Now is the map I — V(I) injective?
Ezample 2.5. (z? + y*) € Rz, y].
V(z,y) = (0,0) = V(a? + %) C R
We have 2 radical ideals defining the same algebraic set.

Definition 2.6. Let V C k" be an affine algebraic set. The ideal of V is

(V) = {f € Klon,...an] | f(p) =0 Vp eV}
Note 2.7. I(V) is a radical ideal, and is the largest ideal defining V.
Proposition 2.8. V = V(I(V)).

Proof. Say V =V(I). Since I CI(V), we have V(I(V)) CV(I) = V.
Take p € V. Need to show Vg € I(V) that g(p) = 0, which is true by definition of
(V). O
This shows that I is a right inverse of V.

Example 2.9. Going back to our previous example, we should really view V (z? + y?) in C?
rather than R?:

V (2* +y°) = V((z + iy)(z — iy)) = V(z +iy) U V(2 — iy).

2.2 Hilbert’s Nullstellensatz

Theorem 2.10 (Hilbert’s Nullstellensatz). Let k = k (i.e., assume k is algebraically closed).
There is an order-reversing bijection

{radical ideals in k[xq,...,zN]|} +— {aﬁ?ne algebraic subsets of kN}
I'— V(I
I(V)« V.

Remark 2.11. Points in affine space £V correspond to maximal ideals in the polynomial ring
k’[l’l, c. ,l’N].



2.3 Irreducible spaces

Definition 2.12. A topological space X is irreducible if X is not the union of two nonempty
proper closed sets.

Example 2.13. The cofinite topology on R is irreducible.

2.4 Sept. 10 warmup
e Draw V(zy,z2) C R3.
e Prove Lemma: For I,J C k[xy,...,zn],
VINJ)=V({I)uV(J).

Proof 1. INJCI,J = V(I)UV(J)CV(InNJ).
Take p € V(INJ). Need p € V(I) or V(J). If p ¢ V(I), then 3f € I such that f(p) # 0.
Now: Vg € J, look at fg € IJ. Because p € V(I NJ)

fp)g(p) = (f9)(p) = 0,
hence g(p) =0 and p € V(J). O

Proof 2. V(101J) =V (VINT) =V (VIJ) = V(1]) = V(1) UV(J). O

2.5 Some commutative algebra

R commutative ring.

e [, J radical = I N J radical.
e p C Ris prime <= R/pis adomain <= if fg € p, then f €por g € p.
e If R is Noetherian, I radical, then

I'=pin---Npy

uniquely, where the p; are prime (irredundant).

2.6 Review of Hilbert’s Nullstellensatz

The mappings I and V are mutually inverse, giving us an order-reversing bijection

{afﬁne algebraic subsets of k:N} $ {radical ideals of k[z1,...,xn]}.
EN +— 0
<+ (1) = k[xy,...,zN]
{points} +— {maximal ideals}
(a1,...,an) «— (r1 —ay,..., TN — ay)
{irreducible algebraic sets} <— Speck[zy,...,zx]| = {prime ideals}



2.7 Irreducible algebraic sets

Definition 2.14. An algebraic set V' C k% is irreducible if it cannot be written as the union
of two proper algebraic sets contained in V. [If V =V, UV,, then V =V; or V = V5 |

Ezercise 2.15. V(I) is irreducible <= [ is prime, where [ is radical.

Observation 2.16. I C k[zy,...,zy] radical (k not necessarily algebraically closed), write
I =piN---Nypy, where p; are prime (unique!).

V() =V(p)U---UV(p)
are the (unique) irreducible components of V(I).
The point is:

Proposition 2.17. Every algebraic set in k™ is a union of its irreducible components.

2.8 Aside on non-radical ideals

We also have V(I) N V(J) = V(I UJ). However, I U.J is not usually an ideal, and I + J is
not necessarily radical.
Non-radical ideals lead into scheme theory:

V(y—2*)NV(y) = V(y —a®y) = V(y,2*).

We should somehow keep track of the multiplicity.

3 Regular functions, regular maps, and categories

3.1 Regular functions
Fix V C kN algebraic set, k = k.

Definition 3.1. A function V — k is reqular if it agrees with the restriction to V' of some
polynomial function on the ambient k%.

Proposition—Definition 3.2. The set of all regular functions on V' has a natural ring struc-
ture (where addition and multiplication are the functional notions). This is the coordinate
ring of V| denoted k[V].

Ezample 3.3. On kN, k[kN] = k[, ..., zn].

Remark 3.4. (1) k=k = k is infinite.

(2) If k is infinite, then there is no ambiguity in the word “polynomial”.

Example 3.5. Consider V(y — 2?) C R2. This is the set of all points (¢,¢?). The function “y”
outputs the y-coordinate (projection to y-axis), and “z?” is the same function in V.

Example 3.6. Consider V(zy — 1) C Q2. Is % regular?
Yes: i =z on V(zy —1).

10



Observation 3.7. The restriction map gives a natural ring surjection
k’[l’l, . ,ZEN] — k‘[V]
Y= SD}V

whose kernel is I(V). In particular,

3.2 Properties of the coordinate ring

The coordinate ring k[V] has the following properties:
1) k[V] is a f.g. k-algebra generated by the images of x1,...,zy.

2) reduced (the only nilpotent element is 0)

(1)

(2)

(3) domain <= V is irreducible.

(4) The maximal ideals of k[V] correspond to points of V' (need k = k).

Note 3.8 (commutative algebra). Maximal ideals in k[V] = k[xq, ..., zx]|/I(V) correspond to
maximal ideals in k[zy,...,2y] containing I(V'). By the Nullstellensatz, these correspond to
points on V.

3.3 Regular mappings

Definition 3.9. Let V C k™ and W C k™ be affine algebraic sets. A reqular mapping of
affine algebraic sets
p: VW

is any mapping ¢ which agrees with a polynomial map ¥ on the ambient k" — k™:
o
= (z1,...,2,) — (V1(2),..., ¥p(2)),
where WU, are polynomials.

Note 3.10. If W = k, then a regular map is a regular function.

Note 3.11. We can describe a regular map V. - W C k™ by giving regular functions
O1y -y om € K[V
pe (1(p), . om(p) € W C k™.

Example 3.12.

k— V(y—2%) Ck?
t s (t,1%)

is a regular map from k to V(y — z?).

11



The projection
V(y—xQ) Ck:—k
(z,y) ==
is the inverse to the map t — (¢, ?).

Definition 3.13. An isomorphism of affine algebraic sets is a regular map V — W which

has a regular map W 5 V inverse: Yo p=idy and g oY = idy.

Ezample 3.14. Let V1, V, C k™ be linear subspaces (defined by some collection of linear
polynomials). Then V; = V, as algebraic sets <= dim V] = dim V5.

Ezxample 3.15 (diagonal map). Give k™ x k™ coordinates xi,...,Tn, Y1, -, Yn.
N Y
p— (p,p)

Image is the “diagonal”
D=V(x;—y1,...,%, —yn) C k" X k".

The map k™ 2D C k™ x k™ is an isomorphism of affine algebraic sets.

FExample 3.16. X,Y C k™ algebraic sets. View X C k"™ with coordinates zy,...,x, and
Y C k™ with coordinates y1, ..., Yn.

kn a k™ x km
Ul Ul
XNY ———(XxY)nD
p—(p,p)

3.4 Category of affine algebraic sets

Key idea: The category of affine algebraic sets over k = k is “the same” (anti-equivalence,
duality) as the category of f.g. reduced k-algebras.
Point: Given a regular map V - W of affine algebraic sets, there is a naturally induced

k-algebraic homomorphism k[WW] SN k[V] given for g € k[W], W < k by

V2w 2k
\ﬁm:j

r=(T1,...,2,) — (gpl(x), . .,gpm(x)) — g((pl(x), . .,gom(x)) € k[V],

where 1, ..., ¢, are polynomials in x1,...,x,.

12



Theorem 3.17. For k =k, there is an antz’-equz’valenc of categories

affine algebraic sets over R Ig Teizcgd ]lf‘ablgebmS
k with regular maps with k-atgeora

homomorphisms
V= k[V]
o
V25 W) (k[W] N k[V])
gr—=rgop
" klxy, ..., x,)
K" DV(I)«—~ R= — 7
Proof.
Note 3.18. The assignment V' — k[V] is functorial: Given
f g
V— W —7X,
T

there is f*, ¢*, h* and a commutative diagram

K{V) 2 R[] " kLX),

h*

e, (go f)* = f*og*. (Make sure this is obvious to you.)
Problem: Given a reduced, f.g. k-algebra R, how to cook up V7
Fix a k-algebra presentation for R:

B k[l‘l, N ,[L’n]
R = — 7
Because R is reduced, I is radical. Let
V =V(I) Ck".
By the Nullstellensatz, I(V(I)) = I, so
Elxy, ...,z klxy,... 2]
kElV] = = = R.
V] (V) I

What about homomorphisms of k-algebras?

‘W | T‘V
ki, . yml /I —2= K[z, .. 2]/

Let v; = p(y;) € k[V] for i = 1,...,m. This uniquely defines ¢.

L An anti-equivalence of categories C, D is an equivalence of C' and the opposite category D°P.

13



Need to construct
k" D V(J) L V(1) C k™
r=(x1,...,Ty) — (gpl(x), . gpm(:z))
We have that W is a map V — k™. Need to check that
(1) the image is in W,
(2) ¥* = o.
To check
((pl(x), . ,gpm(x)) evV() =W,
take any g € I. For any z € V/,
9(e1(@),- -, om(2)) = ¢(g)(z) =0.
We have that ¢ is represented by a map
Elyi, . Ym] = k[z1, ..., 2]
Yi = Pi, 1=1,...,m.
Because ¢ induces a map of the quotient ring

Elyr, .- Ym] o klx1,..., 2]
i - g

©¢(g) € J for any g € I. In other words, ¢(I) C J.
Finally, it’s easy to check that this functor is the inverse functor to V' — k[V].

3.5 Sep. 14 quiz question
Consider k <+ V(y? — 2%) C k? given by
t— (1)

Is this a regular map? Bijective? Isomorphism? Describe explicitly the induced ¢*.
Inverse:

(r,9) = Lifx #0,
x
(0,0) — 0.

© is an isomorphism <= ¢* is an isomorphism.

is not an isomorphism of k-algebras.

14



3.6 Convention on algebraic sets

From now on, affine algebraic sets V' C k™ = A™ will be considered as topological spaces with
the induced (subspace) Zariski topology.

The closed sets of V are W NV, where W C k™ (affine algebraic set contained in V') is
closed in k™.

3.7 Hilbert’s Nullstellensatz and the Zariski topology
Assume k = k. Fix V C A™ affine algebraic set.

{closed sets in V'} «— {radical ideals in k[V]}
Wi I(W) = {f €k[V] | f(p) =0Vpe W}
Vo{peV|flp)=0Vfel}=V(I)«I

Proof. Follows immediately from the Nullstellensatz in A™:

{affine algebraic sets in V'} «+— {radical ideals in k[zy, ..., z,] containing I(V)}

— {radical ideals in W} = {radical ideals in k[V]} .

]

4 Rational functions

[Caution: Despite the name, not functions!|

4.1 Function fields and rational functions

Fix affine algebraic set V. Assume V is irreducible, equivalently, k[V] is a domain.
Definition 4.1. The function field of V' is the fraction field of k[V], denoted k(V).
Ezxample 4.2. Let V.= A", k[V] = k[z1,...,x,]. Then

k(V) =Ek(xy,...,x,),
i.e., rational functions.

Definition 4.3. A rational function on V is an element ¢ € k(V'). Le., ¢ is an equivalence
class f/g, where f, g € k[V], g # 0. Here,

iNL, — fg =gf
9 9

as elements of k[V].

15



Ezample 4.4. In V(zy — 2?) C A3 x/z is a rational function. Moreover, z/y is the same
rational function:

ISHRS

< |

because zy = 2% on V.

Example 4.5. k[V] C k(V) always, by the map f — f/1.

4.2 Regular points

Definition 4.6. A rational function ¢ € k(V) is regular at p € V if it admits a representation
v = f/g where g(p) # 0.

Definition 4.7. The domain of definition of ¢ € k(V) is the locus of all points p € V' where
© is regular.

Ezample 4.8. In V(zy — 2*) C A* again, (0,1,0) is in the domain of definition of £ = 2.

Remark 4.9. We can evaluate a rational function at any point of its domain of definition.

Proposition 4.10. The domain of definition of fixred p € k(V') is a nonempty open subset
of V.

Proof. Fix p € k(V)). Write ¢ = £, where g # 0, f,g € k[V].
Since g#0on V,IpeV such that g(p) #0. So pis in U = the domain of definition of

p, s0 U # .
Take any g € U. So I can write ¢ = 32, where hy(q) # 0. Now U’ :=V —V(hy) C V' is
an open subset of V, and g € U’ C U. ]

4.3 Sheaf of regular functions on V

Let V be an irreducible affine algebraic set. Assign to any open set U C V the ring Oy (U)
of all rational functions on V' regular at every p € U.

Ezxercise 4.11. Oy (U) is a k-algebra (because the constant functions are regular on every
open set) and a domain.

Whenever U; C U, is an inclusion of open sets, there is an induced ring-map

Ov(Ug) — Ov(Ul)
QY = gO‘Ul.

Note 4.12. It U =V, we have two definitions of “ring of regular functions on V.
k(V) 2 Ov(V) 2 k[V]
f
Tt

Theorem 4.13. For V irreducible affine algebraic set, k[V] = Oy (V).
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Proof. Take ¢ € Oy (V). For any p € V, there is a representation ¢ = g—z such that g,(p) # 0.
Consider the ideal a C k[V] generated by the {g,} .
Note 4.14. V(a) C V is empty, so by the Nullstellensatz, 1 € Rad(a) = 1 € a.

So we can write
l=rg+ - +1g
for some g; = g,, in k[V] C k(V), r; € k[V]. Hence

Y =T119g1 + -+ PGy
But wyg; = fi7 SO

@:Tlfl‘{‘""l‘rtftek’[‘/]. L]

5 Projective space, the Grassmannian, and projective va-
rieties

5.1 Projective space

Fix k. Let V be a vector space over k.

Definition 5.1. The projective space of V', denoted P(V'), is the set of 1-dimensional sub-
spaces of V.
We denote P} = P(k"*1).

Ezample 5.2. P = P(k?) = {1-dimensional subspaces of k?} = {lines through (0,0) in k?}.
We can use stereographic projection onto a fixed reference line to view P! = kU {0} as
a line with a point at infinity.
Specifically, P} is homeomorphic to a circle, and P is the Riemann sphere.

Ezample 5.3. P} = P(k*) = k* U P;.

5.2 Homogeneous coordinates

In P}, represent each point p = [ag : a1 : - - : a,] by choosing a basis for it (i.e., choose any
non-zero point in the corresponding line through origin in k"*1). At least some a; # 0, and
[b : -+ - : by] represents the same point in P iff 3k # 0 such that

(kbo, ..., kb,) = (ag,...,a,). (5.1)

Another way to think of P} is as (k"' \ {0})/~, where two points in k™! are equivalent
iff (5.1)) holds.

Note 5.4. If k =R, this gives P{ a natural (quotient) topology, and similarly if k£ = C.

Exercise 5.5. P" is compact in that Euclidean topology.
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In these coordinates, we have an open cover

where U; = {[xg : -+ : @, | x; # 0} = k" are the standard charts.
Think of fixing one chart: Uy C P?. Consider Uy to be the “finite part”, and P"\ Uy = P"!
the “part at infinity”.

FEzercise 5.6. (1) If k =R, then P} is a smooth manifold.
(2) If k = C, then P is a complex manifold.

(3) For any k, the transition functions induced by the standard cover are regular functions.

5.3 More about projective space

FEzercise 5.7. In k™ < P", consider a line with “slope” (aq, as, ..., a,), i.e., parametrize as
alt b1
| [tek
ant b,

Show that there is a unique point in P “at infinity” on this line, with coordinates [0 : a; :
1)

Ezample 5.8. In R" — P2, consider two parallel lines, with one passing through the origin

and (a,b). These two parallel lines both approach the point [0 : a : b] in P2

Ezample 5.9. Look at V(zy — 1) C R? C P2 In P?, we can “add in” two points at oo on the
hyperbola, [0:1:0] and [0:0: 1]. We get a closed connected curve!

5.4 Projective algebraic sets

P" = one-dimensional subspaces in k"1, We have homogeneous coordinates [xg : - -+ : x,,].
Look at F' € k[zo, ..., x,].
Caution 5.10. F'is not a function on P™ unless it is constant!
However, if F' is homogeneous, then it makes sense to ask whether or not F(p) = 0 for a
point p € P".
Lemma 5.11. If F € k[zo,...,x,] is homogeneous of degree d, then

F(txg, ... tx,) = t"F(xg,..., 7).

Proof. Write

F = E arry ..., ar € k.
[|=d

Check for each monomial. O

18



Definition 5.12 (projective algebraic set). A projective algebraic subset of P} is the common
zero set of a collection of homogeneous polynomials in k[zo, ..., z,].

Example 5.13. V = V(2% 4+ y? — 2%) C P? is a cone; it consists of a set of lines through the
origin.

In the chart U, = {[1:y: 2|}, the equation for VN U, = V(1 +3y? — 2%) C k? is a
hyperbola. In the chart U,, VNU, = V(22 + y*> — 1) C k? is a circle.

5.5 Projective algebraic sets, continued

Let {Fy},cp € k[xo, ..., 25] be a collection of homogeneous polynomials.

Note 5.14. The affine algebraic set V =V ({F/\},\GA) C A" is cone-shaped, i.e., Vp € V,
the line through p and the origin is in V.

Ezample 5.15 (Linear subspaces). Say W C k™*! is a sub-vector space. Then
P(W) = one-dimensional subspaces of W = P(k"1) = P".

Note 5.16. P(W) = V(Ly,...,L;) C P" where L; = Z?:o
in V* which define W.

Ezxample 5.17 (Some special cases). W is one-dimensional —> P(WV) is a point.

W is 2-dimensional = P(W) is a line in P".

In general, if W is (d 4 1)-dimensional, then P(W) is a d-hyperplane in P™.

If W has codimension 1 in V, then V(L) = P(W) C P(V) = P" is called a hyperplane in
Pm.

a;jz; are a set of linear functionals

Fact 5.18. Every projective algebraic set in P is defined by finitely many homogeneous
equations.

Note 5.19. As in the affine case,

V ({Ftyer) =V ((F\)yea) = V(any set of (homogeneous) generators for (Fi),_,)
=V (Rad <F/\>AGA) .

Definition 5.20 (homogeneous ideal). Anideal I C k[z, ..., x,] is homogeneous if it admits
a set of generators consisting of homogeneous polynomials.

Ezample 5.21. T = (23 — y*,y? — 2, z) is homogeneous because I = (23,2, 2).

Fact 5.22. The projective algebraic sets form the closed sets of a topology on P", the Zariski
topology.

5.6 The projective Nullstellensatz

Definition 5.23. The homogeneous ideal of a projective algebraic set V' C P is the ideal
I(V) C k[zo,...,x,] generated by all homogeneous polynomials which vanish at every point
of V.
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Note 5.24. Given a homogeneous ideal I C k[xy,...,z,], we can define both an affine alge-
braic set V(I) C k"™ and a projective algebraic set V(I) C P". These have the same radical
ideal in k[zo, ..., x,].

Fact 5.25. For any projective algebraic set V' C P",

VI(V)) = V.

Theorem 5.26 (Projective Nullstellensatz). Only when k = k:

radical homogeneous
{projective algebraic sets in P"} «— ideals in k[xg, ..., x,)
except for (xq,...,x,)

We call (xq,...,z,) the irrelevant ideal.
In general, the Zariski topology in P" restricts to the Zariski topology in each affine chart:

P* D V:V(Fl(xo,...,mn),...,Ft(:zro,...,:L’n))
DVNU; =V(Ey(to, ..., 1, tn), .., Filto, ..., 1, .. 1),

where the coordinates are given by

To -~ T
[T rimp iy [ —, e, — )
Z; ZT;

5.7 Projective closure

Definition 5.27. The projective closure of an affine algebraic set V' C A" is the closure of
V in P", under the standard chart embedding A" = Uy — P™.

Ezample 5.28. Consider V = V(zy — 1) C A%

V=V(zy — 1) = V(zy — 2*) C P~

Look at V ﬂ_Uz =V.
Look at V' N {“line at infinity”}:

VNV(z)=V(ry — 2% 2) =V(zy,2z) = {[1:0:0],[0:1:0]} C P

Definition 5.29. Given a polynomial f € k[xq, ..., x,], its homogenization is the polynomial
F € k[Xo, ..., X,] obtained as follows: If f has degree d, write

fzzalx?---xin:fd+fd—1+fd72+-~+fo,

where f; is the homogeneous component of degree i. Then

F=fi+Xofar+-+Xfoo+- -+ Xifo
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Caution 5.30. Given V = V(f1,..., f;) C k™, the projective closure V in P" is not necessarily
defined by the homogenization of the f;.
For example:

{(t,8,8°) [t ek} C K — P

1 1 1
et =1t =]=:=:=:1
(7 7) [ ] t3 t2 t )

so it has exactly one point at infinity, [0:0:0: 1].
Consider I = (z — zy,y — x?).

Exercise 5.31. Show V(zw — zy, yw — 2*) C P? is not the projective closure of the twisted
cubic.

6 Mappings of projective space
6.1 Example: Second Veronese embedding

P! = P2
[z y] = [2*, 2y, y°]
Check: [z :y| and [tz : ty] for any ¢ € k have the same image:
[tz : ty] — [(tz) : (tz)(ty) : (ty)*] = [P0 : Py : Y7 = [27 12y y7].

Also, if x # 0, then vy([x : y]) € Uy, and if y # 0, then wy([x : y]) € Us.
This is called the “2nd Veronese embedding of P! in P2.” In general, the d-th Veronese
map
vy : P — P?
[z :y] — [:Ud sy ya®h yd}
Look at 15 in charts of P! = U, U Uy:

A' 5 Uy={z:y] |y#0} CP

t— [t 1]
x
— [z :y
Yy
We have
U, = Uy = A?
[z: 1] [2® 12 1]
Al - A?
t— (£,1).

This is a reqular mapping of Al — A2

21



6.2 Geometric definition

Thinking geometrically of P* as covered by two copies of A!, this map v» is a reqular mapping
on each chart.
This is the idea in general of a “regular mapping of varieties”.

6.3 Example: The twisted cubic
This is the third Veronese mapping:

vy : Pt — P3
[z y] = [2°: 2%y ay® g
Al=U,—-Uy={1:2:y:2]} =A°

t=2 (Lot = (16,1

6.4 Example: A conic in P?

P2DV =V(zz —y?) 5 P!

U [z:y] ifz#0,
@y ]i_){[yz] if z # 0.

Note that if x = 2z = 0, then y = 0, so this case cannot occur.
What if z £ 0 and z # 0?7 Then y # 0, so

[y = [ey:y?] = [oy ra2] = [y 2],

So ¢ is a well-defined map of sets.
Cover V' by open sets, each identified with an affine algebraic set: V NU, and V N U,.

AQQV(E—<Q)Q):VﬂUmi>IP1

[:y:z]—[z:y]

e ]

[1:t:s]—[1:1
(t,s) —~t

So ¢ is projection onto the t-axis in U,: regular in local charts. (Similar in every chart.)

6.5 Projection from a point in P” onto a hyperplane

Fix any p € P" and any hyperplane H C P" not containing p.
Example 6.1 (special case). Fix a point p € P? and a line L C P? such that p ¢ L.
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Choosing coordinates, let H = V(zo) =P*" ' CP"and p=[1:0:---:0] ¢ H.
Definition 6.2. The projection from p to H is the map
I, :P"—{p} =P '=HCP"
T % NH,
where <€—p> is the unique line through p and x.

Question: How does this look in local charts on P"™?

P"— {[1:0:--: 0]} =2 P! = V(zo) C P"
U [L: A A=At A
We have
C={[L:th ot [tek={[2 M. ] [tek}2[0,A,..., Al

If we had a chart where p was at infinity, it would look like “projection”

A" — AL

(X1, .oy @) = (21,0, Tpq)

in the usual sense.

6.6 Homogenization of affine algebraic sets

Exercise 6.3. If V. C A" is an affine algebraic set with projective closure V. C P", and

if I(V) C E[xy,...,z,] is the ideal of V, then I(V) C k[xo,...,x,] is generated by the
homogenizations of all the elements of I(V).

FEzercise 6.4 (purely topological). Let V' C P™ be a projective algebraic set. Then V' is
irreducible if and only if V' N U; is irreducible Vi = 0, ..., n, the “standard affine cover” of V.

7 Abstract and quasi-projective varieties

7.1 Basic definition and examples

Definition 7.1. A quasi-projective variety is any irreducible, locally closed (topological)
subspace of P™.

Le., W C P" is a quasi-projective variety by definition if W = U NV, where U C P" is
open and V' C P" is an irreducible projective set.

Example 7.2 (Some quasi-projective varieties). (1) Irreducible affine algebraic sets are quasi-
projective varieties:

V=VnU,CA"=U, CP".
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(2) Irreducible projective algebraic sets.

(3) Open subsets of affine or projective varieties.

Ezample 7.3 (An abstract variety).

M, = {moduli space of compact Riemann surfaces}

= {moduli space of smooth projective varieties/C of dimension 1}

This is an abstract algebraic variety.
Theorem 7.4 (Fields medal, Deligne and Mumford). 9, is quasi-projective.

Ezample 7.5 (Another moduli space). Lines in P? = P(k®) can be viewed as P ((k*)*).

7.2 Quasi-projective varieties are locally affine

Proposition 7.6. A quasi-projective variety W has a basis of open sets which are (homeo-
morphic to) affine algebraic sets.

Proof. First W =V NU, where U C P" is open and V' C P" is closed and irreducible. Then
WU, =(VnUnU)=VnU)nUnU;) CV,=VnU, CU; =A",

and (V NU;) N (UNU;) is an open subset in the affine variety V;.
But an open subset of an affine variety has an open cover by affine charts:

V_V(glaagr):UngAn

for g; € k[V], then

r

U=J(V-vig). O

=1

7.3 The sheaf of regular functions
Fix a quasi-projective variety W. What is Oy?

Definition 7.7. Let U C W be any open set. A regular function on U is a function ¢ : U — k
with the property that Vp € U, there exists an open affine set p € U’ C U such that |y is
regular on U’.

Equivalently, ¢ : U — k is regular <= ¢|yny, is regular on U NU; Vi =0, ... ,nE]

Example 7.8. Xy, X1 in k[Xy, X1, X5 are not functions on P2

But the ratio % is a well-defined function on P? — V(X,) = U.

2W=UNV = UCWisUNUNV =U, and (UNUNV)NU; is open in V N U;, which is affine.
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Ezxample 7.9. ¢ = = t; (the “ j th coordinate function”) is a regular function on P™ \

V(X;) =U; +— k” in Coordlnates 2, fgz

How does this look in U,.? U, has coordinates %, .

X X2 denoted to,...,tp,...,t,. Then

X; X/ X t

_ 2J
v X, Xi/X. ot

is a rational function of the coordinates, regular on U, \ V(t;) = U; N U.

Remark 7.10. We get a sheaf Oy of regular functions on the quasi-projective variety W. To
each U C W, assign Oy (U) = ring of regular functions on U.

Example 7.11. Opn(P") = k. So if n > 1, then P" is not affine!

7.4 Main example of regular functions in projective space

Let F,G € klxo,...,x,| be homogeneous of the same degree. Then ¢ = g is a well-defined

functions on P™ \ V(G):

F(txg, ... te,)  t'F(xo,...,x,)  F(xo,...,xp)
G(tzo,...,trn)  tG(zo,...,1,) Glxo,...,70)

Moreover, ¢ is regular on U := [P" \ V(G)].
We now check this. It suffices to check that ¢|yny, (for @ = 0,...,1) is regular on

open

UﬂLlCU A"

Lemma 7.12. If F € k[Xq, ..., X,] is homogeneous of degree d, then

F _r Xo Xi Xit1 Xy
~d = XX, U Tx, X )

7

Proof. Comes down to checking for X7 ... X% (with > a; = d):
X5 Xgn XO‘" - “
(%) :
2 =0

Now we have

F F/:L‘ F(i—g,...,l,...,z—?) f(to"”’A‘__

t;
“T G Gl G(ﬂm.. 1 ..x—n)_g(fo,---’fz’w-’tn)

¥

zi e ) x,

is a rational function on A" = U;, regular on [A" \ V(g)] = U; N (P™ \ V(G)). So ¢ is regular
onU. O
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7.5 Morphisms of quasi-projective varieties

Definition 7.13. A regular map (or morphism in the category) of quasi-projective varieties
X 23 Y C P"is a well-defined map of sets such that Vo € X, writing p(z) € YNU; C U; = k"
for some 14, there exists an open affine neighborhood U of x € U C X such that ¢(U) C U;
and ¢ restricts to a map

z (apl(z),...,gpn(z)),

where ¢; € Ox(U).

Definition 7.14. An isomorphism of varieties is a regular map X — Y which has a regular
inverse Y 25 X.

Ezxample 7.15 (The d-th Veronese map). Let m = (":d) — 1. Then the d-th Veronese map is
defined by

vV,
P L p™
) . d. d—1_ . o od
[wo : vt wy] = 2] a2l
where the coordinates are all degree d monomials in zg, ..., x,.

Ezample 7.16 (Projection). p ¢ H = hyperplane in P™:

B\ {p} = B"' = H

R e S F TR o B

8 Classical constructions
8.1 Twisted cubic and generalization
Definition 8.1. The twisted d-ic in P is the image of P! under the d-Veronese map

Pt 2 0, C P?

[sot] = [ s sttt = [mg oz,
Fact 8.2. vy is an isomorphism P! = C;. The inverse map is

Cd—>]P>1

R T

[xg_1 24 if 2 =0.
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8.2 Hypersurfaces

Definition 8.3. A hypersurface in P" of degree d is the zero set of one homogeneous poly-
nomial of degree d.

Let V = V(F,;) C P", with Fj irreducible. Pick p ¢ V.

P\ {p} —s P

Ul

V2 pr!

finite map, “generically” d-to-1.

Lemma 8.4. Every line in P must intersect V at < d points. (“Generically” exactly d
points; strict inequality is possible due to multiplicity.)

Proof.
V(Fd) N V(.ﬁlfz, Ce ,Z’n) = V(Fd,iﬁg, e ,xn) = V(Fd) g L= V(.TQ, R ,.CEn) cpr

8.3 Segre embedding
Category of quasi-projective varieties:

Objects (irreducible) locally closed subspaces of P" (all n) over fixed k = k.

Morphisms Map of sets P* D X =5 Y C P™ such that on sufficiently small open subsets
of X; = X NU; CA", ¢|y is a regular mapping into some chart of P.

Is there a notion of product in this category?
Recall: For X C A™, Y C A" affine algebraic sets,

X xY CA™ x A" = A™mtn

is an affine algebraic set. But P™ x P™ # P™" g0 we can’t do a similar thing for projective
algebraic sets.
Indeed, P? \ A? is one line at infinity, but

(P' x P\ A? = {oo x P'} U {P' x oo}

consists of two lines at infinity.
Goal 8.5. Put the structure of a quasi-projective variety (projective) on P x P™.
Want:

(1) o : P x P — ¥ C P, where ¥ is a (closed) projective algebraic set, and o is
compatible with the identification A" x A™ = A™+" 75 5(A™™) on each affine chart
U x U; = A" x A™.
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(2) There should be regular maps ¥ == P, ¥ 25 P™,

3) (Linear space) x p C P" x P™ maps under o to a linear space of the same dimension in
? p
P-.

FExample 8.6.
P! x P =% P?
([x:yl, [z w]) =[xz 2w yz : yw)

The image of 011 is V(X()Xg — X1X2>.
On U, x U, = A" x Al = A%

A? = Al x A' = V(zy — 2) C A3
((1,8),(1,8)) > [L:t:s:ts]
Also,
P' x [a: 0]~ {[za:zb:ya:yb] | [x:y] € P'} CP° C P(kY)
is a line in P? corresponding to the 2-dimensional subspace
span {(a,b,0,0),(0,0,a,b)} C k*.
This is the “definition” of P! x P! as a quasi-projective variety.

Definition 8.7. The Segre map is

P? x P Onm Enm C ]P)(n+1)(m+1)71
Lo

(o raali Yo ym)) = | 1| [0 - um] € PMatp(n+1,m+1)).

(. J/

(n+1)x(m+1) matrix

Remark 8.8 (Linear algebra review). TFAE for any matrix A of size d X e:

1) The rows are all multiples of each other by a scalar.

2) The columns are all multiples of each other by a scalar.

4

(1)
(2)
(3) A factors as (d x 1) x (1 x e).
(4) The rank of A is < 1.

(5)

5) All 2 x 2 subdeterminants of A are zero.
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200 --- ROm
Writing the matrix coordinates as | : o

Zn0 ---  Rnm

200 --- ROm
Yum = V | determinant of 2 x 2 minors of

Zn0  ---  Rnm
The projections ¥ —+ P, ¥ 25 P™ are given by
p = [2;] = any column of p,

and likewise, my takes any row. (This is well-defined because the matrix has rank 1.)

8.4 Products of quasi-projective varieties

Definition 8.9. If X C P” and Y C P™ are quasi-projective varieties, then we define a
quasi-projective variety structure on the set X x Y by identifying X x Y with its image
under the appropriate Segre map o,,,:

Unm(X % Y) C Enm C P(n+1)(m+1)71
This gives X x Y a Zariski topology!
How do the closed sets look?

Definition 8.10. A polynomial F' € k[xg, ..., Zn, Yo, - - -, Ym] 18 bihomogeneous if F is homo-
geneous separately in x, . .., x, (treating the y; as scalars) and yo, . ..,y (treating the x; as
scalars).

Ezample 8.11. The polynomial z3y1y2 — ror125y3 is bihomogeneous of degree (5, 2).
However, x] — y¢ is not bihomogeneous.

Note 8.12. If F' € k[zo,...,%n,Yo,-..,Ym) is bihomogeneous, then V(F) C P" x P™ is well-
defined.

Fzxercise 8.13. The closed sets of P x P are precisely the sets defined as the common zero
set of a collection of bihomogeneous polynomials in k[xq, ..., Zn, Yo, - - -, Ym]-

Ezxample 8.14. The Zariski topology on P x A™ with coordinates k[xq, ..., T, Y1, -+, Ym)
has closed sets exactly of the form

\Y ({F)\(l’o, ey Ty Y1, aym)})\eA) ’

where F) is homogeneous in x, ..., Z,.
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8.5 Conics

Definition 8.15. A conic in P? is a hypersurface (curve) given by a single degree 2 homo-
geneous polynomial.

Three kinds:

Nondegenerate V(F') C P? such that F does not factor into 2 linear factors. (Showed in
homework: changing coordinates, these are all the same.)

Degenerate, two lines F' = L Ly, where ALy # Lo. Then V(F) = V(L) UV(Ly).
Think of this as the limit as t — 0 of a family of nondegenerate conics
{V(zy — )}y C A”
Degenerate, double line F = L?. Then V(F) = V(L3).
Think of this as the limit as ¢ — 0 of a family of degenerate conics
V(y(y —tx)) = V(y) UV(y — ta) C A™.
This line V(3?) is one line “counted twice”. This is a scheme, but not a variety.

Every conic is uniquely described by its equation F € [k[z, v, z]]QH
Let C' C P(k®) be a conic. We have a correspondence

C:V(Aaz2+Bxy+0y2—|—D$z+Eyz+Fz2) «——[A:B:C:D:FE:F]
{conics in P(k%)} «— P (Sym® ((£*)*)) = P°.
Moreover, we have proper inclusions of closed subvarieties
D, = {double lines} & Dy = {pairs of lines} S {all conics in P(k*)} =P (Sym® ((k%)*)).

As we will show on the homework, Dy = image of P2 under the Veronese map v : P? — P°.
This is the beginning of the study of moduli spaces.

8.6 Conics through a point
Fix p € P2. Consider the set

C, = {C C IP? conic in P* passing through p} CP (Sym2 ((K*)*)) =P°.
This is a hyperplane. Indeed, write p = [u : v : t]. A conic

C =V(A2z® + Boy + -+ + Fz%)
G

passing through p <= G(p) =0 <= Au®+ Buv+ Cv?+ Dut + Evt + Ft* = 0, which is a
linear equation L in the homogeneous coordinates A, B, C, D, E, F for P° = P (Sym” ((k%)")).
Thus,

C, = V(L) C P,

3[klz,y,2]], = Sym? ((kd)*) denotes the vector space of degree 2 homogeneous polynomials, i.e., the 2nd
component of the graded ring k[z,y, z].
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Theorem 8.16 (“5 points determine a conic”). Given pi, pa, s, pa, ps € P? distinct points,
there is a conic through all 5 points, unique if the points are in general position.

If no three points are on the same line, then there is a unique nondegenerate conic through
them.

9 Parameter spaces

9.1 Example: Hypersurfaces of fixed degree
Recall:
{ conics in IP’Q} +— {their homogeneous equations up to scalar multiple}

+— P (Sym2 ((%)*)) = {deg 2 homogeneous polynomials in 3 variables} /scalars
= [k[z,y, z]], /scalars = Sym?® ((k®)*) /scalars

Similarly:
{hypersurface of degree d in P"} «+—— {their equations up to scalar multiple}

n+d

V(Azl + Bz 'ay +---+) P (Sym? (k1) = p(")—
“homog. degrt;erd in zg,...,zpn"

Note that these are not really varieties, since we remember the homogeneous equation.

9.2 Philosophy of parameter spaces

Philosophy: the set of hypersurfaces of degree d “is” in a natural way a variety. The subsets
(“algebraically natural” subsets) are subvarieties.

The “good” properties will hold on open subsets of p(")-1 (hopefully non-empty), and
“bad” properties will hold on closed subsets of p(")-1 (hopefully proper).

9.3 Conics that factor
Look in P (Sym? ((k*)*)) = set of conics in P?. Does “V(G)” +— [A: B:C :D: E: F|

factor or not?
G = Ax? + Baxy + Cy* + Dxz + Eyz + F 22

factors <—
A 1B 1D
det %B C %E =0.
%D %E F



The subset where the conic degenerates into 2 lines is

A 1B 1D
Vldet 1B ¢ 1E
Ip g F

Now we have

{hypersurface of degree d in P"} +——— {their equations up to scalar multiple}

Ul P (Symd ((kn—i—l)*)) _ P(nl—d)_l
UI closed
{hypersurfaces whose equations factor} X

where G = G,;G4_; factors and

%
x=Jx,
=1

with X; = the subset of hypersurfaces of degree d where equation factors as (degi)(degd—1i).

Theorem 9.1. The set of degree d hypersurfaces in P" = P(V') which are not irreducible
(meaning: whose equations factor non-trivially) is a proper closed subset of PP (Symd(V*)).

Proof. Tt suffices to show each X; = {G = G;G4_;} is closed and proper. Consider

P (Sym'(V*)) x P (Sym**(V*)) < P (Sym?(V*))

(G,H) — GH,
where G, H are homogeneous of degrees ,d — i, respectively, in zq, ..., z,.
Easy to check: ¢ is regular and image is X;. Need to check closed (proper). O]

This follows from the following big theorem:

Theorem 9.2. If V is projective and V <= Y is any reqular map of quasi-projective vari-
eties, then ¢ sends closed sets of V' to closed sets of Y.

Caution 9.3. Really need the hypothesis that the source variety is projective. E.g.:
U= A" —V(f) < A
regular map, image is open. Also, the hyperbola:

A2 T Al
(z,y) =
m(V(zy — 1)) = A' — {0},

which is not closed.
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10 Regular maps of projective varieties

10.1 Big theorem on closed maps

Theorem 10.1. If V is projective and V' < X is a reqular map to X (any quasi-projective
variety), then ¢ is closed (i.e., if W C 'V is a closed subset of V', then o(W) is closed).

Note 10.2. To prove the theorem, it suffices to show that ¢(V') is closed.
[If W C V is closed (irreducible), then W is also projective. So ¢|lw : W — X has the
property that ¢|w (W) is closed, thus (W) = ¢|w (W) is closed.|

Corollary 10.3. If V is projective, then Oy (V) = k.

Proof. Let V.25 k C P! be a regular function. We can interpret 0 :V — P! as a regular
map. So the image is closed in P! by Theorem [10.1]

Thus ¢(V) is either a finite set of points (or &) or ¢(V) = PL. Since ¢ is an actual map
into k & P', ¢(V) must be a finite set of points. But V is irreducible, so ¢(V) is a single
point. 0
10.2 Preliminary: Graphs

Fix any regular map of quasi-projective varieties X — Y.

Definition 10.4. The graph I', of p : X — Y is the set
{(.y) | p(z) =y} S X x Y.
Proposition 10.5. T, is always closed in X x Y.

Proof. Step 1: Without loss of generality, Y = P, since X -5 Y C P™, and we interpret ¢
as a regular map X — P™. We have

[, CXxY CXxP",
and to show I', is closed in X x Y, it suffices to show I', € X x P is closed.
Step 2: Consider the regular map
¥ X x P 2, e
() = (p(2),y)

Note 10.6. T, = ¢~1(A), where A = {(z,2) | z € P™} is the diagonal subset of
P™ x P™ which is closed.

Because A is closed, so is I',,. O
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10.3 Proof of Theorem [10.1]

Fix V % X regular map, V projective. Need to show ¢(V) is closed.
Let I'y; €V x X be the graph. Consider the projection

[, CVxX-"X2nT,) =),
which is a regular map. It suffices to prove that m(I'y) is closed.

Theorem 10.7. IfV is projective and X is quasi-projective, then the projection Vx X —+ X
15 closed.

Proof of Theorem [10.7. First, using point-set topology arguments, reduces as follows:
(1) WLOG, V =P,
(2) WLOG, X is affine.
(3) WLOG, X =A™,

Now:
P* x A™ 25 AT,

Put coordinates xq,...,z, on P* and yq,...,y,, on A™.
Want to show: Given closed Z C P" x A™, that p(Z) is closed in A™. Write

Z:V(gl(xo,...,xn,yl,...,ym),...,gt(xo,...,xn,yl,...,ym)),

where g; are homogeneous in zy, ..., x, (but not in the y;). What is the image of Z7
Note 10.8. (A1,...,\p) € A" is in w(2) iff

%} #V(gl(xo,...,xn,)\l,...,)\m),...,gt(:vo,...,mn,)\l,...,)\m)) cpr
iff (by the projective Nullstellensatz)
Rad(gl(x7 )\>7 s 7gt($7 A)) 2 (Zl?o, s 73:71)
iff
(g1(z,A), ..., ge(x, ) 2 (o, .. can)t VT
So we need to show: The set Ly of all A = (Aq,...,\,) € A™ such that

R L (1 C0 ) A CODY )

is closed. The image of w(Z) C A™ is
ﬂ LT7
T=1

so it suffices to show that each Ly C A™ is closed.
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Aside 10.9 (Converse). Let’s consider the converse:

(zo,...,2,)" C (gl(a:, Ay, gz, )\)) in klxo, ..., z,)

Look in degree T' part of k[xg, ..., x,):

Elzo, ..., xnllr € [(91,- -5 90)]p

Basis here is {zf - - - zir S it
Spanning set for the o-dimensional [(g1, ..., g,)] = subvector space of degree T' elements

in (_91(1’,/\)7 s 7gt(x7>‘)):
{gJ} = {gl(xv)\) xg]oxizn ‘ deg(gl) = dl? Zj@ :T_d27 L= 177t}

Write a matrix with the coefficient 2! in g in the (I.J)-th spot. The coefficients are polyno-
mials in A1, ..., \,. This is a basis iff the matrix is nondegenerate.

]

11 Function fields, dimension, and finite extensions

11.1 Commutative algebra: transcendence degree and Krull dimen-
sion
Fix k — L extension of fields.

e The transcendence degree of L/k is the maximum number of algebraically independent
elements of L/k.

e Every maximal set of algebraically independent elements of L/k has the same cardi-
nality.

o If {z1,...,24} are a maximal set of algebraically independent elements, we call them a
transcendence basis for L/k.

e If R is a finitely generated domain over k, with fraction field L, then the transcendence
degree of L/k is equal to the Krull dimension of R.

11.2 Function field

Fix V affine variety.

Definition 11.1 (function field of an affine variety). The function field of V', denoted k(V'),
is the fraction field of k[V].
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Say V—-V(g9)=U, = U C V for some g € k[V]. Then

OV(V)C rest. OV(U)C rest. OV(Ug)
](

k[V
Note 11.2. Function fields of U, and V' are the same field.
Fix V' C P" projective variety.

Definition 11.3 (function field of a projective variety). The function field of V', denoted
k(V'), the function field of any V N U; (standard affine chart) such that VN U; # @.

Question: Why is this independent of the choice of U;?
Vi=VnU = {[xg:-:x,] | z; # 0} is an affine variety in U; = A™. Then k[V}] is
generated by (the restrictions of) the actual functions on U;

Ty X1 Tn
D R )

and likewise for k[V;]. If 2 =0on U;NU;NV, then x; vanishes on U; NU; NV, which implies
J
that x; vanishes on V and hence V N U; is empty. So we can write

Tk _ k)T
- 9
ZT; ]Z’i/.ﬁﬂj

thus k[V;] C k(V;), hence k(V;) C k(V;). By symmetry, k(V;) = k(V;).

Definition 11.4 (function field of a quasi-projective variety). The function field of a quasi-
projective variety V is k(V'), where V is the closure of V C P™.

Equivalently, it is the function field of any V' N U; (such that V N U; # &) or indeed of
any open affine subset of V.

11.3 Dimension of a variety

Definition 11.5. The dimension of a (quasi-projective) variety V/k is the transcendence
degree of k(V') over k.

By convention, the dimension of an algebraic set is the maximal dimension of any of its
(finitely many) components.

Example 11.6. o dimA” =n
o dimP" =n
e dim(X xY)=dimX +dimY

e All components of a hypersurface V(F') C P" have dimension n — 1.
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Definition 11.7. A regular map X —= Y is finite if (in the affine case) the corresponding
map of coordinate rings is an integral extension, or (in general) if the preimage of an affine
cover of Y is affine and ¢ is finite on each affine chart.

Theorem 11.8. If X Y is a regular map, finite, then dim X = dim Y.

Proof. Reduce to the affine case: X 5 YV finite <= k[Y] SN k[X] is an integral
extension. O

11.4 Noether normalization
Take some p ¢ V. Then
pro- TPaprt 2apn-2_ 4 pd
Ul Ul Ul
Vv Vi > Vo e
Theorem 11.9. If V. C P" is a projective variety, dimd, then there exists a projection
V — P (finite).

]P;d

Intersect with Uy = A™:
VOA" > ViNA" - ... >V, 4NA" = AL

This induces the pullback

finite int.
e Int )k‘[yla"’?yd]’

where the y; are linear in the z;.

Theorem 11.10 (Noether normalization). Given a domain R, finitely generated over k (k
infinite), there exists a transcendence basis yi, .. .,yq consisting of linear combinations of the
generators for R.

11.5 Dimension example

Recall: dim V' = transcendence degree of k(V') over k.
The dimension of a point is 0, since k({p}) = k.
The dimension of the variety V(zy — zw) C A?*? of 2 x 2 matrices over k of determinant
0:
klx,y,z,w
k[v] — [ 7y7 ) ]
(xy — zw)
Observe that x,y, z is not a transcendence basis, because w is not integral over k[x,y, z|;
indeed, it’s not a finite map, because the preimage of the zero matrix under the projections

w +— 0 is infinite.
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Claim 11.11. Let t = x —y. Then k[z, w,{] N klx,y,w,z]/(xy — zw), and z,w,t is a
transcendence basis for k(V') over k.

Need: z,w,t are algebraically independent. [Means: If z,w,t satisfy some polynomial p
with coefficients in k, then p = 0.]

Need: Check i is integral: Suffices to check x is integral over k[z, w, t].

Note: 22 — tr — 2w = 0 in k[z,y, 2, w|/(zy — 2w).

11.6 Facts about dimension

Fix V irreducible quasi-projective variety.
Fact 11.12. If U C V is open and nonempty, then dimU = dim V.
Fact 11.13. If Y ;Cé V' is a proper closed subset, then dimY < dim V.

Fact 11.14. Every component of a hypersurface V(F') in A™ (or P") has dimension n — 1
(codimension 1).

Sketch of Fact[I1.1. Pick p ¢ V(F) C A", with F irreducible. Choose coordinates such
that p = (0,...,0,1). So
f=al+ a4+ +ag

where a; € k[z1,...,2,_1]. Easy to see: x1,...,x,_1 are a transcendence basis over k for

k(xy,...,x,)
(f)

Fact 11.15. Every codimension 1 subvariety of A" (or P") is a hypersurface.

Proof. Let X G A™ have codimension 1. Let I(X) G k[zy,...,,], which is prime by irre-
ducibility. We need to show I(X) is principal.

Take any F' € [(X). Without loss of generality, F' is irreducible. Then (F) C I(x), and if
we have equality, then we are done. Otherwise,

V(F) 2 V(I(X)) = X,
and since dim V(F') = n — 1, we have dim V(I(z)) < n — 1. O

Fact 11.16. If X — Y is finite, then dim X = dim Y.
Fact 11.17. If V C P" is projective, then V has dimd <= V - P9 is a finite map to P.

Fact 11.18. If we have a projection P* —+ P™ from a linear space V(Lq, . . . , L), then
[Xo - txp] = [Lo -t Ly

gives a finite map when restricted to any projective variety V' C P", whose disjoint union
forms a linear space V(Lg, ..., Ly,).
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11.7 Dimension of hyperplane sections

Definition 11.19. A hyperplane section of X is XNH, where H = V(agzo+- - -+a,x,) C P"
is a hyperplane.

Theorem 11.20. dim(X N H) = dim X — 1, unless (of course) X C H (in which case
XNH=X)

Proof

First: For any closed set X = X; U---U X, (irreducible components of X) in P", I can find
a hyperplane H such that dim(X N H) < dim X, or more specifically,

XNH=(XNnH)U---U(X;NH),
and each X; N H & X;.
Claim 11.21. Most hyperplanes H have this property!

Lemma 11.22. Fiz any finite set of points py,...,p; in P". Then there exists a hyperplane
H which does not contain any p;.

Proof of [11.23,
{hyperplanes on P" = P(V)} +— P(V*)
Ul UN
{hyperplanes through p;} +—— H,, ——=V(L;)
So
{hyperplanes not containing py,...,p;} =P(V)\{V(L1)U---UV(L,)}. O
Back to Theorem [11.20, we have
P D V(L)=H D V(L,L)=HNH 2 ... 2 V(Li,...,LJ)
UM UN UN UN
X 2 XNH 2 XNnHiNnHy 2 ... 2 XNHN---NHy
| | | |
Xo X1 X %]
d=dimX, > dimX; > dim X5 > > 0

Want to show the dimension drops by 1 each time. If not, after d steps, get &.
So the linear space P(W) = V(Ly,..., L) N X = &. Project from P(W):
pr 5 P!
(kg -t xp] = [Ly(x) 0 -+ Ly(z)]
X 5 X
finite!

— dim X = dim X’ < (d — 1), a contradiction. Hence dim X = d.
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11.8 Equivalent formulations of dimension

V C P" projective variety.
The dimension of V' is any one of the following, which are equivalent:

(1) transcendence degree of k(V') over k.
(2) the unique d such that 3 finite map V — P2

(3) the unique d such that V-0 H; N HyN---N Hy is a finite set of points, where the H;
are generic linear subvarieties of codimension d.

(4) the length of the longest chain of proper irreducible closed subsets of V'

V:Vdgvd_l2‘/:1_22'--;‘/12%:{p0int}.

12 Families of varieties

12.1 Family of varieties (schemes)

(Not necessarily irreducible.)

Definition 12.1. A family is a surjective morphism (regular map) X Ly of variety.

The base (or parameter space) of the family is Y. The members are the fibers {fﬁl(y)}yey.

Ezample 12.2. X = V(zy — 2) C A3,

V(zy — 2) Ly Al
(x,y,2) — z.

Then
F7H) =V(zy —A) C A% x {A}.

Ezample 12.3. Hyperplanes in P* +— P ((k"™1)*) by the correspondence

H=V(AXo+ -+ A, X,) «— {AXo+ A1 X1 + -+ A, X, } /scalar values.

12.2 Incidence correspondences

Consider the “incidence correspondence”
2 ={(p,H)|pe H} CP"xP"=P(V) x P(V*).
Putting coordinates [Xo, ..., X,] on P(V) and [Ay,..., A,] on P(V*), we have

X =V(AXo+ -+ A X,,) —» (P)*
71'_1([140 R An]) = V(AQXO + - +Aan) — [Ao, C ,An]
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! .. .. . .
Theorem 12.4. Let X — Y be a surjective reqular map of varieties, dim X = n, dimY = m.
Then:

(1) n>m.
(2) dim F > n —m, where F is any component of any fiber f~'(y) C X (withy €Y ).
(3) There is a dense open set U CY such that Vy € U, f~(y) has dimension n — m.

Corollary 12.5. Let X LoV be a surjective reqular map of projective algebraic sets.
Assume Y is irreducible and all fibers are irreducible of the same dimension. Then X is also
irreducible!

Ezample 12.6 (Blowup). B = {(p,{) | p € £} C A? x P*.
B ={(p,0) }pef}iﬂf”l
A?x (D V(ax —by) =7l) — L= [a:D]

Note that each of the fibers is 1-dimensional.
Now: B is dimension 2, and

B 55 A?
(¢,[a:b]) = q=(a,b) € A* = {(0,0)}

is a “generic” fiber and has dimension 0 = 2 — 2. But the fiber over (0,0) is P!, which has
dimension 1. The dimension jumps!

12.3 Lines contained in a hypersurface

Q: Fix an (irreducible) hypersurface of degree d in P3. Does it have any lines on it?
A:Ford=1: X =V(L) 2 P? C P? is covered by lines.
For d = 2: X = V(zy — wz) = P! x P! C P3 is covered by lines. Degenerate cone:
X =V(z* +y? + 2%) C P? is also covered by lines, as is V(xy), the union of two planes.
Consider the incidence correspondence

2 ={(V(F),0) | tCV(F)} CP(Sym(k")*) x Gr(2,4),

where P (Symd(k4)*) = parameter space of hypersurfaces of degree d in P3, and Gr(2,4) =
lines in P* = 2-dimensional subspaces of k*.
Take the projections

2 5 P (Sym? (k")) ,
X = Gr(2,4).

Consider v: Compute the fiber over £. Without loss of generality, ¢ = V(X, X;) C P3. Then
v1(0) = V(Fy) such that

V(Xg,Xl) - V(Fd) <~ (XQ,X1> D) (Fd) = X(]Gd_l +X1Hd_1.
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The equation Fy has coefficients 0 on the terms X¢, X$ ' X5, ..., X¢. So
v i) CP (Symd(k4)*)

is a linear subspace of codimension d 4+ 1. The dimension of the fiber is

(d;?’) - (d+1).

Hence, the fibers are all irreducible of the same dimension.
Thus, by Corollary [12.5] 2" is irreducible of dimension 4 + (fiber dimension).

12.4 Dimension of fibers
Theorem . Given a surjective reqular map X =Y of varieties, we have
(1) dim X > dimY
(2) dim F > dim X — dimY for F any component of any fiber o~ (y)
(8) There is a nonempty open subset U C'Y where dim F' = dim X — dim Y.
We studied the incidence correspondence
2 ={(X,0 |t C X} CP(Sym?(k")) x Gr(2,4)
and its projections
X 5 P (Sym?(k")"),
X 2 Gr(2,4).

We saw that 7y is surjective.

The fiber of ¢ € Gr(2,4) is
w5 (0) = {(X,0) | X D¢} = {surfaces of degree 2 containing ¢} x ¢

and is 2 a linear space in P(Sym?) of dimension M — (d 4 1), where

d
M = ( §3> — 1 =dim [P (Sym“(k")")] .
Study the other projection:
X Lp (Symd(k4)*) = {degree d hypersurfaces in IP3} =~ pM,
The fiber of X € P (Sym®(k*)*) is
(X)) ={(X,0) | £ € X} = X x {lines on X}.

So X € m(Z) <= X contains some line.
Consequence: If d > 4, then m can’t be surjective. “Most” surfaces of degree > 4 contain
no line: “The generic surface of degree d > 4 contains no line.”
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12.5 Cubic surfaces

What about d = 37
2 =5 P (Sym?’ (k1)) = PY,
and dim .2~ = 19. Two possibilities:

(1) m is surjective <= generic fiber is dim 0. “The generic cubic contains finitely many
lines.”

(2) m is not surjective <= there are cubic surfaces that don’t contain lines, and the
fibers are dim > 1.

In fact, the former is what actually occurs; 7 is surjective.
It suffices to find one cubic surface that contains finitely many lines:

X == V(XlXQXg - Xg)) g ]P)S
FEzercise 12.7. X contains exactly 3 lines, V(Xy, X;) for i = 1,2, 3.

The non-generic fibers have dim > 1, so these cubics contain infinitely many lines.
It turns out that the subset of cubic surfaces containing only finitely many lines

U CP¥ =P (Sym®(k*)")
consists exactly of the irreducible X = V(F').

Fact 12.8. m : 771 (X) — U is finite of degree 27 over . On the subset of smooth cubic
surfaces, this map is exactly 27-to-1.

13 Tangent spaces

e Intersection multiplicity (V,¢),
e Tangent line
e Tangent space

e Smooth point

13.1 Big picture

To any point p on any variety V', we will define a vector space T,,V/, the tangent space to V'
at p, such that

(1) Given any regular map
VS w
p—q,

we get an induced linear map of vector spaces

T,V 22 1w

43



Goal: to define tangent space to a variety V' at a point p € V.
Since tangency is a local issue, assume p = (0,...,0) € V C A" with V' a closed affine
algebraic set.

13.2 Intersection multiplicity

We work out an example in detail.

Ezample 13.1. Let V = V(y — 2%) C A%, We calculate the intersection multiplicity of V' with
¢ ={(at,bt) |t € k}. The intersection V N ¢ is given by

V((bt) — (at)?) C £ C A%
Solving this:

bt —a*t> =0
t(b — a*t) = 0,

sot=0ort= a% Hence the intersection points are (0,0) and (2, (g)2>

We get a “double intersection” point when b = 0. Get that ¢ is tangent to V' at (0,0)
because the intersection multiplicity is V' and ¢ at (0,0) is 2.

More precisely, we will see that ¢ has intersection multiplicity 1 for all ¢ except when ¢ is
the z-axis, in which case the intersection multiplicity is 2.

Now we are ready to give a formal definition.
Definition 13.2. Let p=0¢€ V C A", and let I(V) = (F},..., F},). Say
(= {(art,...,ant) |t €k} C A"

is a line through 0. The intersection multiplicity of V and ¢ at p, denoted (V,¢),, is the
highest power of ¢ which divides all the polynomials

{Fi(ait, ... 7ant>}i:1

77777

Equivalently, look at the ideal of k[t] generated by { F'(ait,. .., a,t)}, where F(z1,...,x,) €
I(V). That ideal is generated by some polynomial

"t — M) (E =A™, Ai # 0.

Then (V,0)g = m.

13.3 Tangent lines and the tangent space

Definition 13.3 (tangent line). A line ¢ is tangent to V at p if (¢,V), > 2.

Definition 13.4 (tangent space). The tangent space to V- C A™ at p, denoted T,V is the
set of points (ay,...,a,) € A" lying on lines ¢ C A" which are tangent to V are p.
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Example 13.5. Consider V = V(y? — 22 — 23) C A?. Take a line through the origin
0= {(at,bt) |t € k}.
The intersections are given by
(bt)* — (at)® — (at)® = > (b* — a* — a’t) = 0.

So the intersection multiplicity at the origin is 2. Note that all lines through (0,0) are
tangent:
T(()’())V - A2 = ]{72.

In other words, tangent lines are not always a limit of secant lines.

Theorem 13.6. Let p € V C A", where V' is a (not necessarily irreducible) closed subset of
A" The tangent space T,V is a linear algebraic variety in A", and

dim T,V > dim, V.

13.4 Smooth points
Definition 13.7. A point p € V' is smooth if dim T,V = dim, V.

Proposition 13.8. Say 0 € V C A" and [(V) = (Fy,..., F,). Then
ToV =V(Ly,...,L,) CA",

where L; = ajx1 + -+ + ajnxy, 1S the “degree 1 part” of F;, i.e.,
F=Li+F?+F%+..,

where Fi(j) 18 homogeneous of degree j in xq,...,x,.

Proof. We have (ay,...,a,) € ToV <= (ai,...,a,) € ¢ which is tangent to V at 0 <
{(a1t,...,ant) | t € k} intersects V' with multiplicity > 2 at 0

< {Fi(art,...,ant),..., F.(art, ... a,t)}
are divisible by #2. Observe that
Fi(ait,. .. a,t) = Li(ait, ... ant) + Gi(ait, . .. ant) =t - Li(ay, ..., a,) + Gi(aqt, . .. ayt),
and t? divides G;(ayt, ..., a,t). So
t* | Fy(aty,...,ant) <= Li(ay,...,a,) =0. O
Example 13.9. In V = V(y — 2?) C A?,

Tioo)V = V(y) C A%
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Ezample 13.10. In V = V(y? — 2% — %) C A?,
Tio0)V = A”.
Remark 13.11 (Explicit computation of tangent spaces). To find 7,V C A" for any p, center
everything at p = (A1,...,\,). Write all polynomials not in (z1,...,x,), but in (x; —
)\1, B /\n)
Use Taylor expansion at p = (Ay, ..., \,):

oF OF

F=F — - A e n— An
(p)+3if1p(1 1)+ +(3£Unp(m )
linear pa;traround p
( — )%+

(271 — )\1)1'1 s (l‘n — )\n)Z"

p

+18

2 0x2

() ()
i1 Oz} 1! Oxin

Theorem 13.12. T,V =V(d,Fi,...,d,F,) C A", where (V) = (F,..., F,).

13.5 Differentials, derivations, and the tangent space

Definition 13.13. Fix R = k[z1,...,x,], p € A™ = k™. The “differential at p” is the map

klzy, ..., @) —d—p%k[xl,...,xn]
ngpg:Zax (l’l—)\l)E[k[%l—)\l,,xn—)\n]]l
i=1 tip

(. J/

~
linear form in (z;—\;)

Caution: Not a ring map!
Fact 13.14. d, : R — R is a k-linear derivation, meaning:

(1) k-linear: d,(f +g) = d,f + dpg and d,(A\f) = A\d,f for all f,g € R, X\ € k.

(2) dp(fg) = f(p)dpg + g(p)d,f-
Last time: If

peV =V(fi,...,fr) CTA" (fi, -, fr) =1LV),
then
T,V =V(dyfi,...,d,f.) = vector space in k" translated by p C (T,A") = k",
where d, f; are linear forms in (z1 — A, ..., 2, — A\y).

Why is this independent of choice of generators?
(915590 = (fr,- -, o) =UV) C K[z, ..., @]
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Write g; = hy fy + -+ - + h,. f, for some h; € R. Apply d,:

dpgi = fl (p)dphl + hl (p>dpf1 +---+ fr(p)dphr + hr(p)dpfr-

Since p € V and f; € I(V), we have f;(p) = 0. So d,g; is a linear combination of d, f1, ..., d, f;.
Hence dpg; € (dpf1,...,d,f-), as was to be shown.
We have a surjective map

ko, ... 2] —25 (T,A™)
Note 13.15. d,(f) = d,(f + A). Replace f by f — f(p):
dpf =dp (f — f(p))-

So we can restrict to the (still surjective) map on m, = (x3 — Ay,..., 2, — A,) C
klxy, ..., z,):
dp n\*
m, — (T,A")

Say g € m, is in the kernel of d,. Write g out as a polynomial in (x; — Ay,..., T, — Ap):

g=9(p) +dpg + G,

where each monomial of G is of degree > 2 in (x; — A, ..., 2, — A\p).
Since g € m,, we have g(p) = 0. Moreover,

dpg:() — g:GE (l’l—Al,...,In—)\n)Q.

So ker d, = mf).
This gives us a natural isomorphism:
My

2
mp

e (T,A")

Theorem 13.16. Forp = (A\,...,\y) € V. =V(f1,..., fr) € A" with (f1,..., f,) = LV),
let
m, = {f:V = k| f(p) =0} CE[V].

There is a natural surjective vector space map

m, < (L)’
9=Gly = [d,G|r,v : T,V = k], G € klzy, ..., m,),

whose kernel is mz.
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Proof. Why is this well-defined?

Say ¢ = G|v = H|y for some G, H € k[zy,...,z,]). Need to check that d,G,d,H €
(T,A™)" restrict to the same linear functional in T,V = V(d, f1,...,d,f.).

By considering G — H, say G € I(V'). Need to show that d,G vanishes on T,V i.e., that
d,G € (dpfr,...,dpfr).

We already showed that G = Hifi +---+ H,f, = d,G € (dpf1,....d,f.), provided
p € V. So we are done. O

Conclusion:
(T,V)" = mp/mz

closed

as a k-vector space for any pe V. C A"

13.6 The Zariski tangent space
Corollary 13.17. Consider an isomorphism of affine algebraic sets

VS w

pP—q.
Then we have an isomorphism

KW] <5 k[V]
m, — m,
m2 = m?.
L.e., the tangent space is an invariant of the isomorphism class of the variety at p.

Definition 13.18. The Zariski tangent space at a point p of a quasi-projective variety V' is
(mp / m?))*, where m,, is the maximal ideal in the local ring of V' at p.

Recall: p € V variety.
Definition 13.19. The local ring of V at p is
Opv = {p € k(V) ‘ ¢ is regular at p} .
It has unique maximal ideal
my = {7 € Oy | () = 0.
To compute O, v, choose any affine open neighborhood of p, say p € U C V. We have
m, C k[U] = Oy (V).

Then
Opv = k[Ulw, 2 mk[U]m,,.
This doesn’t depend on the choice of U.

Note 13.20.
m, Mpk[U]m

P
PR

mZ (myk[U,)

48



13.7 Tangent spaces of local rings

—

Definition 13.21. For any local ring (R, m) (e.g., Zy, Z)|[x] , Zy, convergent power series
in z1,...,2 over C, etc.), define the Zariski tangent space as (m/m?)*. This is a vector space
over the residue field R/m = k.

Theorem 13.22. For any local ring, dimy(m/m?) > dim R.

Definition 13.23. A local ring (R, m) is regular if dim;(m/m?) = dim R.

Ezample 13.24. If R = O, y, where p is a point on a variety V', then
(m/m?)" = (T,V),

the tangent space to V' at p, dim, 7,V > dim, V. (Proof in Shafarevich!)
O,y is reqular <= p is a smooth point of V.

Definition 13.25. (1) p € V is smooth <= dim7T,V = dim, V. (In general, Vp € V, we
have dim 7,V > dim,, V)

(2) The singular locus of V' is the set
SingV = {p eV ‘ p is not smooth} = {p eV } dim(7,V) > dimpV} .

Ezample 13.26. Since dimZ, = 1 and dim(p)/(p*) = 1, Z “is” the coordinate ring of some-
thing like a variety which is smooth of dimension 1.

Example 13.27. Let p € (A1,..., A\,) € A". Then

dim(7,A") = dim(k") = n,
(iCl —)\1,...,.%'%—)\”)

di =n.
i (l’l—)\l,...,.iﬂn—)\n)Q "

Le., A" is smooth at all points.
Theorem 13.28. The singular set of V' (a variety) is a proper closed subset of V.

Proof. We have Sing V' C V. To check that this is a proper closed set, it reduces immediately
to the case where V' is affine.
Assume V =V(f1,..., f,) C A" with (f1,...,f.) =I(V). For p eV,

— ( 0fi
Tpv = V(dpfla Ce ,dpfr)v each dpfl = Z <ax (I‘] .’L'j(p))> .
j=1 Jlp
Equations d, f1, .. .,d,f, can be written as a matrix:
of of1
8 o)
2. 2 To — T of
T,V =V a:'cl 8a‘cn 2 . 2(p) — er (( fz) ) C A"
: : : 3%‘ P
Ofr Ofr _
aNRERRN ool I ()
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So
dim 7,V = dim (ker(Jp]p)> = n — rank(.J,).

We have p € SingV <= dim7,V > d <= rank (%)‘ <n—d <= (n—d)x(n—d)
7/ 0p

subdeterminants of (g:f?) all vanish at p. Thus
J

Sing V' = {p € V| (n—d) x (n— d) minors of (%) vanish at p}

Lj
of oh
oz T OTn
=V | codimension-sized minors of | : .o nv.
Ofr Ofr
or1 =~ OTn
It remains to show that it is proper! n

Example 13.29. Consider V = V(2% + y* — 2?) C C:
T,V =V (2z],(z — z(p)) + 2ylp(y — y(p)) — 22],(z — 2(p))) € C°.

This defining equation is a linear function in (z — A,y — Ay, 2 — A3), nonzero <= some %

is nonzero.
Hence, the dimension is 2 if A, As, A\3 are not all zero, and dimension 3 otherwise:

SingV =V NV (1 x 1(2z,2y,22)) =V NV(z,y,2z) = {(0,0,0)}.

14 Regular parameters

Read Shafarevich, II, §2, 2.1, 2.2, 2.3.

14.1 Local parameters at a point
Fix V variety, p € V. Consider
Opv = {gp € k(V) ‘ ¢ is regular at p} ,
the local ring of V' at p. The maximal ideal is m C O, y, the regular functions vanishing at

p.
Recall:

Definition 14.1. p is a smooth (or non-singular) point of V' iff
dimy m/m? = dim, V
(> always holds).

Fix V variety of dimension d, p € V smooth point.
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Definition 14.2. Say regular functions u,...,us € m, in a neighborhood of p € V are
reqular parameters (or local parameters) at p if their images in m/m? are a basis for this
vector space.

Example 14.3. If p = (A\1,..., q) € A% then {x; — \y,..., 24 — A\g} are local parameters at
P.
Ezample 14.4. p = (1,0) € V = V(2? + y* — 1) C A% The dimension is 1. Note that V is
smooth (for char(k) # 2):
SingV =V NV(2z,2y) = V(z* +9* — 1,22,2y) = @.
We have
klz, y]

O,y=—7—"-"—- (-1 )
p,V (IE2 +y2 — 1) (l’ 7y> =2 m,

m/m? (dim 1) obviously spanned by {z — 1,y}. In O, v,

1
1 N=— = 2—-1=———9y* em’
D= = 1=ty

Thus y is a local parameter for V at p = (1,0), since 7 in m/m? is a basis for m/m?.
In other words, y generates m as an O, y-module.

14.2 Nakayama’s lemma

Lemma 14.5 (Nakayama). Let (R,m) be a local Noetherian commutative ring, and let M
be a finitely generated R-module. Every vector space basis for M/mM over R/m lifts to a
(minimal) generating set for M as an R-module.

We apply this to R = O,y 2 m and M = m: Every vector space basis uy,...,uq for
m/m? lifts to a (minimal) generating set uy, ..., ug for m.

14.3 Embedding dimension

Definition 14.6. The embedding dimension of a point p on a variety V' (not necessarily
smooth) is the dimension of m,/m>.

Fact 14.7. The embedding dimension at p is > the dimension at p, with equality <= p is
a smooth point of V.

Theorem 14.8 (Transverse intersection). Let uq, ..., uq be local parameters at a smooth point
p € V. The subvariety V(u;) C V is also smooth at p; of codimension 1, and furthermore,
V(tiyy...,u;,) €V is smooth at p of codimension t.

Proof. We have p € V; = V(u;) S V and a ring map given by modding out by Rad(u;),

Op,Vi restriction Op,V
Ul Ul

myy; < My v,
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and we have m, v, = (U, Uz, ..., Uq) and m,y = (uq,...,uy). Since u;

d—1<d1mpV<d1mTV—d1m <d—1
mp
Hence d — 1 = dim 7,V; = dim, V;, so p is a smooth point of V;.
Similarly, take p € V; = V(uy,...,u;) € V. Then

m = (Ug,...,Uq) = (Ugt,---,Ua) € Opy;-

So

m
dim, V; <dim — < d —t < dim,, V7,
m

hence equality holds and we are done.

=0, we have

]

Ezample 14.9. Let p = (0,0) € A%, Then {y — 22, x} are local parameters at (0,0), and are

said to intersect transversely.

However, {y — 2%, y} are not local parameters at (0,0) € A% and do not intersect trans-

versely.

14.4 Transversal intersection at arbitrary points

For a point p (not necessarily smooth) on a variety V, and elements uy, . ..

the following are equivalent:

1) wuy,...,u, minimally generate m (as an ideal of O,y ).

3

(1)

(2) The images u, ..., U, are a basis for m/m?.

(3) Their differentials dyus, ..., dyu, are a basis for (7,,V)*.
(4)

yUp €M g Op,V7

4) The subspace of T,V defined by the zero set of the (n = dim7,V’) linear functionals

dul,...,dunlsO.

Fact 14.10. If p is smooth, then n = dim V', and any set {u1, ..., u,} satisfying these equiv-

alent conditions is called a system of “local parameters at p”.

In this case where p is smooth, these are equivalent to:

(5) The inclusion kfuy, ..., un](u,,..u.) © Op,v becomes an equality when we complete with
respect to the maximal ideals (u1,...,un) C klu, ..., Un)(u,,..u,) and m C Oy, and
we get

kllug, ..., un] = Opy.

02



14.5 Philosophy of power series rings

Philosophy: Fix p € V', and let U be an affine patch containing p. Then
Ov(U) - Opj/ — Opyv,

where

e Oy (U) is the coordinate ring of an affine patch U containing p, “functions regular on

79,
U’
o O,y is “functions regular on some Zariski-open subset of V' containing p”;

. 61,,\\/ is “functions on an even smaller (analytic, not Zariski) neighborhood of p”.

For example, if p =0 € A", we have

1
R=Fklzy,...,x,] = k[z1,. .., 2] L } = R = k[T, Tl (@) = B2, 2]
L —
The ring k[[z1, . . ., x,] includes “functions” on an “even smaller” open neighborhood, including
things like
1
1 -1l —x — 2 —ad— ...
and 2 3 .4
«omyn ﬁ ﬂ ﬁ
e —1+ZE1+2!+3!+4!+...

These inclusions induce maps of the spectrums in the opposite direction:

1
CAT — Speck[xl, o 73:”] — SpecR |: 1:| = lefl < SpecRm < Speck[[éﬁ, R ,I’n]] .

T —

14.6 Divisors and ideal sheaves

Theorem 14.11. Let Y C X be a codimension 1 subvariety of a smooth variety X. Then
Y s locally defined by a vanishing of a single reqular function on X at each point p € X.

More precisely: If Y is a codimension 1 subvariety of a smooth variety X, then Vp € Y,
there exists an open (affine) neighborhood p € U C X such that (p € Y NU C U affine) the
ideal

ILy(YNU) Ck[U]=0x(U)
of Y NU in U is principal.

Caution 14.12. Even if X is affine already, we can only expect Y to be locally defined by one
equation.

There is an alternative (equivalent) formulation in terms of sheaves:
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Definition 14.13. Fix a closed set W in a variety V. The ideal sheaf of W, denoted #y,
assigns to each open U C V the ideal

Iw(U)={feOvU)| flp)=0Ype W} COy(U).

Theorem 14.14. If Y is a codimension 1 subvariety of a smooth variety X, then the ideal
sheaf &y is locally principal in Ox.

This means: Vp € X, 3 open affine neighborhood U > p such that % (U) C Ox(U) is
principal.
Remark 14.15. If p ¢ Y, then 3U > p such that Y NU = &, so A (U) = Ox(U) = (1) is
principal.

Equivalently, the condition that .#y be locally principal means: Vp € X, the ideal .7,y C
O, x defined by

¢ has a representative £ where f, g € Ox(U),
Ipy =¥ € Opx I
peU, glp) #0, flgg =0Yqge Y NU
= {g@ € Oy x ‘ © vanishes at all points of Y in some neighborhood of p}

is principal. This is called “the stalk at p” of the sheaf .#y. (Recall that O, x = the localiza-
tion of Ox(U) at the maximal ideal m, C Ox(U), where u is any open affine neighborhood

of p.)
We have an inclusion of sheaves % C Oy, which induces an inclusion of an ideal in a
ring

Hy(U) € Ox(U).

By localization at m,,, this induces
Iy (U) = Iy CO,x.
Now we prove the theorem.
Proof of Theorem[14.1] Need to show: Vp € X, the ideal .,y C Ox, is principal.

Step 1: Ox, is a UFD. [More general theorem: Every regular local ring is a UFD.]

Sketch: Oy, is a UFD <= [| Oy, is a UFD <= k[ui,...,uJ] is a UFD. Math
593 exercise: A is a UFD = A[u]] is a UFD.

Step 2: Fix pe Y C X, Y codimension 1 in X. Without loss of generality, X is affine. We
have
Iy Cm, C k[X] = Ox(X).

Take any nonzero h € Iy € m,. Look at the image of h in the UFD Ox,, and factor
h into irreducibles
h=git g7 € Iy,

4Shafarevich, Appendix §7
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where g; € Ox,. Thus some g; € Iy,,.

[Alternatively, pass to smaller open affine neighborhood U of p where each g; is

regular. Then
h=g* g e {U),

which is a prime ideal in Ox(U), so g1 € Hy(U).]
Because ¢g; = ¢; is irreducible in a UFD, it follows that (g;) is a prime ideal of Ox .

Consider: in U,
YNUCV(g) CUCX

We have dimU = dim X = d and dimV(g;) =d —1. If Y NU C V(g1) is a proper
inclusion, then Y NU has dim < d — 2, since a proper subset of an irreducible variety
has smaller dimension. Hence Y NU = V(g). O

Caution 14.16. The theorem can fail for non-smooth X. For example, consider
p=0ecY =V(z,2) X =V(zy — zw) C A",
We have dimY = 2 and dim X = 3. See that

k[xa Yy, z, w} (xayvsz)

TY — ZW

[y = (m, Z) - k[X](z,y,z,w) =

cannot be generated by 1 polynomial. Note: k[X](. - w) is not a UFD.

15 Rational maps

15.1 Provisional definition

Fix a variety V. A rational map V -*» A™ is given by rational functions coordinate-wise:

V---> A"
z = (p1(x),. .., on(x)) where ¢; € k(V).
Note 15.1. Each ¢; is regular on some open (dense) subset U;. So
V-L5An
u L
U
is a reqular map on U = Uy N ---NU,.
For
V-2 P
z = [pol@) s -+ pn(@)],

take ; € k(V) and say ¢; has domain of definition U;. This is regular on the dense open
subset of V'

UN--NU,N[(VNU)\V(eo|u,--- enlv)]-

U
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FExample 15.2.

Defined on A?\ {(0,0)}.
We can represent ¢ by oy, : U, = A?\ V(z) — P!, and also by

pan(o0) : A%\ {(0,0)} — P!
(x,y) — [z :y].

15.2 Definition of rational map

Definition 15.3. A rational map X-+*3Y between varieties is an equivalence class of regular
maps {U RN Y} (with U C X dense open subset), where

U 2% Y] ~ U 225 v

means ¢y and @y agree on U NU’ (or equivalently,

SOU‘(} = QU
for any dense open subset of U N U’).

Note 15.4. If two regular maps agree on some dense open set, then they agree everywhere
they are both defined.

Proof sketch. Since regular maps are locally given by regular functions in coordinates, it

suffices to check that if ¢, ¢’ are regular functions X — k, X —— k and ¢lg = ¢'|, where
U C X is an open dense set, then

(p—¢): X =k
is regular. Its zero set contains U and is closed, hence the zero set contains E = closure of
Uin X, so ¢ — ¢’ is zero on X. Thus, ¢ = ¢’ everywhere on X. O
In practice: A rational map is given by
X-Z5y Ccpm
z = [po(x) oo ()],
where ¢; € k(X).

Definition 15.5. A rational map ¢ : X--->Y is regular at p € X if ¢ admits a representative
U 2% Y such that p € U.

The domain of definition of ¢ is the open subset of X where ¢ is regular. The locus of
indeterminacy is the complement of the domain of definition.
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15.3 Examples of rational maps
(1) A rational map X -*> Al is the same as o € k(X).

(2) Every regular map X — Y is a rational map. (The domain of definition is X, and the
locus of indeterminacy is &.)

For example:

P! ---> P?

[s:t]l—>[33:82t:st2:t3}:[1:2:(2)2:(2)3].

Note that k(P') =k (%).
(3) The map used in the blowup (to be studied in more detail later):

A?--—->P!
(x,y) — {the line through (x,y) and (0,0)} = [z : y]

The locus of indeterminacy is {(0,0)}.

15.4 Rational maps, composition, and categories

Caution 15.6. A rational map is not a map!
In particular, we cannot always compose rational maps.

Example 15.7. Here’s an example that shows why we can’t compose rational maps:
Pt 2, P2 -4 PP
[s:t] > [s°: %t e st? o 17
w:iz:y:z] = [wz —ay:a® —wy:y® — az]
Caution 15.8. “1po¢” =[0:0: 0 : 0], which is nonsense.

Note 15.9. There is no category of varieties over k with rational maps as morphisms.
However, there is a category whose objects are algebraic varieties over k£ and whose
morphisms are dominant rational maps.
[somorphism in this category is birational equivalence.

15.5 Types of equivalence

Note 15.10. Birational equivalence is much weaker than isomorphism of varieties. For in-
stance:

AZ-25 P2 205 A2
(z,y) =[xy ]

[m:y:z]H(g,%),
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so A% and P? are birationally equivalent. Also,

P2--->P! x P!
[:y:z] = ([v:2],[y: 2])
U, = U, x Uy,

so P? and P! x P! are birationally equivalent.

In order of increasing strength and difficulty:

e Classify varieties up to birational equivalence

e (Classify varieties up to isomorphism

e Classify varieties up to projective equivalence

It turns out that birational equivalence and isomorphism are the same for smooth pro-

jective curves, for which we have a complete classification.

15.6 Dimension of indeterminacy

Theorem 15.11. If X is smooth and X ---3P" is a rational map, then the locus of indeter-
minacy has codimension > 2 in X.

Ezxample 15.12.
P2-“5 P! x P! — P?
@y 2] ([o:2][y:2])

The locus of indeterminacy W C P? is either empty or dimension 0 (i.e., finite).

In fact, W ={[0:1:0],[1:0:0]}.

Corollary 15.13. If X is a smooth curve and X -->3P™ is a rational map, then ¢ is regular
everywhere.

Corollary 15.14. If two smooth projective curves are birationally equivalent, then they are
1somorphic.

Proof. Say X ~ Y are birationally equivalent. Then the rational map X -%>Y C P™ is a
-1
regular map X — Y. Reversing roles of X and YV, Y ¥-> X C P" is also regular. So
X2y x,
\_/
id

thus X Y. N
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15.7 Dimension of indeterminacy, continued
Ezample 15.15. Let X =V (23 + --- + 22) C P (char # 2).
Pick any p € X, project from it. Then we have

P" - fp_> Pn—l
>

Ve

O
s Tp
v

X
and X -"2> P! ig a rational map.

Case I: dimX =1 (n=2): X -"25 P! must be regular everywhere by Theorem [15.11]

So we have a map
P2DV(z? + 3y —22) =X P!

which is regular everywhere, and fact is an isomorphism.

Case 2: dim X > 2: The rational map is not regular everywhere. For dim X = 2, we have

IED3
~
U o~
~
X--"_3p2
Ul
regular
X —{r}

The locus of indeterminacy is {p}. Codimension is n — 1 = dim X.
Now we prove:

Theorem (15.11)). If X is smooth, then the locus of indeterminacy of a rational map X --~>P"
has codimension > 2.

Proof. Let X be smooth, X ->P" a rational map, W = locus of indeterminacy C X.
Then W is (locally at p) a hypersurface. For all sufficiently small affine open neighbor-
hoods U of p, UNW =V(g) C U, where g € Ox(U). We have

X--—>P"
z = [po(z) - ()],
where ¢; € k(X) = fraction field of k[U]. Without loss of generality, ¢; € k[U].
Because p € W = locus of indeterminacy, we know p € V(¢y, ..., ¢,) € U. Then
peWnNU CV(pg,...,p,) CU affine.
By the Nullstellensatz,
(g) = jW(U) 2 (SOO? s 7@”)7
so g divides each ¢; (in k[U]).
Note: O, x is a UFD, so we can factor ¢y, ..., ¢, into irreducibles and cancel out any
common factors. Thus, without loss of generality, the ¢; do not have a common factor! [
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15.8 Images and graphs of rational maps

Definition 15.16. The #mage of a rational map X —— Y is the closure in Y of the image of
. YU
any representing regular map U — Y.

Check: This does not depend on the choice of . Indeed,

euUNU") € ou(U) =u (U').
Recall: The graph of a regular map X — Y is the set
Fp ={(z,p(x))} € X xY.
This is a closed set isomorphic to X. (Check: vertical line test.)

Definition 15.17. The graph I', of a rational map X -“5Y is the closure in X x Y of the
graph of any representing regular map U 2% Y.

Check: This is independent of representative.
Note 15.18. I',, is birationally equivalent to X.
Example 15.19.

A?-2> P!
(x,y) — {line through (x,y) and (0,0)} = [z : y].
Consider on A? — V(z) = U, C A?. Then
U, = A* — (y-axis) — Uy = A' — P!
(x,y)H%% [1:%] = [z :y],

noting that £ is the slope of the line through (0,0) and (x,y).

16 Blowing up

16.1 Blowing up a point in A"
Choose coordinates so the point is 0. Let
B={(p,?) |p €L} CA"x P

In coordinates,

{ T1,...,T [yl;---;yn])‘rank[zi zﬂgl}
:V(2x2m1norsof {x x"])
Yy Yn
:V({xzyj Ty z<1]<n})
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Definition 16.1. The blowup of A™ at 0 is the variety
B={(p,0)|pet} CA" xP"!
together with the projection B -+ A",

Note 16.2. (1) 7 is surjective, and one-to-one over A"\ {0}.

Also, 7 is birational (i.e., a birational equivalence) with rational inverse

A” ]‘:1} B C A" x Pn_l

(X1, ..., Tp) ((xl,...,xn); [xq - xn])
(2) B is the graph of the rational map

1 A Pl

(1, ooy @) > [Ty 0o @y

and B = A is projection to the “source”.

Intuition again: B is “like A" except at 0; we’ve removed 0 from A" and replaced it by
the set of all directions approaching the origin.

Proposition 16.3. B is a smooth (irreducible) variety of the dimension n.

Proof. We have B C A" x P"~! D (A" x U;), where U; = A"! is a standard affine chart. It
suffices to check that each B N (A™ x U;) is smooth.
For simplicity, we do the case i = n.

Claim 16.4. BN (A" x A" 1) = A"
Observe that

BNA" x A" ) ={(z1,....@a);[yr -yl | yn #0, miyy = 20}
Y1 Yn—1 Yj
- Zy, yIn )y | — 1:| x:xn(_)}
{( ) {yn Yn |2 Yn
We have an isomorphism
BNU % A"
((xl,...,:cn); {& SUURE o 1}) — (&,...,M,x})
Yn Yn Un Yn
BNU £ A"
((Eata, - tnbpetstn)s [t s s tpeg 2 1)) <= (B, ot By O
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16.2 Resolution of singularities

Theorem 16.5 (Hironaka, 1964). If k has characteristic 0, then every affine variety V- admits

~ closed
a resolution of singularities, i.e., 3 smooth variety V.. C A" x P™ such that the projection

onto the first factor A™ x P™ — A" is a birational map 7 :V — V when restricted to V.
Furthermore, m is an isomorphism over V' \ Sing(V'). The fibers are all projective (over
C, all compact), i.e., T is a proper map.E]

16.3 More about blowups
Recall: The blowup of (0,0) in A? is the graph of the rational map

A?-#5>P! = lines through (0,0) in A?

(@, y) = [z :y]
together with the projection onto the source
{(.0)|pet} =B=T, = A%
Note 16.6. (1) The map 7 is a projection, birational. In fact, 7 is an isomorphism over the
domain of definition of .

(2) The fiber over the locus of indeterminacy {(0,0)} is

osed closed

cl
{(0,0)} xP* € B C A*xP!
is a smooth, codimension 1 subset of B.
What happens if we graph a different rational map?
A?) 7714} ]P)l
(,y,2) — [z : y] = normal line to L = the z-axis

This is an isomorphism on A3\ L, and is birational on A3.
The fiber over the locus of indeterminacy L is L x P* C T'y,, which is a codimension 1

subvariety of I',,.
This is called the blowup of A% at the line L (or the blowup along the ideal (x,v)).

16.4 Blowing up in general

Definition 16.7. Let V be an affine variety, and let fy, ..., f. be nonzero regular functions
on V. The blowup of V' along the ideal (fo, ..., f.) is the graph of the rational map
V-£5pr

v [folw) oo fo(@)]

together with the projection B
VXP OV =T, 5V

5The technical definition of “proper map” in algebraic geometry is more complicated, but agrees with the
other definition over C. In any case, 7 is a proper map in the algebraic geometry sense.
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Definition 16.8 (projective map). A projective map X Lyvisa composition

proj. onto

chlosegl Y % pPm 1st coord. Y

f

Remark 16.9. (1) Since ¢ is rational on V. —V(fy,..., f.), 7 : V — V is an isomorphism
over V. —V(fo,..., f), i.e., is birational.

(2) This depends only on the ideal generated by (fo, ..., f.), not the choice of generators:
Say <f077fr):(90779m>gk[‘/] Then
V x P" V x P™
Ul Ul

3 isomorphism
T, Ty
x %
vV

(3) If (fo,-.., fr) is radical, defines a subvariety W C V', then we also say “blowup of V
along W”.

If W C V is smooth, then the blowup V “looks like” V with surgery performed: remove
W, and replace it by all directions normal to W in V.

Ezample 16.10. Blowup of (z?%,¢?) in A% The graph of

We have
A? x P' DV(uy? —vz®) =T, — A>

(zy)  [u]

So blowing up can sometimes make things “worse”!

16.5 Hironaka’s theorem

Theorem 16.11 (Hironaka’s theorem on resolution of singularities). Suppose chark = 0.
For any affine variety V', there exist fy, ..., [ € k[V] such that the graph of the rational map

V-£spr
z = [folz) oo fol)]
1s smooth. The map Vo= I, L 'V is projective, birational, and an isomorphism over

V' \ Sing V. N
Furthermore, 7=(Sing V') is a smooth, codimension 1 subvariety of V.
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17 Divisors

17.1 Main definitions
Fix an irreducible variety X.

Definition 17.1. A prime divisor on X is a codimension 1 irreducible (closed) subvariety
of X.
A divisor D on X is a formal Z-linear combination of prime divisors

t
D =) kD k; € Z.

Example 17.2. In P2, here are some prime divisors:
C =V(zy — 2*) C P? Ly =V(z), Ly =V(y).
Here are some divisors which are not prime: 2C, 2L, — Ls.

Definition 17.3. We say a divisor D = 22:1 k;D; is effective if each k; > 0.
The support of D is the list of prime divisors occurring in D with non-zero coefficient.

The set of all divisors on X form a group Div(X), the free abelian group on the set of
prime divisors of X.
The zero element is the trivial divisor D = > 0D;, and

Supp(0) = @.
FExample 17.4. Consider

S =) =A™

T T © ) RO

where f, g € k[t] (assume lowest terms).
The “divisor of zeros and poles” of ¢ is

ar {M} +a{de} 4 an {A} = b {n} — o = b {pm}

Vv Vv
(divisor of zeros) (divisor of poles)

Ezxample 17.5. Let A" = X. A prime divisor is D = V(h), where h € k[zy,...,x,] is
irreducible. Write
B S

9 gl ’ gm
where f,g € k[z1,...,z,] and f;, g; irreducible, a; € N.
Denoting the divisor of zeros and poles of ¢ by div(y), we have

div(p) = a1 V(f1) + aV(fa) + -+ a, V(f) = 01V(g1) — - — b, V(gm)-

€ k(A") = k(xq,...,xy,),

Note 17.6. Every divisor on A" has the above form.
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17.2 The divisor of zeros and poles

In general, on almost any X, we will associate to each ¢ € k(X) \ {0} some divisor, div(y),
“the divisor of zeros and poles”, in such a way that the map

k(X)* =k(z)\ {0} — Div(X)
o= dive = Z vp(p) - D

DCX

prime

preserves the group structure on k(X)*, i.e.,
(1 0 p2) = div oy + div a.
The image of this map will be the group of principal divisors:
P(X) C Div(X)

The quotient Div(X)/P(X) is the divisor class group of X.

Remark 17.7. If X is smooth, then the divisor class group is isomorphic to the Picard group.
Remark 17.8. The kernel of k(X)* SN Div(X) consists of ¢ € k(X) such that ¢, o' are
both regular on X.

Remark 17.9. We will write
divp = Z vp(p) - D,

DCX

prime
where vp(¢) = ordp(p) = “order of vanishing of ¢ along D”.
FExample 17.10.

o= € k(z,y) = k(A?)

)
: x
div(yp) = Z VD (—) D,
DCA? 4
prime

%) is 0 for all divisors D except for L; = V(z), where the order of vanishing is 1,

and Ly = V(y), where v, () = —1.
To define div(p) for ¢ € k(X)*, we need to define vp(p) for every every divisor D. We

will do this under the following assumption: X is non-singular in codimension 1/ In this
case, we have

where vp <

X D Xgn =X —Sing X
Div(X) — Div(Xm)

Z a;D; — Z Cll(l)Z N Xsm)-

6This means that Xsing € X has codimension > 2.
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To get an idea of how this will work, assume X is smooth and affine, and let ¢ € k[X].
Any prime divisor D C X is locally principal, i.e., locally D = V().

“D is a zero of ¢” means that D C V(¢), meaning (m) 3 . Look at the largest k such
that ¢ € (7%), i.e., p € (%) \ (x%T1). This is vp(yp) = k.

17.3 Order of vanishing

Goal: Define “order of vanishing” of ¢ € k(X) \ {0} along a prime divisor D, denoted

VD(QO) e 7.
This is done only under the assumption that X is non-singular in codimension 1 (i.e.,
Sing X has codimension > 2).

Case 1

Say X is affine, ¢ € k[X], D = V(x) is a hypersurface defined by 7 € k[X].
We say “@ vanishes along D” provided that D = V(7)) C V(). So by the Nullstellensatz,
() C (7). Tt could be that ¢ € (7?) or (7%) or some higher power.

Definition 17.11. The order of vanishing of ¢ along D, denoted vp(¢p), is the unique integer
k > 0 such that o € (7%)\ (7**1).

Note 17.12. vp(p) =0 = ¢ € () \ (7') = k[X] \ (7), i.e., ¢ does not vanish on all of D.

Can it be that ¢ € (7%) Vk? If so, then ¢ € ﬂkzo(’/Tk), which remains true after localizing
at any prime ideal of k[X] containing 7 (e.g., (7) itself).

Lemma 17.13. If (R,m) is a Noetherian local ring, then

ﬂmt:O.

Thus, if ¢ € (;50(7"), then ¢ = 0.
Note 17.14. vp has the following properties:

(1) vp(e-9) =vp(p) +vp(V).
(2) If o+ # 0, then vp(p + 1) > min {vp(p), vp(¥)}.

Case 1b
If ¢ is rational and ¢ = g, where f, g € k[X], define

vp(v) =vp(f) —vp(9).
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Case 2

General case: ¢ € k(X)\ {0}, D C X arbitrary prime divisor.
Choose U C X open affine such that

(a) U is smooth;

(b) UND # @

(¢) D is a hypersurface: D = V(r) for some 7 € k[U] = Ox (U]
We have ¢ € k(X) = k(U). Define vY(p) as in case 1.

Claim 17.15. This doesn’t depend on the choice of U.

Proof. Say Uy, Us both satisfy conditions (a), (b), (c). To check v9' (@) = vY2(p), it suffices
to check V5! (¢) = v (¢) for any U C U, N U, satisfying (a), (b), (c).

Fix Uy D U,. We have ¢ € (7%) \ (#**1) in k[U;] = Ox(U;), and after restricting to
k[Us] = Ox(Uy), the condition ¢ € (%) \ (7**1) still holds. O

So define vp(p) to be vY(y) for any U.

17.4 Alternate definitions of order of vanishing
17.4.1 Alternate definition 1

Let D C X be a prime divisor, ¢ € K(X). Pick any smooth point z € X such that x € D.
The local ring
O,x = {p € k(X) | ¢ is regular at x}

is a UFD. The equation of D in O, x is = (7) C O, x, where 7 is an irreducible element in
the UFD.
Writing ¢ = % with f, g € O, x, ¢ factors uniquely as
R

b1 bs
gl SRR 4

with f;, g; irreducible. Then

vp(p) = multiplicity of 7 in the unique factorization in O, x.

17.4.2 Alternate definition 2
Let D be a prime divisor on X (non-singular in codimension 1). Look at the ring
Op,x = {¥ € k(X) | ¢ is regular on some open U such that UN D # @} = k[U] s, ),

the local ring of X along D. We have U 2 DNU # & and k[U] D Zp(U).

Choose U satistying (a), (b), (¢). The maximal ideal of Op x is (7), generated by the
single element 7.

Observe that Op x is a local domain whose maximal ideal is principal, i.e., a discrete
valuation ring.

"We can do this by our earlier theorem that a codimension 1 subvariety is locally a hypersurface.
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Definition 17.16. A discrete valuation ring (DVR) is a Noetherian local domain with any
of the following equivalent properties:

1) It is regular of dimension 1.

2) The maximal ideal is principal, (7).

4) Every nonzero ideal is (7*) for some ¢ € Zx.

5

(1)
(2)
(3) It is a UFD with one irreducible element, 7.
(4)
(5) Normal of dimension 1.

Then we can define vp(p) = t, where ¢ is obtained as follows: We have
Op.x C k(X).

Write p = %, where f,g € Op x. Then

m

f = (unit) - 7", g = (unit) - 7™,

and
vp(p) =n—m=t.

17.5 Divisors of zeros and poles, continued

Now we get a way to define a “divisor of zeros and poles” associated to every ¢ € k(X),
namely,

div(yp) = Z vp(p)D.

DCX

prime

To see that this is a finite sum: when X is affine, write ¢ = %, and observe that divp
has support contained in

V(f)uV(g) = (D1 U---UD)U(DyU--- U DY),

so finiteness of the sum follows from quasi-compactness of the Zariski topology.

17.6 Divisor class group, continued

Recall: For a variety X which is non-singular in codimension 1, we defined the “order of
vanishing vp(p) of ¢ € k(X)* along a prime divisor D”; vp is the valuation of k(X ) associated
with the DVR OD,X-

This gives a group homomorphism
(k(X))" =5 Div(X)
> div(e) = Y vp(p) - D.

DCX

prime
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We defined the subgroup P(X) of principal divisors to be the image of div : k(X)* —
Div(X).
The cokernel of div : k(X )* — Div(X) is the divisor class group of X,

Div(X)

CUX) = 5y

Ezxample 17.17. CI(A™) = 0.

Proposition 17.18. CI(P") = Z, generated by the class of a hyperplane H = V(agxo+ - - -+
AnTy).

Definition 17.19. If D; = V(G;) C P" is a prime divisor, where G; is an irreducible
homogeneous polynomial in k[xo,. .., x,], we define the degree of D; to be the degree of G;.

Proof of Proposition[17.18 We have a surjective homomorphism

Div(P") £, 7
t
=1

Say D =Y"'_ k;V(G;) € Div(P") is in the kernel of deg : Div(P") — Z. Then

Zk:V ZaV ZbV e,

This is the divisor of zeros and poles of

Fal . a
=1 "t _T[GY e k(P
4 H ... H bs H )
Therefore,
Div(P™)
cyre” ~7
by the first isomorphism theorem. O]

Caution 17.20. There is no inherent notion of degree of a divisor on arbitrary X (though
okay for P, A" curves).

17.7 Divisors and regularity

Theorem 17.21. If X is smooth (or even just normal), then ¢ € k(X)* is reqular on X if
and only if div ¢ s effective (denoted dive > 0).

Remark 17.22. ¢ regular = divy > 0 is clear.
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17.8 Commutative algebra digression
Let R be any domain, and let K be the fraction field.

Definition 17.23. The normalization of R is the integral closure of R in K. (This is a
subring of K.)

We say R is normal if R is equal to its normalization R.

We have the inclusion

R—RCK
into the integral closure.
Example 17.24. Consider the ring

R= :2[? yx]:%

We have

so ¥ is integral over R in the fraction field Frac(R). Can check that

R"—)EZ k[SC,y,Z]

(y2 — a3, 2z —y) =k [%} = k[t] C Frac(R).

Note that normalizing gets rid of the singularity. The above inclusion induces a finite bira-
tional map of varieties.

Fact 17.25. Normality is a local property: Risnormal <= R, is normal Vm € mSpec R <=
R, is normal Vp € Spec R.

This lets us make the following definition:

Definition 17.26. Let X be a variety. We say X is normal if any of the following equivalent
conditions hold:

(1) For all points x € X, the local ring O, x is normal.

(2) For all subvarieties W C X, Oy x is normal.

(3) There exists an open affine cover {U,} such that each Ox(U,) = k[U,] is normal.
(4) For every open affine U C X, Ox(U) is normal.

Fact 17.27. All smooth varieties are normal. If X is dimension 1, then X is smooth <— X
is normal.

Fact 17.28. If a ring R is normal and p is heigh‘rﬂ 1, then R, is a DVR.
Theorem 17.29. Let R be a domain with fraction field K. Then

R= () R, CK.

pESpec R
height 1

8The height of a prime p € Spec R is the Krull dimension of R,.
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Now we can prove the theorem from earlier:

Proof of Theorem[17.21 Say ¢ € k(X) and dive > 0. It suffices to check ¢|y, where U is
affine open in X, is regular.
On U, we have ¢ € k(U) = k(X) with divp o > 0. All vp(p) > 0, s0 ¢ € Op x VD.
Thus
p e ﬂ 0D7X: ﬂ RPZR:OX(U) ]

D prime in U p ht. 1

17.9 Divisors and regularity, continued

Recall:

Theorem (|17.21)). Let ¢ be a nonzero rational function on a normal variety X. Then ¢ is
reqular on X <= div p is effective.

E.g., on P", there are no nonzero principal effective divisors (i.e., divpy > 0 = ¢ is
regular on P" — ¢ € k\ {0}).

More generally, for any U open in a normal variety X, the following are equivalent for
€ k(X)*:
(1) ¢ € k(X) is regular on U.
(2) ¢ has no poles on U.
(3
(

4

div ¢ on U is effective.

)
)
)
) vp(p) > 0 for all divisors D with DNU # &.

Also, the following are equivalent:
(1) divy =0
(2) ¢ regular in U, ¢! regular on U.
(3) ¢ € O%(U) = subgroup of invertible elements of the ring Ox(U).
Ezxample 17.30. Let X = P? and

x2+y2—222
o= v L e k).

Then
Supp(divp) = CU L, U Ly = V(2* + > — 22) U V(z) UV(y),

and
diVPQ gO = 20 — 3L1 — L2
diVUZ Y = 2C — 3L1 — LQ
divy, ¢ =2C — Ly
diVUzﬂUy Y = 2C.

Since 2C is effective, Theorem |17.21| implies that ¢ € Op2 (U, N U,).
Also, denoting U := U, N U, N U,24,2_.2, we have divy ¢ = 0, so ¢ € Op.(U).
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18 Locally principal divisors

18.1 Locally principal divisors

Important idea: If X is smooth, then every divisor on X is locally principal.
Fix D = 22:1 k;D; divisor on X, with X smooth.
Take any x € X, and choose a neighborhood U = U, of = such that D, is the vanishing
set of some irreducible m; € Ox(U) (i.e., Zp,(U) = (m;), or equivalently, D; N U = divy 7;).
On U, D is principal, and we have

DNU = divy(at - .- 7k,

Example 18.1. In the setting of our previous example in P2, D = 2C — L, has degree 3, so it
is not globally principal.
However, D is locally principal. Let

(xz + yQ . z2)2 (xz + y2 i z2)2 (x2 + y2 i 22)2
1= 4 ’ P2 = 3 ) ¥3 = 3 .
T Ty Tz
Then
divy, g1 = DN Uy, divy, g2 = DNU,, divy. ¢35 = DN U..

Remark 18.2. On U, NU,, ¢; and ¢, have the same divisor C
< diVUmey ©1 = diVUmey Py <— diVUmey(gé?l/(,Og) =0 <— % & O;—(Uz N Uy)
2

Now we give the formal definition.

Definition 18.3. A locally principal (or Cartier) divisor on a variety X is described by the
following data:

o {Ux},cp Open cover of X,

o v, € k(X) = k(U,) rational function on X
such that @y - @, " € O%(UxNU,) for all A, u € A.

The corresponding (Wei]ﬂ) divisor is the unique D such that on U,, DNU, = divy, @x VA.

The set of all locally principal divisors on X forms a group CDiv(X) C Div(X).
Remark 18.4. If Dy = {U,, ¢»} and Dy = {U,,, 9, } are two collections of data describing two
Cartier divisors, then their sum Dy + Dy is given by {Ux N U, oz - ¥, }.
Remark 18.5. The main advantage to locally principal divisors is that they can be pulled
back under dominant regular morphisms.

Say X 25 ¥ is a dominant regular morphism, so we can identify k£(Y) C k(X) by f*.
So for D € CDiv(Y), define f*D as the Cartier divisor X whose local defining equations are

the pullbacks of local defining equations for D.
In symbols, if D = {U,, ¢.}, then

D ={f"H 0N, f (o)} = {f (U, r0 f}.

9A Weil divisor is a formal Z-linear combination of irreducible, codimension 1 subvarieties. This is the
same kind of divisor we defined earlier.
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18.2 The Picard group

Let X be a normal variety. Then we have
P(X) C CDiv(X) € WDiv(X) ¥ Div(X).

Definition 18.6. The divisor class group of X is C1(X) = Div(X)/P(X).
The Picard group of X is Pic(X) = CDiv(X)/P(X).

18.3 Summary of locally principal divisors

Let D be a locally principal divisor on X (normal).
Then D is given by data {U,, ¢}, where the U are open sets covering X and ¢ € k(X)*,
and D is div ¢y on Uy:
DnN U)\ = diVU)\ O

Example 18.7. D = hyperplane V(o) on X = P3. This is not principal.
4
However, it is locally principal, being given by {(Ui, %)} .
i) )i=1
Note 18.8. (1) The @, are uniquely determined only up to multiplication by some ¢ having
no zeros or poles on Uy, or equivalently, any of the following:
o divp =0
e e O(U)
e ¢ is a unit in Ox(U,).
(2) There is a relationship between ¢, and ¢, given by any of the following:
o divpy =divy, on UyNU,
o divpy —divp, =0on Uy,NU,
e div(¢a/¢,) =0o0n UyNU,.

(Or, if we don’t assume X is normal, ¢;/¢; € O%(U;NU;).)

18.4 Pulling back locally principal divisors
18.4.1 Case 1l

Let Y 5 X be a dominant regular map.
Given D € CDiv(X) = set of all locally principal divisors on X, think of D as given by
{Ux, ox}. Then f*D is given by {f~*(Uy), f*(va)}. Then we think of f*D as div(f*p,) on

F7HUN.
Note 18.9. Each f*y, is a nonzero rational function on Y.

Note 18.10. Supp(f*D) = f~(Supp D).
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Ezample 18.11. Let V = V(y — 2?) C A% and consider V' — Al (z,y) — y. Consider the
divisor

. [ (t—1)? a1
D = 2p; — 3py = div T € CDiv(A"Y),

where p; =1 and p, = 2 in A'. Then

, (t—1)2 . fr(t—=1)? . (tof—1)?
“(D)=d * =divy =——-% =d
0 =i (=g ) = g =
. (y —1 2 . '7:2 B 1>2 ! /
= div = div = 2q1 + 2q7 — 3q2 — 3q5,
v (y =27 Vi 2)3 q1 T 44y — 942 — 943
where
Q1= (17 ]-)7 qi - (_]-7 1)7
q2 = (\/57 2)7 C]; - (_\/57 2)
Note 18.12. Y L5 X is dominant <= on affine charts (say X,V affine),
kY] + k[X]
gofiyg

is injective.
Think: v L5 X yields a map (Ox EAN Oy) = f*Oy, and the kernel is an ideal sheaf .#;.
In the affine case, Y 2y X induces a map

with kernel I, and we have

FExample 18.13.

Pt = P
[s:t] = [s%: s%t 0 st? 1 4]



Can we pull back H under v?
The pullback v*H is given by

. (e ()=}

vV'H =3P,

SO

where P = [0: 1] € P..

18.4.2 Case 2
Proposition 18.14. If Y I X isa regular map, and D € CDiv(X) such that f(Y) ¢
Supp D, then f*D is defined exactly as before: If D is given by {Uy, pr}, then f*D is given
by

{f71 U, f*or},

where the f*py are nonzero rational functions.

Proof. We have f(Y) ¢ Supp(D) <= Y ¢ f~'(Supp D). Since Supp D consists of the
zeros and poles of Z—i = ) on Uy, i.e., (zeros of hy)U (zeros of gy). Then f~!(Supp D) is the

set of zeros of (hy o f) and (g o f). O
f
Ezample 18.15. Let V =V(y —z?) CA? and D = X — Y = V(z) — V(y) = div <§> on A%
Then i}
F0=div I gt iy © =iy L
f*(w) Y x x

We have f*D = f*X — f*Y.

18.5 The Picard group functor

Theorem 18.16. Let X 25 Y be a reqular map of varieties. There is a naturally induced

(functorial) group homomorphism PicY 5 Pic X.
In other words, there is a contravariant functor

{varieties over k} — Ab
X — Pic X.

Example 18.17. The morphism

AN
[s:t] = [$7 0 Pt st? 2 17
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yields a commutative diagram

AT

Example 18.18. The d-th Veronese map vy : P™ — PV induces

7 = Pic(P™) + Pic(PV) = Z
d<1.

18.6 Moving lemma

Lemma 18.19. Given any X, a Cartier divisor D on X, and a point x € X, there exists a
Cartier divisor D' such that D ~ D' and x ¢ Supp D.

Ezample 18.20. On P2, take z = [1:0: 0] and D = H = V(y). Note that € Supp D.

By the moving lemma, there exists a divisor D’ ~ H such that [1 : 0: 0] ¢ D’. We can
take D' = V(z). Here: D' = D + div (5)
Proof of moving lemma. Say D is given by data {U;, ¢;}. Say « € Uy.

Let D" be the divisor corresponding to data {Ui, o7t gpi}. [Note: D' N Uy = divy, (1) is
empty, so x ¢ Supp D’.| Hence

D' =D +divy o

[]

Proof of Theorem[18.16. Let X <+ Y be a morphism and D a locally principal divisor. We
can define ¢*D whenever Supp D 2 ¢(X). Then we need to check also:

(1) Dy~ Dy = ©*Dy ~ ¢*Ds
(2) ¢*(D1) + ¢*(D2) = ¢* (D1 + D»)

when we can define ¢*.
So: if we try to define ¢*[D] where Supp D O im ¢y, simply use the moving lemma to
replace D by D', where z ¢ Supp D’ (for any x we pick in ¢). m

19 Riemann—Roch spaces and linear systems

19.1 Riemann—Roch spaces

Fix X normal, D any divisor. Consider the set

Z(D)={f €k(X)"|divy f+D >0} U{0} C k(X).
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Example 19.1. If X = A' and D = 2 - py (where py = 0 is the origin), then

ZL(D)={f €k(t)

. 1
div 42> 0y 010} = { Za(0) 900 € k1)
A function f € Z(D) can have zeros anywhere, but can’t have any poles except at pg, where
a pole can be order 2 or less.
Definition 19.2. .Z(D) is the Riemann-Roch space of (X, D).
Remark 19.3.  (I) Z(D) is a vector space over k.

(II) Even better, £ (D) is a module over Ox (X).
The proof follows from a basic fact about “order of vanishing” along prime divisors.

If D; is a prime divisor on normal X, then
vp, - k(X)" =2
is a wvaluation, i.e.:
(D) vp,(f +9) = min{wp,(f),vp,(9)}
1) vp,(f9) = vp,(f) +vp,(9)-
To prove Z (D) is a vector subspace of k(X), observe that
f,9e ZD) = f+ge€ZD),
and

divf+D>0

D+ZuDi(g)-Di:divg+D20,
D;

hence divy(f +g) > —D, so if

D;CX
prime

then for any D; prime divisor,

I/Di(f) 2 _ki

VDz(g) Z _kl
Thus

VDi(f+g) Zmin{yDi(f)aVDi(g)} > —k; Vi,

whence
so f+geZ(D). O

7



Theorem 19.4. If X is projective, then £ (D) is a finite-dimensional vector space over k.
Example 19.5. Say D = 0 and
ZL(D) = {f €k(x)|divf>0}=0x(X).

If X is projective, then .Z(0) has dimension 1.
Denote pg = [0 : 1] and p, = [1 : 0]. Let X = P! and D = py + poo. We have

kE(PY) =k (g), and then

X(D):{f (E) ’divf—i—po—l—pooZO}

) ‘ F5 degree 2 homogeneous} :
> oxy ¥y fx LY
lL"y’ fL‘y’ xy - y7 I T )

19.2 Riemann—Roch spaces, continued

A basis for this is

so dim Z(D) = 3.

Let X be a normal variety, D = ) k;D; a divisor. The Riemann-Roch space
Z(D)={f € k(X)"

div f+D >0} U{0} C k(X)

consists of rational functions f such that
(1) f has no poles except possibly along D; if k; > 0 (order of pole up to —k;), and
(2) f must have zeros along D; if k; < 0 (order of zero at least —k;).

Remark 19.6. e Z(D) can be infinite-dimensional or finite-dimensional, though it is al-
ways finite-dimensional if X is projective.

e Z(D) is a module over Ox (X).
Proposition 19.7. If D ~ D', then £ (D) = Z(D’) (natural isomorphism, not equality).
Proof. We have D — D' = div f for some f € k(X)*. Consider
{g|divg+D >0} = 2(D)-Ls 2(D)={h|divh+ D' >0}
g—gf.
Is gf € Z(D')? Indeed, if g € Z(D), then divg + D > 0, so
div(gf)+ D' =divg+divf+ D =divg+ D > 0.

The inverse map is multiplication by % Thus, this is an isomorphism of k-vector spaces. (It
is also a Ox(X)-module isomorphism.) O
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Note 19.8. Each nonempty open set U C X is a normal variety. Each divisor D = > k; D;

on X induces a divisor
Dy =) k(D;nU)=“D;nU".

Look at the Riemann—Roch space of (U, D|y).

Definition 19.9 (sheaf associated to D). The sheaf Ox (D) associated to D is the sheaf
assigning to each nonempty open set U C X the Riemann-Roch space

Ox(D)(U) = the Riemann-Roch space of (U, D|v),
which is an Ox (U)-module.
e This is a subsheaf of the constant sheaf k(X).
e Ox(D) is a sheaf of Ox-modules.

e If D ~ D', then there is an isomorphism

of Ox-modules.

Ezxample 19.10. If D =0, then Ox (D) = Ox.
Ezample 19.11. Let X = P! and D = 2py — ps (where pg = [0: 1] and po, = [1: 0]). Then

Ox(D)(P') = {f € k(P") ’ div f + 2pp — pso > 0}
— {M ‘ a’be k;}

2
If we restrict to Uy, = PP\ {[1: 0]}, then using coordinates t = %,

Ox(D)(Us) = {f € k(P') | divy,, f +2py > 0}

g
Similarly, letting s = £ = ¢,

Ox(D)(Uo) = {f € k(P') | div f — poo > 0}

:{fek(s) ’ f€s~k[s]}
={t7 - ktT]} = Ox(Uy),

and
Ox(D)(Us NUy) = Ox(Use N Up) = k[t, t71].

Fact 19.12. If D is a Cartier divisor, then Ox (D) is a locally free, rank 1 Ox-module (a
submodule of k(X)).
Hint: If D is given by data {U;, ;}, then

Ox(D)(U;) = ¢; ' - Ox(U;) C k(X).
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19.3 Complete linear systems

Let X be a normal variety, D = >_ k;D; a divisor.

Definition 19.13. The complete linear system |D| is the set of all effective divisors D’ on
X such that D ~ D'

Ezample 19.14. On P? (char k # 3), let
D =3V(2® +y* + 2°) — TV(z).
Then |D| = the set of all conics on P2

Proposition 19.15. There is a natural map

Z(D) = {0} = [D|
f—divf+D
which induces a surjective map P(L (D)) — |D| which is bijective if X is projective.

Proof. Why surjective? If D' € |D|, then D' > 0 and D' ~ D, i.e., D' = D + div f for some
fek(X)*. So
f=divf+D=D"

Why injective for projective X? Say Dy, Dy € |D| such that
f,g—div f+ D.

Then div(f/g) =0, so § is regular on X and hence is constant. O

19.4 Some examples

Ezample 19.16 (Case where the map is not injective). Consider X = A' — {0}, D =p = [1].
Then

K[t e,

g(D)_{fek(t)|divf+p20}—(ti1)

and the natural map P(Z (D)) — |D| is not injective.
Ezample 19.17. Let L C P? be a line. Say L = V(zy) C P2. Then

|L| = {lines on P*}
aoTo + a1T1 + a2
Lo

:P(.z(L)):P{fek(P?)\divf+Lzo}:P{

aiek}.

Note that |L| is geometric, independent of choices, while .Z(L) depends on choice of line; if
we choose a different line, we get a different (but isomorphic) subset of k(P?).
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Ezample 19.18. Let C' C P? be the conic V(F), where F = z? 4+ y* — 2%, Then
L(C)={fek®) |divf+C=>0}

:{ G(2,y,2) ‘Ge [k[x’y,z]b}.

(22 +y? = 2%)
This is a dimension 6 vector space. Basis:
{ﬁﬁﬁ%i%}
F'"F F F'F'F |’
Map this to the linear system:
Z(C) — |C| = {conics on P}

G e
= div = +C =V(G) (as a scheme)

The linear system |C/| of conics on P? corresponds to a map to projective space (up to
choice of coordinates on that target):

P2 ---5 5
22wy Y oxz 22y
. . == = === .
iy [P‘ F F F F .F]

This is the Veronese 2-map.

Note that if we denote L = V(x), then |C| = |2L|, and the corresponding Riemann-Roch
space is

G

Z(2L) = {—

x2

{1 Y (y>2 yz}

sy o\ T R NN (O
xXr s xXr

Note 19.19. The elements of the linear system |C'| = |2L| are the pullbacks of the hyperplanes
in P5.

G € k2l |

which has a basis

which is also dimension 6.

Multiplying by F', we can also describe this map as
P? =25 P
iy (28 rwy gt iz 2y,
Look at the linear system |H| on P of hyperplanes. Say
H =V(apxo+ - + asxs).
Then

vsH = V(apz® + ayzy + - - - + asyz).
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19.5 Linear systems

Definition 19.20. A linear system on X is a set of divisors (all effective, all linearly equiv-
alent to each other) which corresponds to some (projective) linear space in some complete
linear system |D).

In other words: Fix D, and consider a subspace

V C Z(D)—|D|.
Then we have a map V' — P(V') C |D|. The image of P(V') is a linear system.

Ezxample 19.21. In P™, take the set of lines through a point p =[0:---:0: 1] € P". Fix
H =V(x,). Call this set

V=P\V)={f|divf+H=>0}.
Then

V:<spanof@,...,gcn_1>g,,i”([-l):<ﬁ o ...,x”_1,1>.

) )
n xn x?’l x?’l xn

Definition 19.22. The base locus of a linear system ) is the set
BsV:{x€X|x€SuppDVD€V}.

A linear system is base point free if BsV = @.
The fixed components of a linear system are prime divisors D such that D appears in the
support of every D € V (i.e., divisors in the base locus).

Ezample 19.23. Fix L; = V(z) C P2. Take the linear system V of conics in P? which contain
L. This consists of the unions of L; with another line, and the double line consisting of L,
with multiplicity 2.

We have

2Ls] DV s |L]
Li+ Ly +— Lo.

A conic C' C P? contains L, = V(z) iff
Ie = (F) = (ax + by + cz)x C I, = ().

A basis for F is given by

x° xy 2x
F'FF
Map to projective space by
IP)Q ’>IED2
2
z:y:z]— {%ﬁ%} =[z:y: 2],

i.e., the identity map.
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19.6 Linear systems and rational maps

Theorem 19.24. Let X be normal (in practice, projective). There is a one-to-one corre-
spondence

{rational maps X --->P"} . { n-dimensional linear systems of divisors }

(projective change of coordinates) on X with no fived component

[X LN ]pn] — {pullback of hyperplane linear systems on P"} .

FExample 19.25. Consider the map
Pt = P
[s:t] > [$7 0 st st? 1 17
and the linear system
|H| = {hyperplanes on P’} = {V(az + by + cz + dw) | [a: b: c: d] € P*}.
Then
v H| = {v*(V(az + by + cz + dw)) | [a:b: c:d] € P}
= {V(as® + bs’t + cst® + dt’) }
= {complete linear system on P! of degree 3 divisors} = |3P].
Going back to the theorem, for any n-dimensional linear system V of divisors on X with

no fixed component, let | D| be a complete linear system such that V C |D|. Then V = P(V),
where V' C Z(D) is (n + 1)-dimensional. Send

yo | TF
v [po(@) o pu()] |

where the ; are a basis for V.
Furthermore: the locus of indeterminacy of ¢ is the base locus of V.

Ezample 19.26. In P2, fix a line L. Look at the linear system W; C |Cs| (where |Cs] is the
9-dimensional complete linear system of cubics in P?) of cubics that contain L. We have

LQC’g S FgZZL"FQ,

where Fy(z,y, 2) is degree 2. So

3 3

x> 2%y z r-2> x-xy -2 T-Y: woyr w22
$(03)2<F:F:---:F>Q{F : 7 : 7 : 7 : 7 : 7 }
3 3 3 3 3 3 3 3 3

What is the map )y, corresponding to W, 7 It is

P?---> P’
iy x2?
[z:y:z]— {EEE} = [z? 1wy 2P

Note that W, gives the same map as |Cy|.

83



Note 19.27. Let X ---» pP" and D € Div(P"). What is ¢*D? We have

X-Z5pn

UI/
log

U

and X \ U has codimension > 2. Then

« 1 def ——=
©'D = oD,

the unique divisor D" on X such that D'|y = (¢} D).

Ezample 19.28. In general, the Veronese map P* <% p( i) corresponds to the complete
linear system |dH| on P".

Definition 19.29. A divisor D is very ample if the map ¢|p| : X --->P" corresponding to
the complete linear system |D| is an embedding,.
A divisor D is ample if 3m € N such that mD is very ample.

Example 19.30. Consider the projection

P3 - p?
z:y:z:w]l—[z:y: 2]

fromp=1[0:0:0:1]. Let H = V(axz + by + cz) € |H|. Then hyperplanes H correspond to
hyperplanes on P? which contain p, i.e.,

|H,| = linear system on P* of hyperplanes through p.

This is fixed component free, since the base locus is {p}, the locus of indeterminacy of ¢.

Example 19.31. Let P2 = P2 be the blowup at a point p € P2

This corresponds to the linear system 7* |L| (where |L| is the complete linear system of
lines on P?), which includes “lines” L which don’t meet the exceptional divisor E.

This is base point free, but not very ample.

20 Differential forms

20.1 Sections

Recall from the homework: The tautological bundle is
T={(z0)|xel} Sk xP"
with the projection map 7' =+ P™. The fiber
7 (0) = {(z,0) |z € {}

84



is the set of points in the line which is /.
A section is a morphism P" =+ T such that 7 o s = id|pn. A section of the tautological
bundle is given by a choice of representative of each line, i.e., for all £ € P*, s(¢) € 7 (£).
We can add two sections si, s : P* — T by adding outputs:

S1+ S2: P — T
{— 81(6) + 32(6).

We can also multiply a section s : P* — T by any function f :P" — k:

fs:P* =T
fs(0) = f(0)s() € 7(0).

20.2 Differential forms

Definition 20.1. A differential form 1 on X is an assignment associating to each x € X
some ¥ (x) € (T,X)*.
Put differently, a differential form is a section of the cotangent bundle of X.

FExample 20.2. If f is a regular function on X, then df is a differential form:

df (z) = d.f = Z gil (x — :)sl(x))

(2

To XCT A"

We can add two differential forms:

(V1 + 1) () = () + ¢a(2).

Can also multiply ¥ by any k-valued function ¢:

() (x) = p(x) - ().
In other words, the set of all differential forms W[x] on X forms a module over §(z), the
ring of all functions on X.

FExample 20.3. Consider A™ with coordinates x4, ..., z,. The cotangent space at x is spanned
by d,xq,...,d,x,.

Ezample 20.4. In R?, sinx dy + cosz dx € W[z] is a differential form.

20.3 Regular differential forms

Definition 20.5. A differential form ¢ on X is reqular if Vo € X, there is an open neigh-
borhood U > z such that 9|y agrees with Zﬁzl g:df;, where f;, g; € Ox(U).

In other words, viewing 1 as a section of the cotangent bundle of X, the section map is
regular.
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FExample 20.6. The differential form
Y = 2xd(zy) =2z (vdy + ydx) = 22° dy + 2xy dx

is a regular differential form in A2

Notation 20.7. For U C X open, let Qx(U) be the set of regular differential forms on the
variety U.

Note 20.8. Qx(U) is a module over Ox(U). In fact, Qx is a sheaf of Ox-modules.
FExample 20.9. On A", Qx is the free Ox-module generated by dxq, ..., dx,.

Theorem 20.10. If X is smooth, then Qx is a locally free Ox-module of rank dim X .

Proof sketch. Take x € X, and take local parameters x1, ..., x, at x. Show that dz,...,dz,
are a free basis for Qy in some neighborhood of z. (Use Nakayama’s lemma.) O

Proposition 20.11. Let V- C A" be an affine variety with ideal I(V') = (g1, ..., 9:) C k[A"].
Then Qy (V') is the Oy (V)-module

EV]drily + -+ E[V]doy |y
k[V]-submodule generated by (dgi, ..., dg;)

Note that if g vanishes on V', then dg =0 on V.
Ezample 20.12. Let V = V(¢ — s*) C A%, Then

K[V dt + k[V] ds

Qy =
v (dt — 2sds)
This is free, since dt = 2sds in Qy, so the generator dt is redundant, and Qy = k[V] ds.
Ezample 20.13. Consider P! with homogeneous coordinates x,y, and with t = %, s =2 Say

1 is a global regular differential form on P'. Then
blu, € Qe (Uy) = k[t] dt
Yy, € Qp1(Uy) = k[s] ds.
If we have p(t) dt € k[t] dt and q(s) ds € k[t] dt, then
p(t) dt = q(1/t) d(1/t)

on U, NU,. Then

p(t)dt = ~a(1/0)%.

SO
t*p(t) = —q(1/t)
in k[t,t7']. Thus p = ¢ = 0, i.e., there are no nontrivial global regular differential forms on
PL.
However, on X = V(z? + 3® + 23) C P2, there is a 1-dimensional k-vector space of global
differential forms. And, on X = V(z* + y* + 2%) C P2, the space Qx(X) is 3-dimensional
over k.

Definition 20.14. If X is a smooth projective curve, then the genus of X is the dimension
of Qx(X) as a k-vector space.
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20.4 Rational differential forms and canonical divisors

A rational differential form on X is intuitively fidg, +- - -+ f.dg,, where f; and g; are rational
functions on X. Formally:

Definition 20.15. A rational differential form on X is an equivalence class of pairs (U, ¢)
where U C X is open and ¢ € Qx(U). [As with rational functions, (U, ) ~ (U’, ¢’) means

SO\UmU' = ¢/’UOU/-]
We can define the divisor of a rational differential form.

Definition 20.16. If w is a rational differential form on a smooth curve X, then div(w) €
Div(X) is called a canonical divisor.

The canonical divisors form a linear equivalence class on X, denoted Kx. Also,
dim Z(Kx) = genus(X).

Example 20.17. On P!, the canonical divisor Kp: is the class of degree —2 divisors.

20.5 Canonical divisors, continued

Let X be smooth (or, X normal, and work on X, C X; since codim(X \ Xg,) > 2, we won’t
miss any divisors).

Consider the sheaf Qx of regular differential forms on X. [In U, Qx(U) is the set of
differential forms ¢ on U such that Vx € U, there exists an open neighborhood where ¢

agrees with Y fidg;, where f;, g; are regular functions.|
The sheaf Q2x is a locally free Ox-module of rank d = dim X.

Fact 20.18. The set of rational differential form{™¥| forms a vector space over k(X).

Definition 20.19. A separating transcendence basis for k(X) over k is a set of algebraically
independent elements {u;} over which k(X) is separable algebraic [i.e., k(uq, ..., u,) — k(X)
is separable algebraic].

Ezxample 20.20. Consider X = P2, Then
k (f, 3) =5 k(P?),
vy

SO §> § is a separating transcendence basis. In characteristic # 2, 3,

() 6))-4G3)

is also a separating transcendence basis.

Theorem 20.21. Ifuy,...,u, is a separating transcendence base for k(X), then duy, ..., du,
is a basis for the space of rational differential forms on X over k(X).

10Shafarevich denotes this ©(X).
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Proof sketch. We have k(uy, ..., u,) — k(X). Given Y fidg; with f;,g; € k(X), it suffices
for each g = g; € k(X) that we can write

dg = riduy + - - - + rpdu,

for r; € k(X).
Then g satisfies a minimal polynomial

g"F+ag" T+t ay, =0
with a; € k(uq,...,u,). Apply “d”:
mg™ tdg + g™da, +ay - (m — 1)g™ 2dg + - - - + da,, = 0. (*)

Solve for dg;:
(rational function) dg € k(X)-span of duy, ..., du,,.

(Check the coefficient on dg is not zero if (*) is separable.) So dg € k(X)-span of duy, . . ., du,.
[l

20.6 The canonical bundle on X

For each p € N, look at the sheaf A" Qx of p-differentiable forms on X, which assigns to
open U C X the set of all regular p-forms: Vo € U, p(z) : A’ T,X — k. Locally these look

like Z fldg“ VANCIVAN dgip'
Rational p-forms are defined analogously.

Corollary 20.22. The set of rational p-forms on X is a k(X)-vector space of dimension
(p)'

Proof. 1f uy,...,u, is a separating transcendence basis, then {dui1 AR, duip} is a basis
for rational p-forms over k(X). O

Definition 20.23. The canonical sheaf (or dualizing sheaf) of X (where X is smooth,
dim X =n) is

wx = /\QX
Note 20.24. (1) wx is locally free of rank 1.

(2) The set of rational canonical (n-)forms is a vector space of dimension 1 over k(X).

Ezxample 20.25. On P2, let s = % and t = 5, and consider

ja()na?).
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We have

1(2)na(?)=a()na(;)

_ (tds - sdt) A (—dt)

2 t2
—tds ANdt —dsAdt
T
On U,, there are no zeros or poles. On U,, we have a pole of order 3 along ¢t = 0 (the divisor
V(z) C P?).
So:

v (4(2) na(2)) = o

Definition 20.26. The divisor of a rational canonical form ¢ on X is the divisor

div(p) = > (@)D,

D prime
divisor

where L., = V(z) C P2,

where vp () is computed as follows: Pick any uq, ..., u, parameters for a point x € D. Write
o=Ff-dug A---Nduy,

where f € k(X). Then vp(p) = vp(f).

Note 20.27. The divisor div(w) is not necessarily principal.

Proposition 20.28. For all f € k(X), w a rational canonical form,
div(fw) = div(f) + div(w).
In particular, any two rational canonical forms define the same divisor class.

Definition 20.29. The divisor div(w) is called a canonical divisor. By Proposition [20.28|
they form a class, called the canonical class Kx.
Example 20.30. On P?, Kps is the class of divisors of degree —3.

We can use the canonical class (or multiples of it) to classify varieties.

If we embed

X(|dKX| pn

AY|

Y
then X 2Y <= there is a projective change of coordinates taking X to Y.
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