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1 Algebraic sets, affine varieties, and the Zariski topology
List of topics:

(1) Algebraic sets

(2) Hilbert basis theorem

(3) Zariski topology

1.1 Algebraic sets

Fix a field k. Consider kN , the set of N -tuples in k.

Definition 1.1. An affine algebraic subset of kN is the common zero locus of a collection of
polynomials in k[x1, . . . , xN ].

That is: Fix S ⊆ k[x1, . . . , xN ] any subset. Then

V(S) =
{
p = (λ1, . . . , λN) ∈ kN

∣∣ f(p) = 0 ∀f ∈ S
}
.

Example 1.2. (1) Lines in R2: V(y −mx− b) ⊆ R2.

(2) Rational points on a cone (arithmetic geometry): V(x2 + y2 − z2) ⊆ Q3

(3) All linear subspaces of kN are affine algebraic sets.

(4) V(det(xij)− 1) = SLn(C) = {n× n matrices /C of det 1} ⊆ Cn2

(5) sl2(R) =

{(
x y
z w

) ∣∣∣∣ trace = 0

}
⊆ R2×2

(6) Point in kN : {(a1, . . . , aN)} = V(x1 − a1, . . . , xN − aN).

(7) V(x, y) = (0, 0) = V
(
{xn + y, yn+17}n∈N≥30

)
⊆ R2

Remark 1.3. S ⊆ T ⊆ k[x1, . . . , xN ] =⇒ V(S) ⊇ V(T ).

1.2 Hilbert basis theorem

Theorem 1.4 (Hilbert basis theorem). Every affine algebraic set in kN can be defined by
finitely many polynomials.

Proof requires a lemma:

Lemma 1.5. Let {fλ}λ∈Λ ⊆ k[x1, . . . , xN ] and let I ⊆ k[x1, . . . , xN ] be the ideal generated by
the {fλ}λ∈Λ. Then V(S) = V(I).
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Proof. We know V(S) ⊇ V(I). Take p ∈ V(S). We want to show that given any g ∈ I, we
have g(p) = 0.

Take g ∈ I, so g = r1f1 + · · ·+ rtft, where fi ∈ S and ri ∈ k[x1, . . . , xN ]. So

g(p) = r1(p)f1(p) + · · ·+ rt(p)ft(p) = 0

since fi(p) = 0 for i = 1, . . . , t. Hence p ∈ V(I).

Proof of Theorem 1.4. Take any S ⊆ k[x1, . . . , xN ], I = 〈S〉 ideal generated by S. We have
V(S) = V(I) by Lemma 1.5. But every ideal in a polynomial ring in finitely many variables
is finitely generated. Hence

V(S) = V(I) = V(g1, . . . , gt),

where g1, . . . , gt generate I.

Remark 1.6 (Algebra black box). • R is Noetherian if every ideal is f.g.

• Thm: R Noetherian =⇒ R[x] Noetherian.

• k[x1, . . . , xN−1][xN ] ∼= k[x1, . . . , xN ], use induction.

1.3 Zariski topology

Definition 1.7 (topology). A topology on a set X is a collection of distinguished subsets,
called closed sets , satisfying:

(1) ∅ and X are closed.

(2) An arbitrary intersection of closed sets is closed.

(3) A finite union of closed sets is closed.

Example 1.8. (1) On R, the Euclidean topology.

(2) On R, cofinite: closed sets are finite sets, and R,∅.

Definition 1.9 (Zariski topology). The Zariski topology on kN is defined as the topology
whose closed sets are affine algebraic sets.

1.3.1 Proof that affine algebraic sets form closed sets on a topology on kN

(1) ∅ = V(1), kN = V(0).

(2) WTS: {Vλ} closed sets =⇒
⋂
λ∈Λ Vλ closed. Write Vλ = V(Iλ). Then⋂

λ∈Λ

Vλ =
⋂
λ∈Λ

V(Iλ) = V
(⋃
λ∈Λ

Iλ

)
= V

(∑
λ∈Λ

Iλ

)
.
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(3) WTS: Finite union of closed sets are closed. By induction, suffices to show V(f1, . . . , ft)∪
V(g1, . . . , gs) is an algebraic set.

Note:
V(f1, . . . , ft) ∪ V(g1, . . . , gs) = V

(
{figj} i∈{1,...,t}

j∈{1,...,s}

)
.

Proof on quiz.

Example 1.10. Zariski topology on k1 is the cofinite topology. Since k[x] is a PID,

V = V(〈f1, . . . , ft〉) = V(f) = {roots of f} ,

which is finite if f 6= 0.

2 Ideals, Nullstellensatz, and the coordinate ring
Today:

(1) ideal of V

(2) Hilbert’s Nullstellensatz

(3) Regular functions

(4) coordinate ring

2.1 Ideal of an affine algebraic set

Affine algebraic subset of kN :

V = V ((f1, . . . , ft)) ⊆ kN .

Consider the map

{ideals in k[x1, . . . , xN ]} →
{
(affine) algebraic subsets of kN

}
I 7→ V(I).

Note 2.1. • This map is order reversing: I ⊆ J =⇒ V(J) ⊆ V(I).

• Surjective.

• Not injective: e.g., (x, y), (x2, y2).

Remark 2.2 (algebra). R commutative ring, I ⊆ R any ideal.

Definition 2.3. The radical of I is the ideal

Rad I =
{
f ∈ R

∣∣ fN ∈ I for some N
}
.

• Sanity check: show this is an ideal.
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• I is radical if Rad I = I.

Lemma 2.4. Let I ⊆ k[x1, . . . , xN ]. Then

V(I) = V(Rad I).

Proof. I ⊆ Rad I =⇒ V(Rad I) ⊆ V(I).
So take p ∈ V(I) ⊆ kN . Need to show ∀f ∈ Rad I that f(p) = 0. We have f ∈ Rad I =⇒

fN ∈ Rad I, so (
f(p)

)N
= fN(p) = 0 =⇒ f(p) = 0.

Now is the map I 7→ V(I) injective?

Example 2.5. (x2 + y2) ∈ R[x, y].

V(x, y) = (0, 0) = V(x2 + y2) ⊆ R2.

We have 2 radical ideals defining the same algebraic set.

Definition 2.6. Let V ⊆ kN be an affine algebraic set. The ideal of V is

I(V ) =
{
f ∈ k[x1, . . . , xN ]

∣∣ f(p) = 0 ∀p ∈ V
}
.

Note 2.7. I(V ) is a radical ideal, and is the largest ideal defining V .

Proposition 2.8. V = V(I(V )).

Proof. Say V = V(I). Since I ⊆ I(V ), we have V(I(V )) ⊆ V(I) = V .
Take p ∈ V . Need to show ∀g ∈ I(V ) that g(p) = 0, which is true by definition of

I(V ).

This shows that I is a right inverse of V.
Example 2.9. Going back to our previous example, we should really view V (x2 + y2) in C2

rather than R2:

V
(
x2 + y2

)
= V

(
(x+ iy)(x− iy)

)
= V(x+ iy) ∪ V(x− iy).

2.2 Hilbert’s Nullstellensatz

Theorem 2.10 (Hilbert’s Nullstellensatz). Let k = k (i.e., assume k is algebraically closed).
There is an order-reversing bijection

{radical ideals in k[x1, . . . , xN ]} ←→
{
affine algebraic subsets of kN

}
I 7→ V(I)

I(V ) 7→V.

Remark 2.11. Points in affine space kN correspond to maximal ideals in the polynomial ring
k[x1, . . . , xN ].
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2.3 Irreducible spaces

Definition 2.12. A topological space X is irreducible if X is not the union of two nonempty
proper closed sets.

Example 2.13. The cofinite topology on R is irreducible.

2.4 Sept. 10 warmup

• Draw V(xy, xz) ⊆ R3.

• Prove Lemma: For I, J ⊆ k[x1, . . . , xN ],

V(I ∩ J) = V(I) ∪ V(J).

Proof 1. I ∩ J ⊆ I, J =⇒ V(I) ∪ V(J) ⊆ V(I ∩ J).
Take p ∈ V(I ∩ J). Need p ∈ V(I) or V(J). If p /∈ V(I), then ∃f ∈ I such that f(p) 6= 0.
Now: ∀g ∈ J , look at fg ∈ IJ . Because p ∈ V(I ∩ J),

f(p)g(p) = (fg)(p) = 0,

hence g(p) = 0 and p ∈ V(J).

Proof 2. V(I ∩ J) = V
(√

I ∩ J
)

= V
(√

IJ
)

= V(IJ) = V(I) ∪ V(J).

2.5 Some commutative algebra

R commutative ring.

• I, J radical =⇒ I ∩ J radical.

• p ⊆ R is prime ⇐⇒ R/p is a domain ⇐⇒ if fg ∈ p, then f ∈ p or g ∈ p.

• If R is Noetherian, I radical, then

I = p1 ∩ · · · ∩ pt

uniquely, where the pi are prime (irredundant).

2.6 Review of Hilbert’s Nullstellensatz

The mappings I and V are mutually inverse, giving us an order-reversing bijection{
affine algebraic subsets of kN

} I // {radical ideals of k[x1, . . . , xN ]} .
V
oo

kN ←→ 0

∅←→ (1) = k[x1, . . . , xN ]

{points} ←→ {maximal ideals}
(a1, . . . , aN)←→ (x1 − a1, . . . , xN − aN)

{irreducible algebraic sets} ←→ Spec k[x1, . . . , xN ] = {prime ideals}
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2.7 Irreducible algebraic sets

Definition 2.14. An algebraic set V ⊆ kN is irreducible if it cannot be written as the union
of two proper algebraic sets contained in V . [If V = V1 ∪ V2, then V = V1 or V = V2.]

Exercise 2.15. V(I) is irreducible ⇐⇒ I is prime, where I is radical.

Observation 2.16. I ⊆ k[x1, . . . , xN ] radical (k not necessarily algebraically closed), write
I = p1 ∩ · · · ∩ pt, where pi are prime (unique!).

V(I) = V(p1) ∪ · · · ∪ V(pt)

are the (unique) irreducible components of V(I).

The point is:

Proposition 2.17. Every algebraic set in kN is a union of its irreducible components.

2.8 Aside on non-radical ideals

We also have V(I) ∩ V(J) = V(I ∪ J). However, I ∪ J is not usually an ideal, and I + J is
not necessarily radical.

Non-radical ideals lead into scheme theory:

V(y − x2) ∩ V(y) = V(y − x2, y) = V(y, x2).

We should somehow keep track of the multiplicity.

3 Regular functions, regular maps, and categories

3.1 Regular functions

Fix V ⊆ kN algebraic set, k = k.

Definition 3.1. A function V → k is regular if it agrees with the restriction to V of some
polynomial function on the ambient kN .

Proposition–Definition 3.2. The set of all regular functions on V has a natural ring struc-
ture (where addition and multiplication are the functional notions). This is the coordinate
ring of V , denoted k[V ].

Example 3.3. On kN , k[kN ] = k[x1, . . . , xN ].

Remark 3.4. (1) k = k =⇒ k is infinite.

(2) If k is infinite, then there is no ambiguity in the word “polynomial”.

Example 3.5. Consider V(y − x2) ⊆ R2. This is the set of all points (t, t2). The function “y”
outputs the y-coordinate (projection to y-axis), and “x2” is the same function in V .

Example 3.6. Consider V(xy − 1) ⊆ Q2. Is 1
y
regular?

Yes: 1
y

= x on V(xy − 1).
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Observation 3.7. The restriction map gives a natural ring surjection

k[x1, . . . , xN ]→ k[V ]

ϕ 7→ ϕ
∣∣
V

whose kernel is I(V ). In particular,

k[V ] ∼=
k[x1, . . . , xN ]

I(V )
.

3.2 Properties of the coordinate ring

The coordinate ring k[V ] has the following properties:

(1) k[V ] is a f.g. k-algebra generated by the images of x1, . . . , xN .

(2) reduced (the only nilpotent element is 0)

(3) domain ⇐⇒ V is irreducible.

(4) The maximal ideals of k[V ] correspond to points of V (need k = k).

Note 3.8 (commutative algebra). Maximal ideals in k[V ] ∼= k[x1, . . . , xN ]/I(V ) correspond to
maximal ideals in k[x1, . . . , xN ] containing I(V ). By the Nullstellensatz, these correspond to
points on V .

3.3 Regular mappings

Definition 3.9. Let V ⊆ kn and W ⊆ km be affine algebraic sets. A regular mapping of
affine algebraic sets

ϕ : V → W

is any mapping ϕ which agrees with a polynomial map Ψ on the ambient kn → km:

x = (x1, . . . , xn)
Ψ7−→
(
Ψ1(x), . . . ,Ψm(x)

)
,

where Ψi are polynomials.

Note 3.10. If W = k, then a regular map is a regular function.

Note 3.11. We can describe a regular map V
ϕ−→ W ⊆ km by giving regular functions

ϕ1, . . . , ϕm ∈ k[V ]:
p 7→

(
ϕ1(p), . . . , ϕm(p)

)
∈ W ⊆ km.

Example 3.12.

k → V(y − x2) ⊆ k2

t 7→ (t, t2)

is a regular map from k to V(y − x2).

11



The projection

V(y − x2) ⊆ k2 → k

(x, y) 7→ x

is the inverse to the map t 7→ (t, t2).

Definition 3.13. An isomorphism of affine algebraic sets is a regular map V ϕ−→ W which
has a regular map W ψ−→ V inverse: ψ ◦ ϕ = idV and ϕ ◦ ψ = idW .

Example 3.14. Let V1, V2 ⊆ kn be linear subspaces (defined by some collection of linear
polynomials). Then V1

∼= V2 as algebraic sets ⇐⇒ dimV1 = dimV2.

Example 3.15 (diagonal map). Give kn × kn coordinates x1, . . . , xn, y1, . . . , yn.

kn
∆−→ kn × kn

p 7→ (p, p)

Image is the “diagonal”

D = V(x1 − y1, . . . , xn − yn) ⊆ kn × kn.

The map kn ∆−→ D ⊆ kn × kn is an isomorphism of affine algebraic sets.

Example 3.16. X, Y ⊆ kn algebraic sets. View X ⊆ kn with coordinates x1, . . . , xn and
Y ⊆ kn with coordinates y1, . . . , yn.

kn
∆ // kn × kn

X ∩ Y

⊆

∼=
p 7→(p,p)

// (X × Y ) ∩D

⊆

3.4 Category of affine algebraic sets

Key idea: The category of affine algebraic sets over k = k is “the same” (anti-equivalence,
duality) as the category of f.g. reduced k-algebras.

Point: Given a regular map V ϕ−→ W of affine algebraic sets, there is a naturally induced
k-algebraic homomorphism k[W ]

ϕ∗−−→ k[V ] given for g ∈ k[W ], W
g−→ k by

V
ϕ
//

g◦ϕ

77W
g
// k

x = (x1, . . . , xn) 7→
(
ϕ1(x), . . . , ϕm(x)

)
7→ g

(
ϕ1(x), . . . , ϕm(x)

)
∈ k[V ],

where ϕ1, . . . , ϕm are polynomials in x1, . . . , xn.

12



Theorem 3.17. For k = k, there is an anti-equivalence1 of categories{
affine algebraic sets over
k with regular maps

}
←→

{ f.g. reduced k-algebras
with k-algebra
homomorphisms

}
V 7→ k[V ]

(V
ϕ−→ W ) 7→

(
k[W ]

ϕ∗−−→ k[V ]

g 7→ g ◦ ϕ

)

kn ⊇ V(I) 7→R ∼=
k[x1, . . . , xn]

I
.

Proof.
Note 3.18. The assignment V 7→ k[V ] is functorial: Given

V
f
//

h

66W
g
// X,

there is f ∗, g∗, h∗ and a commutative diagram

k[V ] k[W ]
f∗
oo k[X],

h∗

jj

g∗
oo

i.e., (g ◦ f)∗ = f ∗ ◦ g∗. (Make sure this is obvious to you.)
Problem: Given a reduced, f.g. k-algebra R, how to cook up V ?
Fix a k-algebra presentation for R:

R =
k[x1, . . . , xn]

I
.

Because R is reduced, I is radical. Let

V = V(I) ⊆ kn.

By the Nullstellensatz, I(V(I)) = I, so

k[V ] ∼=
k[x1, . . . , xn]

I(V )
=
k[x1, . . . , xn]

I
= R.

What about homomorphisms of k-algebras?

R
ϕ

// S

k[y1, . . . , ym]/I
ϕ
// k[x1, . . . , xn]/J

Let ϕi = ϕ(yi) ∈ k[V ] for i = 1, . . . ,m. This uniquely defines ϕ.
1An anti-equivalence of categories C,D is an equivalence of C and the opposite category Dop.
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Need to construct

kn ⊇ V(J)
Ψ−→ V(I) ⊆ km

x = (x1, . . . , xn) 7→
(
ϕ1(x), . . . , ϕm(x)

)
.

We have that Ψ is a map V → km. Need to check that

(1) the image is in W ,

(2) Ψ∗ = ϕ.

To check (
ϕ1(x), . . . , ϕm(x)

)
∈ V(I) = W,

take any g ∈ I. For any x ∈ V ,

g
(
ϕ1(x), . . . , ϕm(x)

)
= ϕ(g)(x) = 0.

We have that ϕ is represented by a map

k[y1, . . . , ym]→ k[x1, . . . , xn]

yi 7→ ϕi, i = 1, . . . ,m.

Because ϕ induces a map of the quotient ring

k[y1, . . . , ym]

I

ϕ−→ k[x1, . . . , xn]

J
,

ϕ̃(g) ∈ J for any g ∈ I. In other words, ϕ̃(I) ⊆ J .
Finally, it’s easy to check that this functor is the inverse functor to V 7→ k[V ].

3.5 Sep. 14 quiz question

Consider k ϕ−→ V(y2 − x3) ⊆ k2 given by

t 7→
(
t2, t3

)
.

Is this a regular map? Bijective? Isomorphism? Describe explicitly the induced ϕ∗.
Inverse:

(x, y) 7→ y

x
if x 6= 0,

(0, 0) 7→ 0.

ϕ is an isomorphism ⇐⇒ ϕ∗ is an isomorphism.

ϕ∗ :
k[x, y]

(y2 − x3)
→ k[t]

x 7→ t2

y 7→ t3

is not an isomorphism of k-algebras.
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3.6 Convention on algebraic sets

From now on, affine algebraic sets V ⊆ kn = An will be considered as topological spaces with
the induced (subspace) Zariski topology.

The closed sets of V are W̃ ∩ V , where W̃ ⊆ kn (affine algebraic set contained in V ) is
closed in kn.

3.7 Hilbert’s Nullstellensatz and the Zariski topology

Assume k = k. Fix V ⊆ An affine algebraic set.

{closed sets in V } ←→ {radical ideals in k[V ]}
W 7→ I(W ) =

{
f ∈ k[V ]

∣∣ f(p) = 0 ∀p ∈ W
}

V ⊇
{
p ∈ V

∣∣ f(p) = 0 ∀f ∈ I
}

= V(I) 7→I

Proof. Follows immediately from the Nullstellensatz in An:

{affine algebraic sets in V } ←→ {radical ideals in k[x1, . . . , xn] containing I(V )}

←→
{
radical ideals in

k[x1, . . . , xn]

I(V )

}
= {radical ideals in k[V ]} .

4 Rational functions
[Caution: Despite the name, not functions !]

4.1 Function fields and rational functions

Fix affine algebraic set V . Assume V is irreducible, equivalently, k[V ] is a domain.

Definition 4.1. The function field of V is the fraction field of k[V ], denoted k(V ).

Example 4.2. Let V = An, k[V ] = k[x1, . . . , xn]. Then

k(V ) = k(x1, . . . , xn),

i.e., rational functions.

Definition 4.3. A rational function on V is an element ϕ ∈ k(V ). I.e., ϕ is an equivalence
class f/g, where f, g ∈ k[V ], g 6= 0. Here,

f

g
∼ f ′

g′
⇐⇒ fg′ = gf ′

as elements of k[V ].
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Example 4.4. In V(xy − z2) ⊆ A3, x/z is a rational function. Moreover, z/y is the same
rational function:

x

z
∼ z

y

because xy = z2 on V .

Example 4.5. k[V ] ⊆ k(V ) always, by the map f 7→ f/1.

4.2 Regular points

Definition 4.6. A rational function ϕ ∈ k(V ) is regular at p ∈ V if it admits a representation
ϕ = f/g where g(p) 6= 0.

Definition 4.7. The domain of definition of ϕ ∈ k(V ) is the locus of all points p ∈ V where
ϕ is regular.

Example 4.8. In V(xy − z2) ⊆ A3 again, (0, 1, 0) is in the domain of definition of x
z

= z
y
.

Remark 4.9. We can evaluate a rational function at any point of its domain of definition.

Proposition 4.10. The domain of definition of fixed ϕ ∈ k(V ) is a nonempty open subset
of V .

Proof. Fix ϕ ∈ k(V ). Write ϕ = f
g
, where g 6= 0, f, g ∈ k[V ].

Since g 6= 0 on V , ∃p ∈ V such that g(p) 6= 0. So p is in U = the domain of definition of
ϕ, so U 6= ∅.

Take any q ∈ U . So I can write ϕ = h1
h2
, where h2(q) 6= 0. Now U ′ := V − V(h2) ⊆ V is

an open subset of V , and q ∈ U ′ ⊆ U .

4.3 Sheaf of regular functions on V

Let V be an irreducible affine algebraic set. Assign to any open set U ⊆ V the ring OV (U)
of all rational functions on V regular at every p ∈ U .
Exercise 4.11. OV (U) is a k-algebra (because the constant functions are regular on every
open set) and a domain.

Whenever U1 ⊆ U2 is an inclusion of open sets, there is an induced ring-map

OV (U2)→ OV (U1)

ϕ 7→ ϕ
∣∣
U1 .

Note 4.12. If U = V , we have two definitions of “ring of regular functions on V ”.

k(V ) ⊇ OV (V ) ⊇ k[V ]

f

1
7→f

Theorem 4.13. For V irreducible affine algebraic set, k[V ] = OV (V ).
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Proof. Take ϕ ∈ OV (V ). For any p ∈ V , there is a representation ϕ = fp
gp

such that gp(p) 6= 0.
Consider the ideal a ⊆ k[V ] generated by the {gp}p∈V .

Note 4.14. V(a) ⊆ V is empty, so by the Nullstellensatz, 1 ∈ Rad(a) =⇒ 1 ∈ a.
So we can write

1 = r1g1 + · · ·+ rtgt

for some gi = gpi in k[V ] ⊆ k(V ), ri ∈ k[V ]. Hence

ϕ = r1ϕg1 + · · ·+ rtϕgt.

But ϕgi = fi, so

ϕ = r1f1 + · · ·+ rtft ∈ k[V ].

5 Projective space, the Grassmannian, and projective va-
rieties

5.1 Projective space

Fix k. Let V be a vector space over k.

Definition 5.1. The projective space of V , denoted P(V ), is the set of 1-dimensional sub-
spaces of V .

We denote Pnk = P(kn+1).

Example 5.2. P1
k = P(k2) = {1-dimensional subspaces of k2} = {lines through (0, 0) in k2}.

We can use stereographic projection onto a fixed reference line to view P1 = k ∪ {∞} as
a line with a point at infinity.

Specifically, P1
R is homeomorphic to a circle, and P1

C is the Riemann sphere.

Example 5.3. P2
k = P(k3) = k2 t P1

k.

5.2 Homogeneous coordinates

In Pnk , represent each point p = [a0 : a1 : · · · : an] by choosing a basis for it (i.e., choose any
non-zero point in the corresponding line through origin in kn+1). At least some ai 6= 0, and
[b0 : · · · : bn] represents the same point in Pn iff ∃k 6= 0 such that

(kb0, . . . , kbn) = (a0, . . . , an). (5.1)

Another way to think of Pnk is as (kn+1 \ {0})/∼, where two points in kn+1 are equivalent
iff (5.1) holds.

Note 5.4. If k = R, this gives PnR a natural (quotient) topology, and similarly if k = C.
Exercise 5.5. Pn is compact in that Euclidean topology.
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In these coordinates, we have an open cover

Pnk =
n⋃
j=0

Uj,

where Uj = {[x0 : · · · : xn] | xj 6= 0} ∼= kn are the standard charts .
Think of fixing one chart: U0 ⊂ Pnk . Consider U0 to be the “finite part”, and Pn\U0 = Pn−1

the “part at infinity”.
Exercise 5.6. (1) If k = R, then PnR is a smooth manifold.

(2) If k = C, then PnC is a complex manifold.

(3) For any k, the transition functions induced by the standard cover are regular functions.

5.3 More about projective space

Exercise 5.7. In kn ↪→ Pn, consider a line with “slope” (a1, a2, . . . , an), i.e., parametrize as
a1t

...
ant

+

b1
...
bn

 ∣∣∣∣ t ∈ k
 .

Show that there is a unique point in Pn “at infinity” on this line, with coordinates [0 : a1 :
· · · : an].
Example 5.8. In Rn ↪→ P2

R, consider two parallel lines, with one passing through the origin
and (a, b). These two parallel lines both approach the point [0 : a : b] in P2.
Example 5.9. Look at V(xy − 1) ⊆ R2 ⊆ P2. In P2, we can “add in” two points at ∞ on the
hyperbola, [0 : 1 : 0] and [0 : 0 : 1]. We get a closed connected curve!

5.4 Projective algebraic sets

Pn = one-dimensional subspaces in kn+1. We have homogeneous coordinates [x0 : · · · : xn].
Look at F ∈ k[x0, . . . , xn].

Caution 5.10. F is not a function on Pn unless it is constant!
However, if F is homogeneous, then it makes sense to ask whether or not F (p) = 0 for a

point p ∈ Pn.

Lemma 5.11. If F ∈ k[x0, . . . , xn] is homogeneous of degree d, then

F (tx0, . . . , txn) = tdF (x0, . . . , xn).

Proof. Write
F =

∑
|I|=d

aIx
i0
0 . . . x

in
n , aI ∈ k.

Check for each monomial.
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Definition 5.12 (projective algebraic set). A projective algebraic subset of Pnk is the common
zero set of a collection of homogeneous polynomials in k[x0, . . . , xn].

Example 5.13. V = V(x2 + y2 − z2) ⊆ P2 is a cone; it consists of a set of lines through the
origin.

In the chart Ux = {[1 : y : z]}, the equation for V ∩ Ux = V(1 + y2 − z2) ⊆ k2 is a
hyperbola. In the chart Uz, V ∩ Uz = V(x2 + y2 − 1) ⊆ k2 is a circle.

5.5 Projective algebraic sets, continued

Let {Fλ}λ∈Λ ⊆ k[x0, . . . , xn] be a collection of homogeneous polynomials.

Note 5.14. The affine algebraic set V = V
(
{Fλ}λ∈Λ

)
⊆ An+1 is cone-shaped, i.e., ∀p ∈ V ,

the line through p and the origin is in V .

Example 5.15 (Linear subspaces). Say W ⊆ kn+1 is a sub-vector space. Then

P(W ) = one-dimensional subspaces of W = P(kn+1) = Pn.

Note 5.16. P(W ) = V(L1, . . . , Lt) ⊆ Pn, where Li =
∑n

j=0 aijxj are a set of linear functionals
in V ∗ which define W .

Example 5.17 (Some special cases). W is one-dimensional =⇒ P(W ) is a point.
W is 2-dimensional =⇒ P(W ) is a line in Pn.
In general, if W is (d+ 1)-dimensional, then P(W ) is a d-hyperplane in Pn.
If W has codimension 1 in V , then V(L) = P(W ) ⊆ P(V ) = Pn is called a hyperplane in

Pn.
Fact 5.18. Every projective algebraic set in Pn is defined by finitely many homogeneous
equations.

Note 5.19. As in the affine case,

V
(
{Fλ}λ∈Λ

)
= V

(
〈Fλ〉λ∈Λ

)
= V(any set of (homogeneous) generators for 〈Fλ〉λ∈Λ)

= V
(
Rad 〈Fλ〉λ∈Λ

)
.

Definition 5.20 (homogeneous ideal). An ideal I ⊆ k[x0, . . . , xn] is homogeneous if it admits
a set of generators consisting of homogeneous polynomials.

Example 5.21. I = (x3 − y2, y2 − z, z) is homogeneous because I = (x3, y2, z).

Fact 5.22. The projective algebraic sets form the closed sets of a topology on Pn, the Zariski
topology .

5.6 The projective Nullstellensatz

Definition 5.23. The homogeneous ideal of a projective algebraic set V ⊆ Pn is the ideal
I(V ) ⊆ k[x0, . . . , xn] generated by all homogeneous polynomials which vanish at every point
of V .
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Note 5.24. Given a homogeneous ideal I ⊆ k[x0, . . . , xn], we can define both an affine alge-
braic set V(I) ⊆ kn+1 and a projective algebraic set V(I) ⊆ Pn. These have the same radical
ideal in k[x0, . . . , xn].

Fact 5.25. For any projective algebraic set V ⊆ Pn,

V(I(V )) = V.

Theorem 5.26 (Projective Nullstellensatz). Only when k = k:

{projective algebraic sets in Pn} ←→


radical homogeneous
ideals in k[x0, . . . , xn]
except for (x0, . . . , xn)

 .

We call (x0, . . . , xn) the irrelevant ideal .
In general, the Zariski topology in Pn restricts to the Zariski topology in each affine chart:

Pn ⊇ V = V
(
F1(x0, . . . , xn), . . . , Ft(x0, . . . , xn)

)
⊇ V ∩ Ui = V

(
F0(t0, . . . , 1, . . . , tn), . . . , Ft(t0, . . . , 1, . . . , tn)

)
,

where the coordinates are given by

Ui → kn

[x0 : · · · : xi : · · · : xn] 7→
(
x0

xi
, . . . , î, . . . ,

xn
xi

)
.

5.7 Projective closure

Definition 5.27. The projective closure of an affine algebraic set V ⊆ An is the closure of
V in Pn, under the standard chart embedding An = U0 ↪→ Pn.

Example 5.28. Consider V = V(xy − 1) ⊆ A2:

V = V(xy − 1) = V(xy − z2) ⊆ P2.

Look at V ∩ Uz = V .
Look at V ∩ {“line at infinity”}:

V ∩ V(z) = V(xy − z2, z) = V(xy, z) = {[1 : 0 : 0], [0 : 1 : 0]} ⊆ P2.

Definition 5.29. Given a polynomial f ∈ k[x1, . . . , xn], its homogenization is the polynomial
F ∈ k[X0, . . . , Xn] obtained as follows: If f has degree d, write

f =
∑

aIx
i1
1 . . . x

in
n = fd + fd−1 + fd−2 + · · ·+ f0,

where fi is the homogeneous component of degree i. Then

F = fd +X0fd−1 + · · ·+X2
0fd−2 + · · ·+Xd

0f0.
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Caution 5.30. Given V = V(f1, . . . , ft) ⊆ kn, the projective closure V in Pn is not necessarily
defined by the homogenization of the fi.

For example: {(
t, t2, t3

) ∣∣ t ∈ k} ⊆ k3 ↪→ P3(
t, t2, t3

)
7→ [1 : t : t2 : t3] =

[
1

t3
:

1

t2
:

1

t
: 1

]
,

so it has exactly one point at infinity, [0 : 0 : 0 : 1].
Consider I = (z − xy, y − x2).

Exercise 5.31. Show V(zw − xy, yw − x2) ⊆ P3 is not the projective closure of the twisted
cubic.

6 Mappings of projective space

6.1 Example: Second Veronese embedding

P1 ν2−−→ P2

[x : y] 7→
[
x2, xy, y2

]
Check: [x : y] and [tx : ty] for any t ∈ k have the same image:

[tx : ty] 7→
[
(tx)2 : (tx)(ty) : (ty)2

]
=
[
t2x2 : t2xy : t2y2

]
=
[
x2 : xy : y2

]
.

Also, if x 6= 0, then ν2([x : y]) ∈ U0, and if y 6= 0, then ν2([x : y]) ∈ U2.
This is called the “2nd Veronese embedding of P1 in P2.” In general, the d-th Veronese

map

νd : P1 → Pd

[x : y] 7→
[
xd : xd−1y : yxd−1 : yd

]
Look at ν2 in charts of P1 = Ux ∪ Uy:

A1 → Uy =
{

[x : y]
∣∣ y 6= 0

}
⊂ P1

t 7→ [t : 1]
x

y
→[x : y]

We have

Uy
ν2−−→ U2 = A2

[x : 1] 7→
[
x2 : x : 1

]
A1 → A2

t 7→
(
t2, t
)
.

This is a regular mapping of A1 → A2.
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6.2 Geometric definition

Thinking geometrically of P1 as covered by two copies of A1, this map ν2 is a regular mapping
on each chart.

This is the idea in general of a “regular mapping of varieties”.

6.3 Example: The twisted cubic

This is the third Veronese mapping:

ν3 : P1 → P3

[x : y] 7→
[
x3 : x2y : xy2 : y3

]
A1 = Ux → U0 = {[1 : x : y : z]} = A3

t =
y

x
7→
[
1 : t : t2 : t3

]
=
(
t, t2, t3

)
6.4 Example: A conic in P2

P2 ⊇ V = V(xz − y2)
ϕ−→ P1

[x : y : z] 7→

{
[x : y] if x 6= 0,

[y : z] if z 6= 0.

Note that if x = z = 0, then y = 0, so this case cannot occur.
What if x 6= 0 and z 6= 0? Then y 6= 0, so

[x : y] =
[
xy : y2

]
= [xy : xz] = [y : z].

So ϕ is a well-defined map of sets.
Cover V by open sets, each identified with an affine algebraic set: V ∩ Ux and V ∩ Uz.

A2 ⊇ V
(
z

x
−
(y
x

)2
)

= V ∩ Ux
ϕ−→ P1

[x : y : z] 7→ [x : y][
1 :

y

x
:
z

x

]
7→
[
1 :

y

x

]
[1 : t : s] 7→ [1 : t]

(t, s) 7→ t

So ϕ is projection onto the t-axis in Ux: regular in local charts. (Similar in every chart.)

6.5 Projection from a point in Pn onto a hyperplane

Fix any p ∈ Pn and any hyperplane H ⊆ Pn not containing p.

Example 6.1 (special case). Fix a point p ∈ P2 and a line L ⊆ P2 such that p /∈ L.
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Choosing coordinates, let H = V(x0) = Pn−1 ⊆ Pn and p = [1 : 0 : · · · : 0] /∈ H.

Definition 6.2. The projection from p to H is the map

Πp : Pn − {p} → Pn−1 = H ⊆ Pn

x 7→
←→
`p ∩H,

where
←→
`p is the unique line through p and x.

Question: How does this look in local charts on Pn?

Pn − {[1 : 0 : · · · : 0]} Πp−−→ Pn−1 = V(x0) ⊆ Pn

U0 3 [1 : λ1 : · · · : λn] 7→ [λ1 : · · · : λn]

We have

` =
{

[1 : tλ1 : · · · : tλn]
∣∣ t ∈ k} =

{[
1
t
, λ1 . . . λn

] ∣∣ t ∈ k} 3 [0, λ1, . . . , λn].

If we had a chart where p was at infinity, it would look like “projection”

An → An−1

(x1, . . . , xn) 7→ (x1, . . . , xn−1)

in the usual sense.

6.6 Homogenization of affine algebraic sets

Exercise 6.3. If V ⊆ An is an affine algebraic set with projective closure V ⊆ Pn, and
if I(V ) ⊆ k[x1, . . . , xn] is the ideal of V , then I(V ) ⊆ k[x0, . . . , xn] is generated by the
homogenizations of all the elements of I(V ).

Exercise 6.4 (purely topological). Let V ⊆ Pn be a projective algebraic set. Then V is
irreducible if and only if V ∩Ui is irreducible ∀i = 0, . . . , n, the “standard affine cover” of V .

7 Abstract and quasi-projective varieties

7.1 Basic definition and examples

Definition 7.1. A quasi-projective variety is any irreducible, locally closed (topological)
subspace of Pn.

I.e., W ⊆ Pn is a quasi-projective variety by definition if W = U ∩ V , where U ⊆ Pn is
open and V ⊆ Pn is an irreducible projective set.

Example 7.2 (Some quasi-projective varieties). (1) Irreducible affine algebraic sets are quasi-
projective varieties:

V = V ∩ U0 ⊆ An = U0 ⊆ Pn.
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(2) Irreducible projective algebraic sets.

(3) Open subsets of affine or projective varieties.

Example 7.3 (An abstract variety).

Mg = {moduli space of compact Riemann surfaces}
= {moduli space of smooth projective varieties/C of dimension 1}

This is an abstract algebraic variety.

Theorem 7.4 (Fields medal, Deligne and Mumford). Mg is quasi-projective.

Example 7.5 (Another moduli space). Lines in P2 = P(k3) can be viewed as P ((k3)∗).

7.2 Quasi-projective varieties are locally affine

Proposition 7.6. A quasi-projective variety W has a basis of open sets which are (homeo-
morphic to) affine algebraic sets.

Proof. First W = V ∩ U , where U ⊆ Pn is open and V ⊆ Pn is closed and irreducible. Then

W ∩ Ui = (V ∩ U ∩ Ui) = (V ∩ Ui) ∩ (U ∩ Ui) ⊆ Vi = V ∩ Ui ⊆ Ui = An,

and (V ∩ Ui) ∩ (U ∩ Ui) is an open subset in the affine variety Vi.
But an open subset of an affine variety has an open cover by affine charts:

V − V(g1, . . . , gr) = U ⊆ V ⊆ An

for gi ∈ k[V ], then

U =
r⋃
i=1

(
V − V(gi)

)
.

7.3 The sheaf of regular functions

Fix a quasi-projective variety W . What is OW ?

Definition 7.7. Let U ⊆ W be any open set. A regular function on U is a function ϕ : U → k
with the property that ∀p ∈ U , there exists an open affine set p ∈ U ′ ⊆ U such that ϕ|U ′ is
regular on U ′.

Equivalently, ϕ : U → k is regular ⇐⇒ ϕ|U∩Ui is regular on U ∩ Ui ∀i = 0, . . . , n.2

Example 7.8. X0, X1 in k[X0, X1, X2] are not functions on P2.
But the ratio X1

X0
is a well-defined function on P2 − V(X0) = U0.

2W = Ũ ∩ V =⇒ U ⊆W is ˜̃U ∩ Ũ ∩ V = U , and (
˜̃
U ∩ Ũ ∩ V ) ∩ Ui is open in V ∩ Ui, which is affine.
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Example 7.9. ϕ =
Xj
Xi

= tj (the “j-th coordinate function”) is a regular function on Pn \
V(Xi) = Ui ←→ kn in coordinates X0

Xi
, . . . , Xn

Xi
.

How does this look in Uκ? Uκ has coordinates X0

Xκ
, . . . , Xn

Xκ
, denoted t0, . . . , t̂κ, . . . , tn. Then

ϕ =
Xj

Xi

=
Xj/Xκ

Xi/Xκ

=
tj
ti

is a rational function of the coordinates, regular on Uκ \ V(ti) = Ui ∩ Uκ.
Remark 7.10. We get a sheaf OW of regular functions on the quasi-projective variety W . To
each U ⊆ W , assign OW (U) = ring of regular functions on U .

Example 7.11. OPn(Pn) = k. So if n ≥ 1, then Pn is not affine!

7.4 Main example of regular functions in projective space

Let F,G ∈ k[x0, . . . , xn] be homogeneous of the same degree. Then ϕ = F
G

is a well-defined
functions on Pn \ V(G):

F (tx0, . . . , txn)

G(tx0, . . . , txn)
=
tdF (x0, . . . , xn)

tdG(x0, . . . , xn)
=
F (x0, . . . , xn)

G(x0, . . . , xn)
.

Moreover, ϕ is regular on U := [Pn \ V(G)].
We now check this. It suffices to check that ϕ|U∩Ui (for i = 0, . . . , 1) is regular on

Ui ∩ U
open
⊆ Ui = An.

Lemma 7.12. If F ∈ k[X0, . . . , Xn] is homogeneous of degree d, then

F

Xd
i

= F

(
X0

Xi

,
X1

Xi

, . . . , 1,
Xi+1

Xi

, . . . ,
Xn

Xi

)
.

Proof. Comes down to checking for Xα0
0 . . . Xαn

n (with
∑
αi = d):

Xα0
0 . . . Xαn

n

Xd
i

=
n∏
j=0

(
Xj

Xi

)αj
.

Now we have

ϕ
∣∣
Ui =

F

G
=
F/xdi
G/xdi

=
F
(
x0
xi
, . . . , 1, . . . , xn

xi

)
G
(
x0
xi
, . . . , 1, . . . , xn

xi

) =
f(t0, . . . , t̂i, . . . , tn)

g(t0, . . . , t̂i, . . . , tn)

is a rational function on An = Ui, regular on [An \ V(g)] = Ui ∩ (Pn \ V(G)). So ϕ is regular
on U .
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7.5 Morphisms of quasi-projective varieties

Definition 7.13. A regular map (or morphism in the category) of quasi-projective varieties
X

ϕ−→ Y ⊆ Pn is a well-defined map of sets such that ∀x ∈ X, writing ϕ(x) ∈ Y ∩Ui ⊆ Ui = kn

for some i, there exists an open affine neighborhood U of x ∈ U ⊆ X such that ϕ(U) ⊆ Ui
and ϕ restricts to a map

U → Y ∩ Ui ⊆ Ui

z 7→
(
ϕ1(z), . . . , ϕn(z)

)
,

where ϕi ∈ OX(U).

Definition 7.14. An isomorphism of varieties is a regular map X ϕ−→ Y which has a regular
inverse Y ψ−→ X.

Example 7.15 (The d-th Veronese map). Let m =
(
n+d
n

)
− 1. Then the d-th Veronese map is

defined by

Pn νd−−→ Pm

[x0 : · · · : xn] 7→
[
xd0 : xd−1

0 x1 : · · · : xdn
]
,

where the coordinates are all degree d monomials in x0, . . . , xn.

Example 7.16 (Projection). p /∈ H = hyperplane in Pn:

Pn \ {p} → Pn−1 = H

[x0 : · · · : xn] 7→ [x1 : · · · : xn].

8 Classical constructions

8.1 Twisted cubic and generalization

Definition 8.1. The twisted d-ic in Pd is the image of P1 under the d-Veronese map

P1 νd−−→ Cd ⊆ Pd

[s : t] 7→
[
sd : sd−1t : · · · : std−1 : td

]
= [x0 : · · · : xd].

Fact 8.2. νd is an isomorphism P1 ∼= Cd. The inverse map is

Cd → P1

[x0 : · · · : xd] 7→

{
[x0 : x1] if x1 6= 0,

[xd−1 : xd] if x1 = 0.
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8.2 Hypersurfaces

Definition 8.3. A hypersurface in Pn of degree d is the zero set of one homogeneous poly-
nomial of degree d.

Let V = V(Fd) ⊆ Pn, with Fd irreducible. Pick p /∈ V .

Pn \ {p} Πp
// Pn−1

V

⊆

Πp
// // Pn−1

finite map, “generically” d-to-1.

Lemma 8.4. Every line in Pn must intersect V at ≤ d points. (“Generically” exactly d
points; strict inequality is possible due to multiplicity.)

Proof.

V(Fd) ∩ V(x2, . . . , xn) = V(Fd, x2, . . . , xn) = V(Fd) ⊆ L = V(x2, . . . , xn) ⊆ Pn

8.3 Segre embedding

Category of quasi-projective varieties:

Objects (irreducible) locally closed subspaces of Pn (all n) over fixed k = k.

Morphisms Map of sets Pn ⊇ X
ϕ−→ Y ⊆ Pm such that on sufficiently small open subsets

of Xi = X ∩ Ui ⊆ An, ϕ|U is a regular mapping into some chart of Pm.

Is there a notion of product in this category?
Recall: For X ⊆ Am, Y ⊆ An affine algebraic sets,

X × Y ⊆ Am × An = Am+n

is an affine algebraic set. But Pm × Pn 6= Pm+n, so we can’t do a similar thing for projective
algebraic sets.

Indeed, P2 \ A2 is one line at infinity, but(
P1 × P1

)
\ A2 =

{
∞× P1

}
∪
{
P1 ×∞

}
consists of two lines at infinity.

Goal 8.5. Put the structure of a quasi-projective variety (projective) on Pn × Pm.
Want:

(1) σ : Pn × Pm ↪→ Σ ⊆ P?, where Σ is a (closed) projective algebraic set, and σ is
compatible with the identification An × Am = Am+n σ−→ σ(Am+n) on each affine chart
Ui × Uj = An × Am.
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(2) There should be regular maps Σ
π1−−→ Pn, Σ

π2−−→ Pm.

(3) (Linear space)× p ⊆ Pn×Pm maps under σ to a linear space of the same dimension in
P?.

Example 8.6.

P1 × P1 σ11−−→ P3

([x : y], [z : w]) 7→ [xz : xw : yz : yw]

The image of σ11 is V(X0X3 −X1X2).
On Ux × Uz = A1 × A1 = A2:

A2 = A1 × A1 '−→ V(xy − z) ⊆ A3(
(1, t), (1, s)

)
7→ [1 : t : s : ts]

Also,

P1 × [a : b] 7→
{

[xa : xb : ya : yb]
∣∣ [x : y] ∈ P1

}
⊆ P3 ⊆ P(k4)

is a line in P3 corresponding to the 2-dimensional subspace

span {(a, b, 0, 0), (0, 0, a, b)} ⊂ k4.

This is the “definition” of P1 × P1 as a quasi-projective variety.

Definition 8.7. The Segre map is

Pn × Pm σnm−−−→ Σnm ⊆ P(n+1)(m+1)−1

(
[x0 : · · · : xn], [y0 : · · · : ym]

)
7→

x0
...
xn

 [y0 . . . ym
]

︸ ︷︷ ︸
(n+1)×(m+1) matrix

∈ P
(
Matk(n+ 1,m+ 1)

)
.

Remark 8.8 (Linear algebra review). TFAE for any matrix A of size d× e:

(1) The rows are all multiples of each other by a scalar.

(2) The columns are all multiples of each other by a scalar.

(3) A factors as (d× 1)× (1× e).

(4) The rank of A is ≤ 1.

(5) All 2× 2 subdeterminants of A are zero.
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Writing the matrix coordinates as

z00 . . . z0m
...

...
zn0 . . . znm

,

Σnm = V

determinant of 2× 2 minors of

z00 . . . z0m
...

...
zn0 . . . znm


 .

The projections Σ
π1−−→ Pn, Σ

π2−−→ Pm are given by

p =
[
zij
] π17−→ any column of p,

and likewise, π2 takes any row. (This is well-defined because the matrix has rank 1.)

8.4 Products of quasi-projective varieties

Definition 8.9. If X ⊆ Pn and Y ⊆ Pm are quasi-projective varieties, then we define a
quasi-projective variety structure on the set X × Y by identifying X × Y with its image
under the appropriate Segre map σnm:

σnm(X × Y ) ⊆ Σnm ⊆ P(n+1)(m+1)−1

This gives X × Y a Zariski topology!

How do the closed sets look?

Definition 8.10. A polynomial F ∈ k[x0, . . . , xn, y0, . . . , ym] is bihomogeneous if F is homo-
geneous separately in x0, . . . , xn (treating the yi as scalars) and y0, . . . , ym (treating the xi as
scalars).

Example 8.11. The polynomial x5
0y1y2 − x0x1x

3
2y

2
3 is bihomogeneous of degree (5, 2).

However, x7
0 − y7

0 is not bihomogeneous.

Note 8.12. If F ∈ k[x0, . . . , xn, y0, . . . , ym] is bihomogeneous, then V(F ) ⊆ Pn × Pm is well-
defined.

Exercise 8.13. The closed sets of Pn × Pm are precisely the sets defined as the common zero
set of a collection of bihomogeneous polynomials in k[x0, . . . , xn, y0, . . . , ym].

Example 8.14. The Zariski topology on Pn × Am with coordinates k[x0, . . . , xn, y1, . . . , ym]
has closed sets exactly of the form

V
(
{Fλ(x0, . . . , xn, y1, . . . , ym)}λ∈Λ

)
,

where Fλ is homogeneous in x0, . . . , xn.
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8.5 Conics

Definition 8.15. A conic in P2 is a hypersurface (curve) given by a single degree 2 homo-
geneous polynomial.

Three kinds:

Nondegenerate V(F ) ⊆ P2 such that F does not factor into 2 linear factors. (Showed in
homework: changing coordinates, these are all the same.)

Degenerate, two lines F = L1L2, where λL1 6= L2. Then V(F ) = V(L1) ∪ V(L2).
Think of this as the limit as t→ 0 of a family of nondegenerate conics

{V(xy − t)}t∈k ⊆ A2.

Degenerate, double line F = L2
1. Then V(F ) = V(L2

1).
Think of this as the limit as t→ 0 of a family of degenerate conics

V(y(y − tx)) = V(y) ∪ V(y − tx) ⊆ A2.

This line V(y2) is one line “counted twice”. This is a scheme, but not a variety.

Every conic is uniquely described by its equation F ∈ [k[x, y, z]]2.
3

Let C ⊆ P(k3) be a conic. We have a correspondence

C = V
(
Ax2 +Bxy + Cy2 +Dxz + Eyz + Fz2

)
←→ [A : B : C : D : E : F ]{

conics in P(k3)
}
←→ P

(
Sym2

(
(k3)∗

))
= P5.

Moreover, we have proper inclusions of closed subvarieties

D2 = {double lines} $ D1 = {pairs of lines} $
{
all conics in P(k3)

}
= P

(
Sym2

(
(k3)∗

))
.

As we will show on the homework, D2
∼= image of P2 under the Veronese map ν2 : P2 → P5.

This is the beginning of the study of moduli spaces.

8.6 Conics through a point

Fix p ∈ P2. Consider the set

Cp =
{
C ⊆ P2 conic in P2 passing through p

}
$ P

(
Sym2

(
(k3)∗

))
= P5.

This is a hyperplane. Indeed, write p = [u : v : t]. A conic

C = V(Ax2 +Bxy + · · ·+ Fz2︸ ︷︷ ︸
G

)

passing through p ⇐⇒ G(p) = 0 ⇐⇒ Au2 +Buv+Cv2 +Dut+Evt+Ft2 = 0, which is a
linear equation L in the homogeneous coordinates A,B,C,D,E, F for P5 = P

(
Sym2 ((k3)∗)

)
.

Thus,
Cp = V(L) ⊆ P5.

3[k[x, y, z]]2 = Sym2
(
(k3)∗

)
denotes the vector space of degree 2 homogeneous polynomials, i.e., the 2nd

component of the graded ring k[x, y, z].
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Theorem 8.16 (“5 points determine a conic”). Given p1, p2, p3, p4, p5 ∈ P2 distinct points,
there is a conic through all 5 points, unique if the points are in general position.

If no three points are on the same line, then there is a unique nondegenerate conic through
them.

9 Parameter spaces

9.1 Example: Hypersurfaces of fixed degree

Recall:{
conics in P2

}
←→ {their homogeneous equations up to scalar multiple}
←→ P

(
Sym2

(
(k3)∗

))
= {deg 2 homogeneous polynomials in 3 variables} /scalars

= [k[x, y, z]]2 /scalars = Sym2
(
(k3)∗

)
/scalars

Similarly:

{hypersurface of degree d in Pn} oo // {their equations up to scalar multiple}

V(Axd0 +Bxd−1
0 x1 + · · ·+︸ ︷︷ ︸

“homog. degree d in x0,...,xn”

) P
(
Symd ((kn+1)∗)

)
= P(n+dn )−1

Note that these are not really varieties, since we remember the homogeneous equation.

9.2 Philosophy of parameter spaces

Philosophy: the set of hypersurfaces of degree d “is” in a natural way a variety. The subsets
(“algebraically natural” subsets) are subvarieties.

The “good” properties will hold on open subsets of P(n+dn )−1 (hopefully non-empty), and
“bad” properties will hold on closed subsets of P(n+dn )−1 (hopefully proper).

9.3 Conics that factor

Look in P
(
Sym2 ((k3)∗)

)
= set of conics in P2. Does “V(G)” ←→ [A : B : C : D : E : F ]

factor or not?
G = Ax2 +Bxy + Cy2 +Dxz + Eyz + Fz2

factors ⇐⇒

det

 A 1
2
B 1

2
D

1
2
B C 1

2
E

1
2
D 1

2
E F

 = 0.

31



The subset where the conic degenerates into 2 lines is

V

det

 A 1
2
B 1

2
D

1
2
B C 1

2
E

1
2
D 1

2
E F

 .

Now we have

{hypersurface of degree d in Pn} oo // {their equations up to scalar multiple}

P
(
Symd ((kn+1)∗)

)
= P(n+dn )−1

{hypersurfaces whose equations factor}

⊆

oo // X

⊆ closed

where G = GiGd−i factors and

X =

d−1
2⋃
i=1

Xi,

with Xi = the subset of hypersurfaces of degree d where equation factors as (deg i)(deg d− i).

Theorem 9.1. The set of degree d hypersurfaces in Pn = P(V ) which are not irreducible
(meaning: whose equations factor non-trivially) is a proper closed subset of P

(
Symd(V ∗)

)
.

Proof. It suffices to show each Xi = {G = GiGd−i} is closed and proper. Consider

P
(
Symi(V ∗)

)
× P

(
Symd−i(V ∗)

) ϕ−→ P
(
Symd(V ∗)

)
(G,H) 7→ GH,

where G,H are homogeneous of degrees i, d− i, respectively, in x0, . . . , xn.
Easy to check: ϕ is regular and image is Xi. Need to check closed (proper).

This follows from the following big theorem:

Theorem 9.2. If V is projective and V ϕ−→ Y is any regular map of quasi-projective vari-
eties, then ϕ sends closed sets of V to closed sets of Y .

Caution 9.3. Really need the hypothesis that the source variety is projective. E.g.:

Uf = An − V(f)
i
↪→ An

regular map, image is open. Also, the hyperbola:

A2 π−→ A1

(x, y) 7→ x

π(V(xy − 1)) = A1 − {0} ,

which is not closed.
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10 Regular maps of projective varieties

10.1 Big theorem on closed maps

Theorem 10.1. If V is projective and V ϕ−→ X is a regular map to X (any quasi-projective
variety), then ϕ is closed (i.e., if W ⊆ V is a closed subset of V , then ϕ(W ) is closed).

Note 10.2. To prove the theorem, it suffices to show that ϕ(V ) is closed.
[If W ⊆ V is closed (irreducible), then W is also projective. So ϕ|W : W → X has the

property that ϕ|W (W ) is closed, thus ϕ(W ) = ϕ|W (W ) is closed.]

Corollary 10.3. If V is projective, then OV (V ) = k.

Proof. Let V ϕ−→ k ⊆ P1 be a regular function. We can interpret ϕ : V → P1 as a regular
map. So the image is closed in P1 by Theorem 10.1.

Thus ϕ(V ) is either a finite set of points (or ∅) or ϕ(V ) = P1. Since ϕ is an actual map
into k $ P1, ϕ(V ) must be a finite set of points. But V is irreducible, so ϕ(V ) is a single
point.

10.2 Preliminary: Graphs

Fix any regular map of quasi-projective varieties X ϕ−→ Y .

Definition 10.4. The graph Γϕ of ϕ : X → Y is the set{
(x, y)

∣∣ ϕ(x) = y
}
⊆ X × Y.

Proposition 10.5. Γϕ is always closed in X × Y .

Proof. Step 1: Without loss of generality, Y = Pm, since X ϕ−→ Y ⊆ Pm, and we interpret ϕ
as a regular map X → Pm. We have

Γϕ ⊆ X × Y ⊆ X × Pm,

and to show Γϕ is closed in X × Y , it suffices to show Γϕ ⊆ X × Pm is closed.

Step 2: Consider the regular map

ψ : X × Pm (ϕ,id)−−−−→ Pm × Pm

(x, y) 7→ (ϕ(x), y) .

Note 10.6. Γϕ = ψ−1(∆), where ∆ = {(z, z) | z ∈ Pm} is the diagonal subset of
Pm × Pm, which is closed.

Because ∆ is closed, so is Γϕ.
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10.3 Proof of Theorem 10.1

Fix V ϕ−→ X regular map, V projective. Need to show ϕ(V ) is closed.
Let Γϕ ⊆ V ×X be the graph. Consider the projection

Γϕ ⊆ V ×X π−→ X ⊇ π(Γϕ) = ϕ(V ),

which is a regular map. It suffices to prove that π(Γϕ) is closed.

Theorem 10.7. If V is projective and X is quasi-projective, then the projection V ×X π−→ X
is closed.

Proof of Theorem 10.7. First, using point-set topology arguments, reduces as follows:

(1) WLOG, V = Pn.

(2) WLOG, X is affine.

(3) WLOG, X = Am.

Now:
Pn × Am ϕ−→ Am.

Put coordinates x0, . . . , xn on Pn and y1, . . . , ym on An.
Want to show: Given closed Z ⊆ Pn × Am, that ϕ(Z) is closed in Am. Write

Z = V
(
g1(x0, . . . , xn, y1, . . . , ym), . . . , gt(x0, . . . , xn, y1, . . . , ym)

)
,

where gi are homogeneous in x0, . . . , xn (but not in the yi). What is the image of Z?
Note 10.8. (λ1, . . . , λm) ∈ Am is in π(Z) iff

∅ 6= V
(
g1(x0, . . . , xn, λ1, . . . , λm), . . . , gt(x0, . . . , xn, λ1, . . . , λm)

)
⊆ Pn

iff (by the projective Nullstellensatz)

Rad
(
g1(x, λ), . . . , gt(x, λ)

)
+ (x0, . . . , xn)

iff (
g1(x, λ), . . . , gt(x, λ)

)
+ (x0, . . . , xn)T ∀T.

So we need to show: The set LT of all λ = (λ1, . . . , λm) ∈ Am such that

(x0, . . . , xn)T *
(
g1(x, λ), . . . , gt(x, λ)

)
is closed. The image of π(Z) ⊆ Am is

∞⋂
T=1

LT ,

so it suffices to show that each LT ⊆ Am is closed.
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Aside 10.9 (Converse). Let’s consider the converse:

(x0, . . . , xn)T ⊆
(
g1(x, λ), . . . , gt(x, λ)

)
in k[x0, . . . , xn]

Look in degree T part of k[x0, . . . , xn]:

[k[x0, . . . , xn]]T ⊆ [(g1, . . . , gn)]T

Basis here is
{
xi00 · · ·xinn

}∑
ik=T

.
Spanning set for the σ-dimensional [(g1, . . . , gn)] = subvector space of degree T elements

in (g1(x, λ), . . . , gt(x, λ)):

{gJ} =
{
gi(x, λ) · xj00 · · ·xjnn

∣∣ deg(gi) = di,
∑

j` = T − di, i = 1, . . . , t
}
.

Write a matrix with the coefficient xI in gJ in the (IJ)-th spot. The coefficients are polyno-
mials in λ1, . . . , λm. This is a basis iff the matrix is nondegenerate.

11 Function fields, dimension, and finite extensions

11.1 Commutative algebra: transcendence degree and Krull dimen-
sion

Fix k ↪→ L extension of fields.

• The transcendence degree of L/k is the maximum number of algebraically independent
elements of L/k.

• Every maximal set of algebraically independent elements of L/k has the same cardi-
nality.

• If {x1, . . . , xd} are a maximal set of algebraically independent elements, we call them a
transcendence basis for L/k.

• If R is a finitely generated domain over k, with fraction field L, then the transcendence
degree of L/k is equal to the Krull dimension of R.

11.2 Function field

Fix V affine variety.

Definition 11.1 (function field of an affine variety). The function field of V , denoted k(V ),
is the fraction field of k[V ].
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Say V − V(g) = Ug = U
open
⊂ V for some g ∈ k[V ]. Then

OV (V ) �
� rest. // OV (U) �

� rest. // OV (Ug)

k[V ] �
�

// k[V ]
[

1
g

]
Note 11.2. Function fields of Ug and V are the same field.

Fix V ⊆ Pn projective variety.

Definition 11.3 (function field of a projective variety). The function field of V , denoted
k(V ), the function field of any V ∩ Ui (standard affine chart) such that V ∩ Ui 6= ∅.

Question: Why is this independent of the choice of Ui?
Vi = V ∩ Ui = {[x0 : · · · : xn] | xi 6= 0} is an affine variety in Ui = An. Then k[Vi] is

generated by (the restrictions of) the actual functions on Ui

x0

xi
,
x1

xi
, . . . ,

xn
xi
,

and likewise for k[Vj]. If xi
xj

= 0 on Ui∩Uj ∩V , then xi vanishes on Ui∩Uj ∩V , which implies
that xi vanishes on V and hence V ∩ Ui is empty. So we can write

xk
xi

=
xk/xj
xi/xj

,

thus k[Vi] ⊆ k(Vj), hence k(Vi) ⊆ k(Vj). By symmetry, k(Vj) = k(Vi).

Definition 11.4 (function field of a quasi-projective variety). The function field of a quasi-
projective variety V is k(V ), where V is the closure of V ⊆ Pm.

Equivalently, it is the function field of any V ∩ Ui (such that V ∩ Ui 6= ∅) or indeed of
any open affine subset of V .

11.3 Dimension of a variety

Definition 11.5. The dimension of a (quasi-projective) variety V/k is the transcendence
degree of k(V ) over k.

By convention, the dimension of an algebraic set is the maximal dimension of any of its
(finitely many) components.

Example 11.6. • dimAn = n

• dimPn = n

• dim(X × Y ) = dimX + dimY

• All components of a hypersurface V(F ) ⊆ Pn have dimension n− 1.
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Definition 11.7. A regular map X ϕ−→ Y is finite if (in the affine case) the corresponding
map of coordinate rings is an integral extension, or (in general) if the preimage of an affine
cover of Y is affine and ϕ is finite on each affine chart.

Theorem 11.8. If X ϕ−→ Y is a regular map, finite, then dimX = dimY .

Proof. Reduce to the affine case: X
ϕ−→ Y finite ⇐⇒ k[Y ]

ϕ∗−−→ k[X] is an integral
extension.

11.4 Noether normalization

Take some p /∈ V . Then

Pn
πp
// Pn−1

πp2 // Pn−2 // . . . // Pd

V

finite map

66

⊆

// // V1

⊆

// // V2

⊆
// // . . . // // Pd

Theorem 11.9. If V ⊆ Pn is a projective variety, dim d, then there exists a projection
V � Pd (finite).

Intersect with U0 = An:

V ∩ An � V1 ∩ An � . . .� Vn−d ∩ An = Ad.

This induces the pullback

k[x1, . . . , xn]

I(V )
k[y1, . . . , yd],? _finite int.oo

where the yi are linear in the xi.

Theorem 11.10 (Noether normalization). Given a domain R, finitely generated over k (k
infinite), there exists a transcendence basis y1, . . . , yd consisting of linear combinations of the
generators for R.

11.5 Dimension example

Recall: dimV = transcendence degree of k(V ) over k.
The dimension of a point is 0, since k({p}) = k.
The dimension of the variety V(xy− zw) ⊆ A2×2 of 2× 2 matrices over k of determinant

0:
k[V ] =

k[x, y, z, w]

(xy − zw)

Observe that x, y, z is not a transcendence basis, because w is not integral over k[x, y, z];
indeed, it’s not a finite map, because the preimage of the zero matrix under the projections
w 7→ 0 is infinite.
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Claim 11.11. Let t = x − y. Then k[z, w, t]
i
↪→ k[x, y, w, z]/(xy − zw), and z, w, t is a

transcendence basis for k(V ) over k.

Need: z, w, t are algebraically independent. [Means: If z, w, t satisfy some polynomial p
with coefficients in k, then p = 0.]

Need: Check i is integral: Suffices to check x is integral over k[z, w, t].
Note: x2 − tx− zw = 0 in k[x, y, z, w]/(xy − zw).

11.6 Facts about dimension

Fix V irreducible quasi-projective variety.

Fact 11.12. If U ⊆ V is open and nonempty, then dimU = dimV .

Fact 11.13. If Y $ V is a proper closed subset, then dimY < dimV .

Fact 11.14. Every component of a hypersurface V(F ) in An (or Pn) has dimension n − 1
(codimension 1).

Sketch of Fact 11.14. Pick p /∈ V(F ) ⊆ An, with F irreducible. Choose coordinates such
that p = (0, . . . , 0, 1). So

f = xdn + a1x
d−1
n + · · ·+ ad,

where ai ∈ k[x1, . . . , xn−1]. Easy to see: x1, . . . , xn−1 are a transcendence basis over k for

k(x1, . . . , xn)

(f)
.

Fact 11.15. Every codimension 1 subvariety of An (or Pn) is a hypersurface.

Proof. Let X $ An have codimension 1. Let I(X) $ k[x1, . . . , xn], which is prime by irre-
ducibility. We need to show I(X) is principal.

Take any F ∈ I(X). Without loss of generality, F is irreducible. Then (F ) ⊆ I(x), and if
we have equality, then we are done. Otherwise,

V(F ) % V(I(X)) = X,

and since dimV(F ) = n− 1, we have dimV(I(x)) < n− 1.

Fact 11.16. If X → Y is finite, then dimX = dimY .

Fact 11.17. If V ⊆ Pn is projective, then V has dim d ⇐⇒ V
π−→ Pd is a finite map to Pd.

Fact 11.18. If we have a projection Pn π−→ Pm from a linear space V(L0, . . . , Lm), then

[x0 : · · · : xn] 7→ [L0 : · · · : Lm]

gives a finite map when restricted to any projective variety V ⊆ Pn, whose disjoint union
forms a linear space V(L0, . . . , Lm).
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11.7 Dimension of hyperplane sections

Definition 11.19. A hyperplane section of X is X∩H, where H = V(a0x0+· · ·+anxn) ⊆ Pn
is a hyperplane.

Theorem 11.20. dim(X ∩ H) = dimX − 1, unless (of course) X ⊆ H (in which case
X ∩H = X).

Proof

First: For any closed set X = X1 ∪ · · · ∪Xt (irreducible components of X) in Pn, I can find
a hyperplane H such that dim(X ∩H) < dimX, or more specifically,

X ∩H = (X1 ∩H) ∪ · · · ∪ (Xt ∩H),

and each Xi ∩H $ Xi.

Claim 11.21. Most hyperplanes H have this property!

Lemma 11.22. Fix any finite set of points p1, . . . , pt in Pn. Then there exists a hyperplane
H which does not contain any pi.

Proof of 11.22.

{hyperplanes on Pn = P(V )} oo // P(V ∗)

{hyperplanes through pi}

⊆

oo // Hpi

$

V(Li)

So
{hyperplanes not containing p1, . . . , pt} = P(V ∗) \ {V(L1) ∪ · · · ∪ V(Lt)} .

Back to Theorem 11.20, we have

Pn ⊇ V(L1) = H1 ⊇ V(L1, L2) = H1 ∩H2 ⊇ . . . ⊇ V(L1, . . . , Ld)

X

$

% X ∩H1

$

% X ∩H1 ∩H2

$

% . . . % X ∩H1 ∩ · · · ∩Hd

$

X0 X1 X2 . . . ∅

d = dimX0 > dimX1 > dimX2 > . . . > 0

Want to show the dimension drops by 1 each time. If not, after d steps, get ∅.
So the linear space P(W ) = V(L1, . . . , Ld) ∩X = ∅. Project from P(W ):

Pn π−→ Pd−1

[x0 : · · · : xn] 7→ [L1(x) : · · · : Ld(x)]

X
π−→

finite!
X ′

=⇒ dimX = dimX ′ ≤ (d− 1), a contradiction. Hence dimX = d.
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11.8 Equivalent formulations of dimension

V ⊆ Pn projective variety.
The dimension of V is any one of the following, which are equivalent:

(1) transcendence degree of k(V ) over k.

(2) the unique d such that ∃ finite map V � Pd.

(3) the unique d such that V ∩ H1 ∩ H2 ∩ · · · ∩ Hd is a finite set of points, where the Hi

are generic linear subvarieties of codimension d.

(4) the length of the longest chain of proper irreducible closed subsets of V :

V = Vd % Vd−1 % Vd−2 % · · · % V1 % V0 = {point} .

12 Families of varieties

12.1 Family of varieties (schemes)

(Not necessarily irreducible.)

Definition 12.1. A family is a surjective morphism (regular map) X f−→ Y of variety.
The base (or parameter space) of the family is Y . Themembers are the fibers {f−1(y)}y∈Y .

Example 12.2. X = V(xy − z) ⊆ A3,

V(xy − z)
F−→ A1

(x, y, z) 7→ z.

Then
f−1(λ) = V(xy − λ) ⊆ A2 × {λ} .

Example 12.3. Hyperplanes in Pn ←→ P ((kn+1)∗) by the correspondence

H = V(A0X0 + · · ·+ AnXn)←→ {A0X0 + A1X1 + · · ·+ AnXn} /scalar values.

12.2 Incidence correspondences

Consider the “incidence correspondence”

X =
{

(p,H)
∣∣ p ∈ H} ⊆ Pn × Pn = P(V )× P(V ∗).

Putting coordinates [X0, . . . , Xn] on P(V ) and [A0, . . . , An] on P(V ∗), we have

X = V(A0X0 + · · ·+ AnXn) π // // (Pn)∗

π−1([A0 : · · · : An]) = V(A0X0 + · · ·+ AnXn) 7→ [A0, . . . , An]
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Theorem 12.4. Let X
f
� Y be a surjective regular map of varieties, dimX = n, dimY = m.

Then:

(1) n ≥ m.

(2) dimF ≥ n−m, where F is any component of any fiber f−1(y) ⊆ X (with y ∈ Y ).

(3) There is a dense open set U ⊆ Y such that ∀y ∈ U , f−1(y) has dimension n−m.

Corollary 12.5. Let X f−→ Y be a surjective regular map of projective algebraic sets.
Assume Y is irreducible and all fibers are irreducible of the same dimension. Then X is also
irreducible!

Example 12.6 (Blowup). B = {(p, `) | p ∈ `} ⊆ A2 × P1.

B =
{

(p, `)
∣∣ p ∈ `} π−→ P1

A2 × ` ⊇ V(ax− by) = π−1(`) 7→ ` = [a : b].

Note that each of the fibers is 1-dimensional.
Now: B is dimension 2, and

B
π−→ A2

(q, [a : b]) 7→ q = (a, b) ∈ A2 − {(0, 0)}

is a “generic” fiber and has dimension 0 = 2 − 2. But the fiber over (0, 0) is P1, which has
dimension 1. The dimension jumps!

12.3 Lines contained in a hypersurface

Q: Fix an (irreducible) hypersurface of degree d in P3. Does it have any lines on it?
A: For d = 1: X = V(L) ∼= P2 ⊆ P3 is covered by lines.
For d = 2: X = V(xy − wz) ∼= P1 × P1 ⊆ P3 is covered by lines. Degenerate cone:

X = V(x2 + y2 + z2) ⊆ P3 is also covered by lines, as is V(xy), the union of two planes.
Consider the incidence correspondence

X =
{

(V(F ), `)
∣∣ ` ⊆ V(F )

}
⊆ P

(
Symd(k4)∗

)
×Gr(2, 4),

where P
(
Symd(k4)∗

)
= parameter space of hypersurfaces of degree d in P3, and Gr(2, 4) =

lines in P3 = 2-dimensional subspaces of k4.
Take the projections

X
π−→ P

(
Symd(k4)∗

)
,

X
ν−→ Gr(2, 4).

Consider ν: Compute the fiber over `. Without loss of generality, ` = V(X0, X1) ⊆ P3. Then
ν−1(`) = V(Fd) such that

V(X0, X1) ⊆ V(Fd) ⇐⇒ (X0, X1) ⊇ (Fd) = X0Gd−1 +X1Hd−1.
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The equation Fd has coefficients 0 on the terms Xd
2 , X

d−1
2 X3, . . . , X

d
3 . So

ν−1(`) ⊆ P
(
Symd(k4)∗

)
is a linear subspace of codimension d+ 1. The dimension of the fiber is(

d+ 3

3

)
− 1− (d+ 1).

Hence, the fibers are all irreducible of the same dimension.
Thus, by Corollary 12.5, X is irreducible of dimension 4 + (fiber dimension).

12.4 Dimension of fibers

Theorem (12.4). Given a surjective regular map X ϕ−→ Y of varieties, we have

(1) dimX ≥ dimY

(2) dimF ≥ dimX − dimY for F any component of any fiber ϕ−1(y)

(3) There is a nonempty open subset U ⊆ Y where dimF = dimX − dimY .

We studied the incidence correspondence

X =
{

(X, `)
∣∣ ` ⊆ X

}
⊆ P

(
Symd(k4)∗

)
×Gr(2, 4)

and its projections

X
π1−−→ P

(
Symd(k4)∗

)
,

X
π2−−→ Gr(2, 4).

We saw that π2 is surjective.
The fiber of ` ∈ Gr(2, 4) is

π−1
2 (`) =

{
(X, `)

∣∣ X ⊇ `
}

= {surfaces of degree 2 containing `} × `

and is ∼= a linear space in P(Symd) of dimension M − (d+ 1), where

M =

(
d+ 3

3

)
− 1 = dim

[
P
(
Symd(k4)∗

)]
.

Study the other projection:

X
π1−−→ P

(
Symd(k4)∗

)
=
{
degree d hypersurfaces in P3

} ∼= PM .

The fiber of X ∈ P
(
Symd(k4)∗

)
is

π−1
1 (X) =

{
(X, `)

∣∣ ` ⊆ X
}

= X × {lines on X} .

So X ∈ π1(X ) ⇐⇒ X contains some line.
Consequence: If d ≥ 4, then π1 can’t be surjective. “Most” surfaces of degree ≥ 4 contain

no line: “The generic surface of degree d ≥ 4 contains no line.”

42



12.5 Cubic surfaces

What about d = 3?
X

π1−−→ P
(
Sym3(k4)∗

)
= P19,

and dim X = 19. Two possibilities:

(1) π1 is surjective ⇐⇒ generic fiber is dim 0. “The generic cubic contains finitely many
lines.”

(2) π1 is not surjective ⇐⇒ there are cubic surfaces that don’t contain lines, and the
fibers are dim ≥ 1.

In fact, the former is what actually occurs; π1 is surjective.
It suffices to find one cubic surface that contains finitely many lines:

X = V(X1X2X3 −X3
0 ) ⊆ P3

Exercise 12.7. X contains exactly 3 lines, V(X0, Xi) for i = 1, 2, 3.
The non-generic fibers have dim ≥ 1, so these cubics contain infinitely many lines.
It turns out that the subset of cubic surfaces containing only finitely many lines

U ⊆ P19 = P
(
Sym3(k4)∗

)
consists exactly of the irreducible X = V(F ).
Fact 12.8. π1 : π−1

1 (X) → U is finite of degree 27 over U . On the subset of smooth cubic
surfaces, this map is exactly 27-to-1.

13 Tangent spaces
• Intersection multiplicity (V, `)p

• Tangent line

• Tangent space

• Smooth point

13.1 Big picture

To any point p on any variety V , we will define a vector space TpV , the tangent space to V
at p, such that

(1) Given any regular map

V
ϕ−→ W

p 7→ q,

we get an induced linear map of vector spaces

TpV
dpϕ−−−→ TqW.
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Goal: to define tangent space to a variety V at a point p ∈ V .
Since tangency is a local issue, assume p = (0, . . . , 0) ∈ V ⊆ An with V a closed affine

algebraic set.

13.2 Intersection multiplicity

We work out an example in detail.

Example 13.1. Let V = V(y−x2) ⊆ A2. We calculate the intersection multiplicity of V with
` = {(at, bt) | t ∈ k}. The intersection V ∩ ` is given by

V
(
(bt)− (at)2

)
⊆ ` ⊆ A2.

Solving this:

bt− a2t2 = 0

t(b− a2t) = 0,

so t = 0 or t = b
a2
. Hence the intersection points are (0, 0) and

(
b
a
,
(
b
a

)2
)
.

We get a “double intersection” point when b = 0. Get that ` is tangent to V at (0, 0)
because the intersection multiplicity is V and ` at (0, 0) is 2.

More precisely, we will see that ` has intersection multiplicity 1 for all ` except when ` is
the x-axis, in which case the intersection multiplicity is 2.

Now we are ready to give a formal definition.

Definition 13.2. Let p = 0 ∈ V ⊆ An, and let I(V ) = (F1, . . . , Fr). Say

` =
{

(a1t, . . . , ant)
∣∣ t ∈ k} ⊆ An

is a line through 0. The intersection multiplicity of V and ` at p, denoted (V, `)p, is the
highest power of t which divides all the polynomials

{Fi(a1t, . . . , ant)}i=1,...,r .

Equivalently, look at the ideal of k[t] generated by {F (a1t, . . . , ant)}, where F (x1, . . . , xn) ∈
I(V ). That ideal is generated by some polynomial

tm(t− λ1)m1 · · · (t− λs)ms , λi 6= 0.

Then (V, `)0 = m.

13.3 Tangent lines and the tangent space

Definition 13.3 (tangent line). A line ` is tangent to V at p if (`, V )p ≥ 2.

Definition 13.4 (tangent space). The tangent space to V ⊆ An at p, denoted TpV , is the
set of points (a1, . . . , an) ∈ An lying on lines ` ⊆ An which are tangent to V are p.
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Example 13.5. Consider V = V(y2 − x2 − x3) ⊆ A2. Take a line through the origin

` =
{

(at, bt)
∣∣ t ∈ k} .

The intersections are given by

(bt)2 − (at)2 − (at)3 = t2
(
b2 − a2 − a3t

)
= 0.

So the intersection multiplicity at the origin is 2. Note that all lines through (0, 0) are
tangent:

T(0,0)V = A2 = k2.

In other words, tangent lines are not always a limit of secant lines.

Theorem 13.6. Let p ∈ V ⊆ An, where V is a (not necessarily irreducible) closed subset of
An. The tangent space TpV is a linear algebraic variety in An, and

dimTpV ≥ dimp V.

13.4 Smooth points

Definition 13.7. A point p ∈ V is smooth if dimTpV = dimp V .

Proposition 13.8. Say 0 ∈ V ⊆ An and I(V ) = (F1, . . . , Fr). Then

T0V = V(L1, . . . , Lr) ⊆ An,

where Li = ai1x1 + · · ·+ ainxn is the “degree 1 part” of Fi, i.e.,

Fi = Li + F
(2)
i + F

(3)
i + . . . ,

where F (j)
i is homogeneous of degree j in x1, . . . , xn.

Proof. We have (a1, . . . , an) ∈ T0V ⇐⇒ (a1, . . . , an) ∈ ` which is tangent to V at 0 ⇐⇒
{(a1t, . . . , ant) | t ∈ k} intersects V with multiplicity ≥ 2 at 0

⇐⇒ {F1(a1t, . . . , ant), . . . , Fr(a1t, . . . , ant)}

are divisible by t2. Observe that

Fi(a1t, . . . , ant) = Li(a1t, . . . , ant) +Gi(a1t, . . . , ant) = t · Li(a1, . . . , an) +Gi(a1t, . . . , ant),

and t2 divides Gi(a1t, . . . , ant). So

t2 | Fi(at1, . . . , ant) ⇐⇒ Li(a1, . . . , an) = 0.

Example 13.9. In V = V(y − x2) ⊂ A2,

T(0,0)V = V(y) ⊂ A2.
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Example 13.10. In V = V(y2 − x2 − x3) ⊂ A2,

T(0,0)V = A2.

Remark 13.11 (Explicit computation of tangent spaces). To find TpV ⊆ An for any p, center
everything at p = (λ1, . . . , λn). Write all polynomials not in (x1, . . . , xn), but in (x1 −
λ1, . . . , xn − λn).

Use Taylor expansion at p = (λ1, . . . , λn):

F = F (p) +
∂F

∂x1

∣∣∣∣
p

(x1 − λ1) + · · ·+ ∂F

∂xn

∣∣∣∣
p

(xn − λn)︸ ︷︷ ︸
linear part around p

+
1

2

∂2F

∂x2

∣∣∣∣
p

(x1 − λ1)2 + . . .

+

(
1

i1!

∂i1

∂xi11

)
· · ·
(

1

in!

∂in

∂xinn

)
F

∣∣∣∣
p

(x1 − λ1)i1 · · · (xn − λn)in .

Theorem 13.12. TpV = V(dpF1, . . . , dpFr) ⊆ An, where I(V ) = (F1, . . . , Fr).

13.5 Differentials, derivations, and the tangent space

Definition 13.13. Fix R = k[x1, . . . , xn], p ∈ An = kn. The “differential at p” is the map

k[x1, . . . , xn]
dp−−→ k[x1, . . . , xn]

g 7→ dpg =
n∑
i=1

∂g

∂xi

∣∣∣∣
p

(xi − λi)︸ ︷︷ ︸
linear form in (xi−λi)

∈ [k[x1 − λ1, . . . , xn − λn]]1 .

Caution: Not a ring map!
Fact 13.14. dp : R→ R is a k-linear derivation, meaning:

(1) k-linear: dp(f + g) = dpf + dpg and dp(λf) = λdpf for all f, g ∈ R, λ ∈ k.

(2) dp(fg) = f(p)dpg + g(p)dpf .

Last time: If

p ∈ V = V(f1, . . . , fr) ⊆ An, (f1, . . . , fr) = I(V ),

then

TpV = V(dpf1, . . . , dpfr) = vector space in kn translated by p ⊆ (TpAn) = kn,

where dpfi are linear forms in (x1 − λ1, . . . , xn − λn).
Why is this independent of choice of generators?

(g1, . . . , gt) = (f1, . . . , fr) = I(V ) ⊆ k[x1, . . . , xn]
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Write gi = h1f1 + · · ·+ hrfr for some hj ∈ R. Apply dp:

dpgi = f1(p)dph1 + h1(p)dpf1 + · · ·+ fr(p)dphr + hr(p)dpfr.

Since p ∈ V and fi ∈ I(V ), we have fi(p) = 0. So dpgi is a linear combination of dpf1, . . . , dpfr.
Hence dpgi ∈ (dpf1, . . . , dpfr), as was to be shown.

We have a surjective map

k[x1, . . . , xn]
dp−−→ (TpAn)∗

xi − λi 7→ xi − λi.

Note 13.15. dp(f) = dp(f + λ). Replace f by f − f(p):

dpf = dp (f − f(p)) .

So we can restrict to the (still surjective) map on mp = (x1 − λ1, . . . , xn − λn) ⊆
k[x1, . . . , xn]:

mp
dp−−→ (TpAn)∗

xi − λi 7→ xi − λi.

Say g ∈ mp is in the kernel of dp. Write g out as a polynomial in (x1 − λ1, . . . , xn − λn):

g = g(p) + dpg +G,

where each monomial of G is of degree ≥ 2 in (x1 − λ1, . . . , xn − λn).
Since g ∈ mp, we have g(p) = 0. Moreover,

dpg = 0 ⇐⇒ g = G ∈ (x1 − λ1, . . . , xn − λn)2.

So ker dp = m2
p.

This gives us a natural isomorphism:

mp

m2
p

dp−−→
'

(TpAn)∗ .

Theorem 13.16. For p = (λ1, . . . , λn) ∈ V = V(f1, . . . , fr) ⊆ An with (f1, . . . , fr) = I(V ),
let

mp =
{
f : V → k

∣∣ f(p) = 0
}
⊆ k[V ].

There is a natural surjective vector space map

mp
dp−−→ (TpV )∗

g = G
∣∣
V 7→

[
dpG

∣∣
TpV : TpV → k

]
, G ∈ k[x1, . . . , xn],

whose kernel is m2
p.
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Proof. Why is this well-defined?
Say g = G|V = H|V for some G,H ∈ k[x1, . . . , xn]. Need to check that dpG, dpH ∈

(TpAn)∗ restrict to the same linear functional in TpV = V(dpf1, . . . , dpfr).
By considering G−H, say G ∈ I(V ). Need to show that dpG vanishes on TpV , i.e., that

dpG ∈ (dpf1, . . . , dpfr).
We already showed that G = H1f1 + · · · + Hrfr =⇒ dpG ∈ (dpf1, . . . , dpfr), provided

p ∈ V . So we are done.

Conclusion:
(TpV )∗ ∼= mp/m

2
p

as a k-vector space for any p ∈ V
closed
⊆ An.

13.6 The Zariski tangent space

Corollary 13.17. Consider an isomorphism of affine algebraic sets

V
ϕ−→ W

p 7→ q.

Then we have an isomorphism

k[W ]
ϕ∗−−→ k[V ]

mp
'−→ mq

m2
p
'−→ m2

q.

I.e., the tangent space is an invariant of the isomorphism class of the variety at p.

Definition 13.18. The Zariski tangent space at a point p of a quasi-projective variety V is(
mp/m

2
p

)∗, where mp is the maximal ideal in the local ring of V at p.

Recall: p ∈ V variety.

Definition 13.19. The local ring of V at p is

Op,V =
{
ϕ ∈ k(V )

∣∣ ϕ is regular at p
}
.

It has unique maximal ideal

mp =
{
ϕ ∈ Op,V

∣∣ ϕ(p) = 0
}
.

To compute Op,V , choose any affine open neighborhood of p, say p ∈ U ⊆ V . We have

mp ⊆ k[U ] = OV (U).

Then
Op,V = k[U ]mp ⊇ mpk[U ]mp.

This doesn’t depend on the choice of U .
Note 13.20.

mp

m2
p

=
mpk[U ]mp(
mpk[U ]mp

)2 .
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13.7 Tangent spaces of local rings

Definition 13.21. For any local ring (R,m) (e.g., Zp,Z(p)[[x]] , Ẑp, convergent power series
in z1, . . . , zr over C, etc.), define the Zariski tangent space as (m/m2)

∗. This is a vector space
over the residue field R/m = k.

Theorem 13.22. For any local ring, dimk(m/m
2) ≥ dimR.

Definition 13.23. A local ring (R,m) is regular if dimk(m/m
2) = dimR.

Example 13.24. If R = Op,V , where p is a point on a variety V , then(
m/m2

)∗
= (TpV ),

the tangent space to V at p, dimp TpV ≥ dimp V . (Proof in Shafarevich!)
Op,V is regular ⇐⇒ p is a smooth point of V .

Definition 13.25. (1) p ∈ V is smooth ⇐⇒ dimTpV = dimp V . (In general, ∀p ∈ V , we
have dimTpV ≥ dimp V .)

(2) The singular locus of V is the set

Sing V =
{
p ∈ V

∣∣ p is not smooth
}

=
{
p ∈ V

∣∣ dim(TpV ) > dimp V
}
.

Example 13.26. Since dimZ(p) = 1 and dim(p)/(p2) = 1, Z “is” the coordinate ring of some-
thing like a variety which is smooth of dimension 1.
Example 13.27. Let p ∈ (λ1, . . . , λn) ∈ An. Then

dim(TpAn) = dim(kn) = n,

dim

[
(x1 − λ1, . . . , xn − λn)

(x1 − λ1, . . . , xn − λn)2

]
= n.

I.e., An is smooth at all points.

Theorem 13.28. The singular set of V (a variety) is a proper closed subset of V .

Proof. We have Sing V ⊆ V . To check that this is a proper closed set, it reduces immediately
to the case where V is affine.

Assume V = V(f1, . . . , fr) ⊆ An with (f1, . . . , fr) = I(V ). For p ∈ V ,

TpV = V(dpf1, . . . , dpfr), each dpfi =
n∑
j=1

(
∂fi
∂xj

∣∣∣∣
p

(
xj − xj(p)

))
.

Equations dpf1, . . . , dpfr can be written as a matrix:

TpV = V



∂f1
∂x1

. . . ∂f1
∂xn

∂f2
∂x1

. . . ∂f2
∂xn...
...

∂fr
∂x1

. . . ∂fr
∂xn


p


x1 − x1(p)
x2 − x2(p)

...
xn − xn(p)


 = ker

((
∂fi
∂xj

)∣∣∣∣
p

)
⊆ An.
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So
dimTpV = dim

(
ker(Jp|p)

)
= n− rank(Jp).

We have p ∈ Sing V ⇐⇒ dimTpV > d ⇐⇒ rank
(
∂fi
∂xj

)∣∣∣
p
< n− d ⇐⇒ (n− d)× (n− d)

subdeterminants of
(
∂fi
∂xj

)
all vanish at p. Thus

Sing V =

{
p ∈ V

∣∣ (n− d)× (n− d) minors of
(
∂fi
∂xj

)
vanish at p

}

= V

codimension-sized minors of


∂f1
∂x1

. . . ∂f1
∂xn... . . . ...

∂fr
∂x1

. . . ∂fr
∂xn


 ∩ V.

It remains to show that it is proper !

Example 13.29. Consider V = V(x2 + y2 − z2) ⊆ C3:

TpV = V (2x|p(x− x(p)) + 2y|p(y − y(p))− 2z|p(z − z(p))) ⊆ C3.

This defining equation is a linear function in (x− λ1, y− λ2, z− λ3), nonzero ⇐⇒ some ∂f
∂xi

is nonzero.
Hence, the dimension is 2 if λ1, λ2, λ3 are not all zero, and dimension 3 otherwise:

Sing V = V ∩ V (1× 1(2x, 2y, 2z)) = V ∩ V(x, y, z) = {(0, 0, 0)} .

14 Regular parameters
Read Shafarevich, II, §2, 2.1, 2.2, 2.3.

14.1 Local parameters at a point

Fix V variety, p ∈ V . Consider

Op,V =
{
ϕ ∈ k(V )

∣∣ ϕ is regular at p
}
,

the local ring of V at p. The maximal ideal is m ⊂ Op,V , the regular functions vanishing at
p.

Recall:

Definition 14.1. p is a smooth (or non-singular) point of V iff

dimkm/m
2 = dimp V

(≥ always holds).

Fix V variety of dimension d, p ∈ V smooth point.
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Definition 14.2. Say regular functions u1, . . . , ud ∈ mp in a neighborhood of p ∈ V are
regular parameters (or local parameters) at p if their images in m/m2 are a basis for this
vector space.

Example 14.3. If p = (λ1, . . . , λd) ∈ Ad, then {x1 − λ1, . . . , xd − λd} are local parameters at
p.
Example 14.4. p = (1, 0) ∈ V = V(x2 + y2 − 1) ⊆ A2. The dimension is 1. Note that V is
smooth (for char(k) 6= 2):

Sing V = V ∩ V(2x, 2y) = V(x2 + y2 − 1, 2x, 2y) = ∅.

We have
Op,V =

k[x, y]

(x2 + y2 − 1)
· (x− 1, y) ⊇ m,

m/m2 (dim 1) obviously spanned by {x− 1, y}. In Op,V ,

(x− 1)(x+ 1) = −y2 =⇒ x− 1 = − 1

x+ 1
y2 ∈ m2.

Thus y is a local parameter for V at p = (1, 0), since y in m/m2 is a basis for m/m2.
In other words, y generates m as an Op,V -module.

14.2 Nakayama’s lemma

Lemma 14.5 (Nakayama). Let (R,m) be a local Noetherian commutative ring, and let M
be a finitely generated R-module. Every vector space basis for M/mM over R/m lifts to a
(minimal) generating set for M as an R-module.

We apply this to R = Op,V ⊇ m and M = m: Every vector space basis u1, . . . , ud for
m/m2 lifts to a (minimal) generating set u1, . . . , ud for m.

14.3 Embedding dimension

Definition 14.6. The embedding dimension of a point p on a variety V (not necessarily
smooth) is the dimension of mp/m

2
p.

Fact 14.7. The embedding dimension at p is ≥ the dimension at p, with equality ⇐⇒ p is
a smooth point of V .

Theorem 14.8 (Transverse intersection). Let u1, . . . , ud be local parameters at a smooth point
p ∈ V . The subvariety V(ui) ⊆ V is also smooth at pj of codimension 1, and furthermore,
V(ui1 , . . . , uit) ⊆ V is smooth at p of codimension t.

Proof. We have p ∈ Vi = V(ui) $ V and a ring map given by modding out by Rad(ui),

Op,Vi Op,Vrestriction
oooo

mp,Vi

⊆

mp,V ,oo

⊆
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and we have mp,Vi = (u1, u2, . . . , ud) and mp,V = (u1, . . . , ud). Since ui = 0, we have

d− 1 ≤ dimp Vi ≤ dimTpVi = dim
mp

mp
2 ≤ d− 1.

Hence d− 1 = dimTpVi = dimp Vi, so p is a smooth point of Vi.
Similarly, take p ∈ VI = V(u1, . . . , ut) ⊆ V. Then

m = (u1, . . . , ud) = (ut+1, . . . , ud) ⊆ Op,VI .

So
dimp Vi ≤ dim

m

m2 ≤ d− t ≤ dimp VI ,

hence equality holds and we are done.

Example 14.9. Let p = (0, 0) ∈ A2. Then {y − x2, x} are local parameters at (0, 0), and are
said to intersect transversely.

However, {y − x2, y} are not local parameters at (0, 0) ∈ A2, and do not intersect trans-
versely.

14.4 Transversal intersection at arbitrary points

For a point p (not necessarily smooth) on a variety V , and elements u1, . . . , un ∈ m ⊆ Op,V ,
the following are equivalent:

(1) u1, . . . , un minimally generate m (as an ideal of Op,V ).

(2) The images u1, . . . , un are a basis for m/m2.

(3) Their differentials dpu1, . . . , dpun are a basis for (TpV )∗.

(4) The subspace of TpV defined by the zero set of the (n = dimTpV ) linear functionals
dpu1, . . . , dpun is 0.

Fact 14.10. If p is smooth, then n = dimV , and any set {u1, . . . , un} satisfying these equiv-
alent conditions is called a system of “local parameters at p”.

In this case where p is smooth, these are equivalent to:

(5) The inclusion k[u1, . . . , un](u1,...,un) ⊆ Op,V becomes an equality when we complete with
respect to the maximal ideals (u1, . . . , un) ⊂ k[u1, . . . , un](u1,...,un) and m ⊂ Op,V , and
we get

k[[u1, . . . , un]] ∼= Ôp,V .
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14.5 Philosophy of power series rings

Philosophy: Fix p ∈ V , and let U be an affine patch containing p. Then

OV (U) ⊆ Op,V ↪→ Ôp,V ,

where

• OV (U) is the coordinate ring of an affine patch U containing p, “functions regular on
U ”;

• Op,V is “functions regular on some Zariski-open subset of V containing p”;

• Ôp,V is “functions on an even smaller (analytic, not Zariski) neighborhood of p”.

For example, if p = 0 ∈ An, we have

R = k[x1, . . . , xn] ↪→ k[x1, . . . , xn]

[
1

x1 − 1

]
↪→ Rm = k[x1, . . . , xn](x1,...,xn) ↪→ k[[x1, . . . , xn]] .

The ring k[[x1, . . . , xn]] includes “functions” on an “even smaller” open neighborhood, including
things like

1

x1 − 1
7→ −1− x1 − x2

1 − x3
1 − . . .

and
“ex1” = 1 + x1 +

x2
1

2!
+
x3

1

3!
+
x4

1

4!
+ . . .

These inclusions induce maps of the spectrums in the opposite direction:

“An” = Spec k[x1, . . . , xn] →SpecR

[
1

x1 − 1

]
= Ux1−1 →SpecRm →Spec k[[x1, . . . , xn]] .

14.6 Divisors and ideal sheaves

Theorem 14.11. Let Y ⊆ X be a codimension 1 subvariety of a smooth variety X. Then
Y is locally defined by a vanishing of a single regular function on X at each point p ∈ X.

More precisely: If Y is a codimension 1 subvariety of a smooth variety X, then ∀p ∈ Y ,
there exists an open (affine) neighborhood p ∈ U ⊆ X such that (p ∈ Y ∩ U ⊆ U affine) the
ideal

IY (Y ∩ U) ⊆ k[U ] = OX(U)

of Y ∩ U in U is principal.

Caution 14.12. Even if X is affine already, we can only expect Y to be locally defined by one
equation.

There is an alternative (equivalent) formulation in terms of sheaves:
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Definition 14.13. Fix a closed set W in a variety V . The ideal sheaf of W , denoted IW ,
assigns to each open U ⊆ V the ideal

IW (U) =
{
f ∈ OV (U)

∣∣ f(p) = 0 ∀p ∈ W
}
⊆ OV (U).

Theorem 14.14. If Y is a codimension 1 subvariety of a smooth variety X, then the ideal
sheaf IY is locally principal in OX .

This means: ∀p ∈ X, ∃ open affine neighborhood U 3 p such that IY (U) ⊆ OX(U) is
principal.

Remark 14.15. If p /∈ Y , then ∃U 3 p such that Y ∩ U = ∅, so IY (U) = OX(U) = (1) is
principal.

Equivalently, the condition that IY be locally principal means: ∀p ∈ X, the ideal Ip,Y ⊆
Op,X defined by

Ip,Y =

{
ϕ ∈ Op,X

∣∣∣∣ ϕ has a representative f
g
where f, g ∈ OX(U),

p ∈ U, g(p) 6= 0, f(q) = 0 ∀q ∈ Y ∩ U

}
=
{
ϕ ∈ Op,X

∣∣ ϕ vanishes at all points of Y in some neighborhood of p
}

is principal. This is called “the stalk at p” of the sheaf IY . (Recall that Op,X = the localiza-
tion of OX(U) at the maximal ideal mp ⊆ OX(U), where u is any open affine neighborhood
of p.)

We have an inclusion of sheaves IY ⊆ OX , which induces an inclusion of an ideal in a
ring

IY (U) ⊆ OX(U).

By localization at mp, this induces

IY (U)e = Ip,Y ⊆ Op,X .

Now we prove the theorem.

Proof of Theorem 14.14. Need to show: ∀p ∈ X, the ideal Ip,Y ⊆ OX,p is principal.

Step 1: OX,p is a UFD. [More general theorem: Every regular local ring is a UFD.]

Sketch: OX,p is a UFD ⇐⇒ 4 ÔX,p is a UFD ⇐⇒ k[[u1, . . . , ud]] is a UFD. Math
593 exercise: A is a UFD =⇒ A[[u]] is a UFD.

Step 2: Fix p ∈ Y ⊆ X, Y codimension 1 in X. Without loss of generality, X is affine. We
have

IY ⊆ mp ⊆ k[X] = OX(X).

Take any nonzero h ∈ IY ⊆ mp. Look at the image of h in the UFD OX,p, and factor
h into irreducibles

h = ga11 · · · garr ∈ IY,p,
4Shafarevich, Appendix §7
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where gi ∈ OX,p. Thus some gi ∈ IY,p.
[Alternatively, pass to smaller open affine neighborhood U of p where each gi is
regular. Then

h = ga11 · · · garr ∈ Y (U),

which is a prime ideal in OX(U), so g1 ∈ IY (U).]
Because gi = g1 is irreducible in a UFD, it follows that (g1) is a prime ideal of OX,p.
Consider: in U ,

Y ∩ U ⊆ V(g1) ⊆ U ⊆ X.

We have dimU = dimX = d and dimV(g1) = d − 1. If Y ∩ U ⊂ V(g1) is a proper
inclusion, then Y ∩U has dim ≤ d−2, since a proper subset of an irreducible variety
has smaller dimension. Hence Y ∩ U = V(g1).

Caution 14.16. The theorem can fail for non-smooth X. For example, consider

p = 0 ∈ Y = V(x, z) $ X = V(xy − zw) ⊆ A4.

We have dimY = 2 and dimX = 3. See that

IY = (x, z) ⊆ k[X](x,y,z,w) =
k[x, y, z, w](x,y,z,w)

xy − zw
cannot be generated by 1 polynomial. Note: k[X](x,y,z,w) is not a UFD.

15 Rational maps

15.1 Provisional definition

Fix a variety V . A rational map V ϕ An is given by rational functions coordinate-wise:

V An

x 7→ (ϕ1(x), . . . , ϕn(x)) where ϕi ∈ k(V ).

Note 15.1. Each ϕi is regular on some open (dense) subset Ui. So

V
ϕ
// An

U

⊆ ϕ

>>

is a regular map on U = U1 ∩ · · · ∩ Un.
For

V
ϕ Pn

x 7→ [ϕ0(x) : · · · : ϕn(x)] ,

take ϕi ∈ k(V ) and say ϕi has domain of definition Ui. This is regular on the dense open
subset of V

U0 ∩ · · · ∩ Un︸ ︷︷ ︸
U

∩
[
(V ∩ U) \ V(ϕ0

∣∣
U , . . . , ϕn

∣∣
U)
]
.
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Example 15.2.

A2 ϕ P1

(x, y) 7→ [x : y] =

[
x

y
: 1

]
=
[
1 :

y

x

]
.

Defined on A2 \ {(0, 0)}.
We can represent ϕ by ϕUx : Ux = A2 \ V(x)→ P1, and also by

ϕA2\{(0,0)} : A2 \ {(0, 0)} → P1

(x, y) 7→ [x : y].

15.2 Definition of rational map

Definition 15.3. A rational map X ϕ
Y between varieties is an equivalence class of regular

maps
{
U

ϕU−−→ Y
}

(with U ⊆ X dense open subset), where

[U
ϕU−−→ Y ] ∼ [U ′

ϕU′−−−→ Y ]

means ϕU and ϕU ′ agree on U ∩ U ′ (or equivalently,

ϕU
∣∣
Ũ = ϕU ′

∣∣
Ũ

for any dense open subset of U ∩ U ′).

Note 15.4. If two regular maps agree on some dense open set, then they agree everywhere
they are both defined.

Proof sketch. Since regular maps are locally given by regular functions in coordinates, it
suffices to check that if ϕ, ϕ′ are regular functions X ϕ−→ k, X

ϕ′−−→ k and ϕ|Ũ = ϕ′|Ũ , where
Ũ ⊆ X is an open dense set, then

(ϕ− ϕ′) : X → k

is regular. Its zero set contains Ũ and is closed, hence the zero set contains Ũ = closure of
Ũ in X, so ϕ− ϕ′ is zero on X. Thus, ϕ = ϕ′ everywhere on X.

In practice: A rational map is given by

X
ϕ
Y ⊆ Pm

x 7→ [ϕ0(x) : · · · : ϕm(x)],

where ϕi ∈ k(X).

Definition 15.5. A rational map ϕ : X Y is regular at p ∈ X if ϕ admits a representative
U

ϕU−−→ Y such that p ∈ U .
The domain of definition of ϕ is the open subset of X where ϕ is regular. The locus of

indeterminacy is the complement of the domain of definition.
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15.3 Examples of rational maps

(1) A rational map X ϕ A1
k is the same as ϕ ∈ k(X).

(2) Every regular map X → Y is a rational map. (The domain of definition is X, and the
locus of indeterminacy is ∅.)

For example:

P1 P3

[s : t] 7→
[
s3 : s2t : st2 : t3

]
=

[
1 :

t

s
:

(
t

s

)2

:

(
t

s

)3
]
.

Note that k(P1) = k
(
t
s

)
.

(3) The map used in the blowup (to be studied in more detail later):

A2 P1

(x, y) 7→ {the line through (x, y) and (0, 0)} = [x : y]

The locus of indeterminacy is {(0, 0)}.

15.4 Rational maps, composition, and categories

Caution 15.6. A rational map is not a map!
In particular, we cannot always compose rational maps.

Example 15.7. Here’s an example that shows why we can’t compose rational maps:

P1 ϕ−→ P3 ψ P3

[s : t] 7→
[
s3 : s2t : st2 : t3

]
[w : x : y : z] 7→

[
wz − xy : x2 − wy : y2 − xz

]
Caution 15.8. “ψ ◦ ϕ” = [0 : 0 : 0 : 0], which is nonsense.
Note 15.9. There is no category of varieties over k with rational maps as morphisms.

However, there is a category whose objects are algebraic varieties over k and whose
morphisms are dominant rational maps.

Isomorphism in this category is birational equivalence.

15.5 Types of equivalence

Note 15.10. Birational equivalence is much weaker than isomorphism of varieties. For in-
stance:

A2 ϕ P2 ϕ−1

A2

(x, y) 7→ [x : y : 1]

[x : y : z] 7→
(x
z
,
y

z

)
,
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so A2 and P2 are birationally equivalent. Also,

P2 P1 × P1

[x : y : z] 7→ ([x : z], [y : z])

Uz
'−→ U1 × U1,

so P2 and P1 × P1 are birationally equivalent.

In order of increasing strength and difficulty:

• Classify varieties up to birational equivalence

• Classify varieties up to isomorphism

• Classify varieties up to projective equivalence

It turns out that birational equivalence and isomorphism are the same for smooth pro-
jective curves, for which we have a complete classification.

15.6 Dimension of indeterminacy

Theorem 15.11. If X is smooth and X ϕ Pn is a rational map, then the locus of indeter-
minacy has codimension ≥ 2 in X.

Example 15.12.

P2 ϕ P1 × P1 ↪→ P3

[x : y : z] 7→ ([x : z], [y : z])

The locus of indeterminacy W ⊆ P2 is either empty or dimension 0 (i.e., finite).
In fact, W = {[0 : 1 : 0], [1 : 0 : 0]}.

Corollary 15.13. If X is a smooth curve and X ϕ Pm is a rational map, then ϕ is regular
everywhere.

Corollary 15.14. If two smooth projective curves are birationally equivalent, then they are
isomorphic.

Proof. Say X ∼ Y are birationally equivalent. Then the rational map X ϕ
Y ⊆ Pm is a

regular map X → Y . Reversing roles of X and Y , Y ϕ−1

X ⊆ Pn is also regular. So

X
ϕ
//

id

66Y
ϕ′
// X,

thus X ∼= Y .
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15.7 Dimension of indeterminacy, continued

Example 15.15. Let X = V (x2
0 + · · ·+ x2

n) ⊆ Pn (char 6= 2).
Pick any p ∈ X, project from it. Then we have

Pn
πp
// Pn−1

X

⊆ πp

<<

and X
πp Pn−1 is a rational map.

Case 1: dimX = 1 (n = 2): X
πp P1 must be regular everywhere by Theorem 15.11.

So we have a map
P2 ⊇ V(x2 + y2 − z2) = X

πp−−→ P1

which is regular everywhere, and fact is an isomorphism.

Case 2: dimX ≥ 2: The rational map is not regular everywhere. For dimX = 2, we have

P3

$$
X

⊆

πp
// P2

X − {p}

⊆

regular

::

The locus of indeterminacy is {p}. Codimension is n− 1 = dimX.

Now we prove:

Theorem (15.11). If X is smooth, then the locus of indeterminacy of a rational map X ϕ Pn
has codimension ≥ 2.

Proof. Let X be smooth, X ϕ Pn a rational map, W = locus of indeterminacy ⊆ X.
Then W is (locally at p) a hypersurface. For all sufficiently small affine open neighbor-

hoods U of p, U ∩W = V(g) ⊆ U , where g ∈ OX(U). We have

X Pn

x 7→ [ϕ0(x) : · · · : ϕn(x)] ,

where ϕi ∈ k(X) = fraction field of k[U ]. Without loss of generality, ϕi ∈ k[U ].
Because p ∈ W = locus of indeterminacy, we know p ∈ V(ϕ0, . . . , ϕn) ⊆ U . Then

p ∈ W ∩ U ⊆ V(ϕ0, . . . , ϕn) ⊆ U affine.

By the Nullstellensatz,
(g) = IW (U) ⊇ (ϕ0, . . . , ϕn),

so g divides each ϕi (in k[U ]).
Note: Op,X is a UFD, so we can factor ϕ0, . . . , ϕn into irreducibles and cancel out any

common factors. Thus, without loss of generality, the ϕi do not have a common factor!
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15.8 Images and graphs of rational maps

Definition 15.16. The image of a rational map X ϕ−→ Y is the closure in Y of the image of
any representing regular map U ϕU−−→ Y .

Check: This does not depend on the choice of ϕU . Indeed,

ϕU(U ∩ U ′) ⊆ ϕU(U) = ϕU ′(U ′).

Recall: The graph of a regular map X ϕ−→ Y is the set

Γϕ = {(x, ϕ(x))} ⊆ X × Y.

This is a closed set isomorphic to X. (Check: vertical line test.)

Definition 15.17. The graph Γϕ of a rational map X ϕ
Y is the closure in X × Y of the

graph of any representing regular map U ϕU−−→ Y .

Check: This is independent of representative.
Note 15.18. Γϕ is birationally equivalent to X.
Example 15.19.

A2 ϕ P1

(x, y) 7→ {line through (x, y) and (0, 0)} = [x : y].

Consider on A2 − V(x) = Ux ⊆ A2. Then

Ux = A2 − (y-axis)→ U0 = A1 ↪→ P1

(x, y) 7→ y

x
→
[
1 :

y

x

]
= [x : y],

noting that y
x
is the slope of the line through (0, 0) and (x, y).

16 Blowing up

16.1 Blowing up a point in An

Choose coordinates so the point is 0. Let

B =
{

(p, `)
∣∣ p ∈ `} ⊆ An × Pn−1.

In coordinates,

B =

{(
(x1, . . . , xn); [y1 : · · · : yn]

) ∣∣ rank

[
x1 . . . xn
y1 . . . yn

]
≤ 1

}
= V

(
2× 2 minors of

[
x1 . . . xn
y1 . . . yn

])
= V

({
xiyj − xjyi

∣∣ i ≤ 1, j ≤ n
})
.
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Definition 16.1. The blowup of An at 0 is the variety

B =
{

(p, `)
∣∣ p ∈ `} ⊆ An × Pn−1

together with the projection B π−→ An.

Note 16.2. (1) π is surjective, and one-to-one over An \ {0}.
Also, π is birational (i.e., a birational equivalence) with rational inverse

An π−1

B ⊆ An × Pn−1

(x1, . . . , xn) 7→
(
(x1, . . . , xn); [x1 : · · · : xn]

)
.

(2) B is the graph of the rational map

ϕ : An Pn−1

(x1, . . . , xn) 7→ [x1 : · · · : xn],

and B π−→ A is projection to the “source”.

Intuition again: B is “like An” except at 0; we’ve removed 0 from An and replaced it by
the set of all directions approaching the origin.

Proposition 16.3. B is a smooth (irreducible) variety of the dimension n.

Proof. We have B ⊆ An × Pn−1 ⊇ (An × Ui), where Ui = An−1 is a standard affine chart. It
suffices to check that each B ∩ (An × Ui) is smooth.

For simplicity, we do the case i = n.

Claim 16.4. B ∩ (An × An−1)
'−→ An.

Observe that

B ∩ (An × An−1) =
{

(x1, . . . , xn); [y1 : · · · : yn]
∣∣ yn 6= 0, xiyj = xjyi

}
=

{
(x1, . . . , xn);

[
y1

yn
: · · · : yn−1

yn
: 1

] ∣∣ xj = xn

(
yj
yn

)}
We have an isomorphism

B ∩ U ϕ−→ An(
(x1, . . . , xn);

[
y1

yn
: · · · : yn−1

yn
: 1

])
7→
(
y1

yn
, . . . ,

yn−1

yn
, xn

)
B ∩ U ϕ−1

→An(
(tnt1, . . . , tntn−1, tn); [t1 : · · · : tn−1 : 1]

)
7→(t1, . . . , tn−1, tn).
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16.2 Resolution of singularities

Theorem 16.5 (Hironaka, 1964). If k has characteristic 0, then every affine variety V admits

a resolution of singularities, i.e., ∃ smooth variety Ṽ
closed
⊆ An × Pm such that the projection

onto the first factor An × Pm � An is a birational map π : Ṽ � V when restricted to Ṽ .
Furthermore, π is an isomorphism over V \ Sing(V ). The fibers are all projective (over

C, all compact), i.e., π is a proper map.5

16.3 More about blowups

Recall: The blowup of (0, 0) in A2 is the graph of the rational map

A2 ϕ P1 = lines through (0, 0) in A2

(x, y) 7→ [x : y]

together with the projection onto the source{
(p, `)

∣∣ p ∈ `} = B = Γϕ
π−→ A2.

Note 16.6. (1) The map π is a projection, birational. In fact, π is an isomorphism over the
domain of definition of ϕ.

(2) The fiber over the locus of indeterminacy {(0, 0)} is

{(0, 0)} × P1
closed
⊆ B

closed
⊆ A2 × P1

is a smooth, codimension 1 subset of B.
What happens if we graph a different rational map?

A3 ψ P1

(x, y, z) 7→ [x : y] = normal line to L = the z-axis

This is an isomorphism on A3 \ L, and is birational on A3.
The fiber over the locus of indeterminacy L is L × P1 ⊆ Γϕ, which is a codimension 1

subvariety of Γϕ.
This is called the blowup of A3 at the line L (or the blowup along the ideal (x, y)).

16.4 Blowing up in general

Definition 16.7. Let V be an affine variety, and let f0, . . . , fr be nonzero regular functions
on V . The blowup of V along the ideal (f0, . . . , fr) is the graph of the rational map

V
ϕ Pr

x 7→ [f0(x) : · · · : fr(x)]

together with the projection
V × Pr ⊇ Ṽ := Γϕ

π−→ V.

5The technical definition of “proper map” in algebraic geometry is more complicated, but agrees with the
other definition over C. In any case, π is a proper map in the algebraic geometry sense.
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Definition 16.8 (projective map). A projective map X f−→ Y is a composition

X �
�closed //

f

66Y × Pm
proj. onto
1st coord. // Y

Remark 16.9. (1) Since ϕ is rational on V − V(f0, . . . , fr), π : Ṽ → V is an isomorphism
over V − V(f0, . . . , fr), i.e., is birational.

(2) This depends only on the ideal generated by (f0, . . . , fr), not the choice of generators:
Say (f0, . . . , fr) = (g0, . . . , gm) ⊆ k[V ]. Then

V × Pr V × Pm

Γϕ

⊆
∃ isomorphism

//

π1
##

Γϕ′

⊆

π2
{{

V

(3) If (f0, . . . , fr) is radical, defines a subvariety W ⊆ V , then we also say “blowup of V
along W ”.

If W ⊆ V is smooth, then the blowup Ṽ “looks like” V with surgery performed: remove
W , and replace it by all directions normal to W in V .

Example 16.10. Blowup of (x2, y2) in A2: The graph of

A2 ϕ P1

(x, y) 7→ [x2 : y2]

We have
A2

(x,y)
× P1

[u:v]
⊇ V(uy2 − vx2) = Γϕ → A2.

So blowing up can sometimes make things “worse”!

16.5 Hironaka’s theorem

Theorem 16.11 (Hironaka’s theorem on resolution of singularities). Suppose char k = 0.
For any affine variety V , there exist f0, . . . , fr ∈ k[V ] such that the graph of the rational map

V
ϕ Pr

x 7→ [f0(x) : · · · : fr(x)]

is smooth. The map Ṽ = Γϕ
π−→ V is projective, birational, and an isomorphism over

V \ Sing V .
Furthermore, π−1(Sing V ) is a smooth, codimension 1 subvariety of Ṽ .
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17 Divisors

17.1 Main definitions

Fix an irreducible variety X.

Definition 17.1. A prime divisor on X is a codimension 1 irreducible (closed) subvariety
of X.

A divisor D on X is a formal Z-linear combination of prime divisors

D =
t∑
i=1

kiDi, ki ∈ Z.

Example 17.2. In P2, here are some prime divisors:

C = V(xy − z2) ⊆ P2, L1 = V(x), L2 = V(y).

Here are some divisors which are not prime: 2C, 2L1 − L2.

Definition 17.3. We say a divisor D =
∑t

i=1 kiDi is effective if each ki ≥ 0.
The support of D is the list of prime divisors occurring in D with non-zero coefficient.

The set of all divisors on X form a group Div(X), the free abelian group on the set of
prime divisors of X.

The zero element is the trivial divisor D =
∑

0Di, and

Supp(0) = ∅.

Example 17.4. Consider

ϕ =
f

g
=

(t− λ1)a1 · · · (t− λn)an

(t− µ1)b1 · · · (t− µm)bm
∈ k(A1) = k(t),

where f, g ∈ k[t] (assume lowest terms).
The “divisor of zeros and poles” of ϕ is

a1 {λ1}+ a2 {λ2}+ · · ·+ an {λn}︸ ︷︷ ︸
(divisor of zeros)

− b1 {µ1} − · · · − b1 {µm}︸ ︷︷ ︸
(divisor of poles)

.

Example 17.5. Let An = X. A prime divisor is D = V(h), where h ∈ k[x1, . . . , xn] is
irreducible. Write

ϕ =
f

g
=
fa11 · · · fann
gb11 · · · gbmm

∈ k(An) = k(x1, . . . , xn),

where f, g ∈ k[x1, . . . , xn] and fi, gi irreducible, ai ∈ N.
Denoting the divisor of zeros and poles of ϕ by div(ϕ), we have

div(ϕ) = a1V(f1) + a2V(f2) + · · ·+ anV(fn)− b1V(g1)− · · · − bmV(gm).

Note 17.6. Every divisor on An has the above form.
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17.2 The divisor of zeros and poles

In general, on almost any X, we will associate to each ϕ ∈ k(X) \ {0} some divisor, div(ϕ),
“the divisor of zeros and poles”, in such a way that the map

k(X)∗ = k(x) \ {0} → Div(X)

ϕ 7→ divϕ =
∑
D⊆X
prime

νD(ϕ) ·D

preserves the group structure on k(X)∗, i.e.,

(ϕ1 ◦ ϕ2) 7→ divϕ1 + divϕ2.

The image of this map will be the group of principal divisors:

P (X) ⊆ Div(X)

The quotient Div(X)/P (X) is the divisor class group of X.
Remark 17.7. If X is smooth, then the divisor class group is isomorphic to the Picard group.

Remark 17.8. The kernel of k(X)∗
div−−→ Div(X) consists of ϕ ∈ k(X) such that ϕ, ϕ−1 are

both regular on X.
Remark 17.9. We will write

divϕ =
∑
D⊆X
prime

νD(ϕ) ·D,

where νD(ϕ) = ordD(ϕ) = “order of vanishing of ϕ along D”.
Example 17.10.

ϕ =
x

y
∈ k(x, y) = k(A2)

div(ϕ) =
∑
D⊆A2

prime

νD

(
x

y

)
D,

where νD
(
x
y

)
is 0 for all divisors D except for L1 = V(x), where the order of vanishing is 1,

and L2 = V(y), where νL2(ϕ) = −1.
To define div(ϕ) for ϕ ∈ k(X)∗, we need to define νD(ϕ) for every every divisor D. We

will do this under the following assumption: X is non-singular in codimension 1.6 In this
case, we have

X ⊇ Xsm = X − SingX

Div(X)
'−→ Div(Xsm)∑

i

aiDi 7→
∑
i

ai(Di ∩Xsm).

6This means that Xsing ⊆ X has codimension ≥ 2.
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To get an idea of how this will work, assume X is smooth and affine, and let ϕ ∈ k[X].
Any prime divisor D ⊆ X is locally principal, i.e., locally D = V(π).

“D is a zero of ϕ” means that D ⊆ V(ϕ), meaning (π) 3 ϕ. Look at the largest k such
that ϕ ∈ (πk), i.e., ϕ ∈ (πk) \ (πk+1). This is νD(ϕ) = k.

17.3 Order of vanishing

Goal: Define “order of vanishing” of ϕ ∈ k(X) \ {0} along a prime divisor D, denoted
νD(ϕ) ∈ Z.

This is done only under the assumption that X is non-singular in codimension 1 (i.e.,
SingX has codimension ≥ 2).

Case 1

Say X is affine, ϕ ∈ k[X], D = V(π) is a hypersurface defined by π ∈ k[X].
We say “ϕ vanishes along D” provided that D = V(π) ⊆ V(ϕ). So by the Nullstellensatz,

(ϕ) ⊆ (π). It could be that ϕ ∈ (π2) or (π3) or some higher power.

Definition 17.11. The order of vanishing of ϕ along D, denoted νD(ϕ), is the unique integer
k ≥ 0 such that ϕ ∈ (πk) \ (πk+1).

Note 17.12. νD(ϕ) = 0 =⇒ ϕ ∈ (π0) \ (π1) = k[X] \ (π), i.e., ϕ does not vanish on all of D.

Can it be that ϕ ∈ (πk) ∀k? If so, then ϕ ∈
⋂
k≥0(πk), which remains true after localizing

at any prime ideal of k[X] containing π (e.g., (π) itself).

Lemma 17.13. If (R,m) is a Noetherian local ring, then⋂
t≥0

mt = 0.

Thus, if ϕ ∈
⋂
k≥0(πk), then ϕ = 0.

Note 17.14. νD has the following properties:

(1) νD(ϕ · ψ) = νD(ϕ) + νD(ψ).

(2) If ϕ+ ψ 6= 0, then νD(ϕ+ ψ) ≥ min {νD(ϕ), νD(ψ)}.

Case 1b

If ϕ is rational and ϕ = f
g
, where f, g ∈ k[X], define

νD(ϕ) = νD(f)− νD(g).
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Case 2

General case: ϕ ∈ k(X) \ {0}, D ⊆ X arbitrary prime divisor.
Choose U ⊆ X open affine such that

(a) U is smooth;

(b) U ∩D 6= ∅;

(c) D is a hypersurface: D = V(π) for some π ∈ k[U ] = OX(U).7

We have ϕ ∈ k(X) = k(U). Define νUD(ϕ) as in case 1.

Claim 17.15. This doesn’t depend on the choice of U .

Proof. Say U1, U2 both satisfy conditions (a), (b), (c). To check νU1
D (ϕ) = νU2

D (ϕ), it suffices
to check νU1

D (ϕ) = νUD(ϕ) for any U ⊆ U1 ∩ U2 satisfying (a), (b), (c).
Fix U1 ⊇ U2. We have ϕ ∈ (πk) \ (πk+1) in k[U1] = OX(U1), and after restricting to

k[U2] = OX(U2), the condition ϕ ∈ (πk) \ (πk+1) still holds.

So define νD(ϕ) to be νUD(ϕ) for any U .

17.4 Alternate definitions of order of vanishing

17.4.1 Alternate definition 1

Let D ⊆ X be a prime divisor, ϕ ∈ K(X). Pick any smooth point x ∈ X such that x ∈ D.
The local ring

Ox,X =
{
ϕ ∈ k(X)

∣∣ ϕ is regular at x
}

is a UFD. The equation of D in Ox,X is = (π) ⊆ Ox,X , where π is an irreducible element in
the UFD.

Writing ϕ = f
g
with f, g ∈ Ox,X , ϕ factors uniquely as

ϕ = πk
fa11 · · · farr
gb11 · · · gbss

with fi, gi irreducible. Then

νD(ϕ) = multiplicity of π in the unique factorization in Ox,X .

17.4.2 Alternate definition 2

Let D be a prime divisor on X (non-singular in codimension 1). Look at the ring

OD,X =
{
ϕ ∈ k(X)

∣∣ ϕ is regular on some open U such that U ∩D 6= ∅
}

= k[U ]ID(U),

the local ring of X along D. We have U ⊇ D ∩ U 6= ∅ and k[U ] ⊇ ID(U).
Choose U satisfying (a), (b), (c). The maximal ideal of OD,X is (π), generated by the

single element π.
Observe that OD,X is a local domain whose maximal ideal is principal, i.e., a discrete

valuation ring.
7We can do this by our earlier theorem that a codimension 1 subvariety is locally a hypersurface.
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Definition 17.16. A discrete valuation ring (DVR) is a Noetherian local domain with any
of the following equivalent properties:

(1) It is regular of dimension 1.

(2) The maximal ideal is principal, (π).

(3) It is a UFD with one irreducible element, π.

(4) Every nonzero ideal is (πt) for some t ∈ Z≥0.

(5) Normal of dimension 1.

Then we can define νD(ϕ) = t, where t is obtained as follows: We have

OD,X ⊆ k(X).

Write ϕ = f
g
, where f, g ∈ OD,X . Then

f = (unit) · πn, g = (unit) · πm,

and
νD(ϕ) = n−m = t.

17.5 Divisors of zeros and poles, continued

Now we get a way to define a “divisor of zeros and poles” associated to every ϕ ∈ k(X),
namely,

div(ϕ) =
∑
D⊆X
prime

νD(ϕ)D.

To see that this is a finite sum: when X is affine, write ϕ = f
g
, and observe that divϕ

has support contained in

V(f) ∪ V(g) = (D1 ∪ · · · ∪Dr) ∪ (D′1 ∪ · · · ∪D′s),

so finiteness of the sum follows from quasi-compactness of the Zariski topology.

17.6 Divisor class group, continued

Recall: For a variety X which is non-singular in codimension 1, we defined the “order of
vanishing νD(ϕ) of ϕ ∈ k(X)∗ along a prime divisorD”; νD is the valuation of k(X) associated
with the DVR OD,X .

This gives a group homomorphism

(k(X))∗
div−−→ Div(X)

ϕ 7→ div(ϕ) =
∑
D⊆X
prime

νD(ϕ) ·D.
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We defined the subgroup P (X) of principal divisors to be the image of div : k(X)∗ →
Div(X).

The cokernel of div : k(X)∗ → Div(X) is the divisor class group of X,

Cl(X) =
Div(X)

P (X)
.

Example 17.17. Cl(An) = 0.

Proposition 17.18. Cl(Pn) ∼= Z, generated by the class of a hyperplane H = V(a0x0 + · · ·+
anxn).

Definition 17.19. If Di = V(Gi) ⊆ Pn is a prime divisor, where Gi is an irreducible
homogeneous polynomial in k[x0, . . . , xn], we define the degree of Di to be the degree of Gi.

Proof of Proposition 17.18. We have a surjective homomorphism

Div(Pn)
deg−−→ Z

D =
t∑
i=1

kiDi 7→
∑

ki degDi =
∑

ki degGi.

Say D =
∑t

i=1 kiV(Gi) ∈ Div(Pn) is in the kernel of deg : Div(Pn)→ Z. Then

t∑
i=1

kiV(Gi) =
r∑
i=1

aiV(Fi)−
s∑
i=1

biV(Hi)
deg7−−→ 0.

This is the divisor of zeros and poles of

ϕ =
F a1

1 · · ·F ar
r

Hb1
1 · · ·Hbs

s

=
t∏
i=1

Gki
i ∈ k(Pn).

Therefore,

Cl(Pn) =
Div(Pn)

P (Pn)
∼= Z

by the first isomorphism theorem.

Caution 17.20. There is no inherent notion of degree of a divisor on arbitrary X (though
okay for Pn, An, curves).

17.7 Divisors and regularity

Theorem 17.21. If X is smooth (or even just normal), then ϕ ∈ k(X)∗ is regular on X if
and only if divϕ is effective (denoted divϕ ≥ 0).

Remark 17.22. ϕ regular =⇒ divϕ ≥ 0 is clear.
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17.8 Commutative algebra digression

Let R be any domain, and let K be the fraction field.

Definition 17.23. The normalization of R is the integral closure of R in K. (This is a
subring of K.)

We say R is normal if R is equal to its normalization R̃.

We have the inclusion
R ↪→ R̃ ⊆ K

into the integral closure.
Example 17.24. Consider the ring

R =
k[x, y]

y2 − x3
.

We have (y
x

)2

− x = 0,

so y
x
is integral over R in the fraction field Frac(R). Can check that

R ↪→ R̃ =
k[x, y, z]

(y2 − x3, xz − y)
∼= k

[y
x

]
= k[t] ⊆ Frac(R).

Note that normalizing gets rid of the singularity. The above inclusion induces a finite bira-
tional map of varieties.
Fact 17.25. Normality is a local property: R is normal ⇐⇒ Rm is normal ∀m ∈ mSpecR ⇐⇒
Rp is normal ∀p ∈ SpecR.

This lets us make the following definition:

Definition 17.26. Let X be a variety. We say X is normal if any of the following equivalent
conditions hold:

(1) For all points x ∈ X, the local ring Ox,X is normal.

(2) For all subvarieties W ⊆ X, OW,X is normal.

(3) There exists an open affine cover {Uλ} such that each OX(Uλ) = k[Uλ] is normal.

(4) For every open affine U ⊆ X, OX(U) is normal.

Fact 17.27. All smooth varieties are normal. If X is dimension 1, then X is smooth ⇐⇒ X
is normal.
Fact 17.28. If a ring R is normal and p is height8 1, then Rp is a DVR.

Theorem 17.29. Let R be a domain with fraction field K. Then

R̃ =
⋂

p∈SpecR
height 1

Rp ⊆ K.

8The height of a prime p ∈ SpecR is the Krull dimension of Rp.
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Now we can prove the theorem from earlier:

Proof of Theorem 17.21. Say ϕ ∈ k(X) and divϕ ≥ 0. It suffices to check ϕ|U , where U is
affine open in X, is regular.

On U , we have ϕ ∈ k(U) = k(X) with divU ϕ ≥ 0. All νD(ϕ) ≥ 0, so ϕ ∈ OD,X ∀D.
Thus

ϕ ∈
⋂

D prime in U

OD,X =
⋂

p ht. 1

Rp = R = OX(U).

17.9 Divisors and regularity, continued

Recall:

Theorem (17.21). Let ϕ be a nonzero rational function on a normal variety X. Then ϕ is
regular on X ⇐⇒ divϕ is effective.

E.g., on Pn, there are no nonzero principal effective divisors (i.e., divϕ ≥ 0 =⇒ ϕ is
regular on Pn =⇒ ϕ ∈ k \ {0}).

More generally, for any U open in a normal variety X, the following are equivalent for
ϕ ∈ k(X)∗:

(1) ϕ ∈ k(X) is regular on U .

(2) ϕ has no poles on U .

(3) divϕ on U is effective.

(4) νD(ϕ) ≥ 0 for all divisors D with D ∩ U 6= ∅.

Also, the following are equivalent:

(1) divU ϕ = 0

(2) ϕ regular in U , ϕ−1 regular on U .

(3) ϕ ∈ O∗X(U) = subgroup of invertible elements of the ring OX(U).

Example 17.30. Let X = P2 and

ϕ =
(x2 + y2 − z2)

2

x3y
∈ k(P2).

Then
Supp(divϕ) = C ∪ L1 ∪ L2 = V(x2 + y2 − z2) ∪ V(x) ∪ V(y),

and

divP2 ϕ = 2C − 3L1 − L2

divUz ϕ = 2C − 3L1 − L2

divUx ϕ = 2C − L1

divUx∩Uy ϕ = 2C.

Since 2C is effective, Theorem 17.21 implies that ϕ ∈ OP2(Ux ∩ Uy).
Also, denoting U := Ux ∩ Uy ∩ Ux2+y2−z2 , we have divU ϕ = 0, so ϕ ∈ O∗P2(U).
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18 Locally principal divisors

18.1 Locally principal divisors

Important idea: If X is smooth, then every divisor on X is locally principal.
Fix D =

∑t
i=1 kiDi divisor on X, with X smooth.

Take any x ∈ X, and choose a neighborhood U = Ux of x such that Di is the vanishing
set of some irreducible πi ∈ OX(U) (i.e., IDi(U) = (πi), or equivalently, Di ∩ U = divU πi).

On U , D is principal, and we have

D ∩ U = divU(πk11 · · · πktt ).

Example 18.1. In the setting of our previous example in P2, D = 2C −L1 has degree 3, so it
is not globally principal.

However, D is locally principal. Let

ϕ1 =
(x2 + y2 − z2)

2

x4
, ϕ2 =

(x2 + y2 − z2)
2

xy3
, ϕ3 =

(x2 + y2 − z2)
2

xz3
.

Then

divUx ϕ1 = D ∩ Ux, divUy ϕ2 = D ∩ Uy, divUz ϕ3 = D ∩ Uz.

Remark 18.2. On Ux ∩ Uy, ϕ1 and ϕ2 have the same divisor C

⇐⇒ divUx∩Uy ϕ1 = divUx∩Uy ϕ2 ⇐⇒ divUx∩Uy(ϕ1/ϕ2) = 0 ⇐⇒ ϕ1

ϕ2

∈ O∗X(Ux ∩ Uy).

Now we give the formal definition.

Definition 18.3. A locally principal (or Cartier) divisor on a variety X is described by the
following data:

• {Uλ}λ∈Λ open cover of X,

• ϕλ ∈ k(X) = k(Uλ) rational function on X

such that ϕλ · ϕ−1
µ ∈ O∗X(Uλ ∩ Uµ) for all λ, µ ∈ Λ.

The corresponding (Weil9) divisor is the unique D such that on Ux, D∩Uλ = divUλ ϕλ ∀λ.
The set of all locally principal divisors on X forms a group CDiv(X) ⊆ Div(X).

Remark 18.4. If D1 = {Uλ, ϕλ} and D2 = {Uµ, ψµ} are two collections of data describing two
Cartier divisors, then their sum D1 +D2 is given by {Uλ ∩ Uµ, ϕλ · ψµ}.
Remark 18.5. The main advantage to locally principal divisors is that they can be pulled
back under dominant regular morphisms.

Say X f−→ Y is a dominant regular morphism, so we can identify k(Y ) ⊆ k(X) by f ∗.
So for D ∈ CDiv(Y ), define f ∗D as the Cartier divisor X whose local defining equations are
the pullbacks of local defining equations for D.

In symbols, if D = {Uλ, ϕλ}, then

f ∗D =
{
f−1(Uλ), f

∗(ϕλ)
}

=
{
f−1(Uλ), ϕλ ◦ f

}
.

9A Weil divisor is a formal Z-linear combination of irreducible, codimension 1 subvarieties. This is the
same kind of divisor we defined earlier.
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18.2 The Picard group

Let X be a normal variety. Then we have

P (X) ⊆ CDiv(X) ⊆WDiv(X)
def
= Div(X).

Definition 18.6. The divisor class group of X is Cl(X) = Div(X)/P (X).
The Picard group of X is Pic(X) = CDiv(X)/P (X).

18.3 Summary of locally principal divisors

Let D be a locally principal divisor on X (normal).
Then D is given by data {Uλ, ϕλ}, where the Uλ are open sets covering X and ϕ ∈ k(X)∗,

and D is divϕλ on Uλ:
D ∩ Uλ = divUλ ϕλ.

Example 18.7. D = hyperplane V(x0) on X = P3. This is not principal.

However, it is locally principal, being given by
{(
Ui,

x0
xi

)}4

i=1
.

Note 18.8. (1) The ϕλ are uniquely determined only up to multiplication by some ϕ having
no zeros or poles on Uλ, or equivalently, any of the following:

• divϕ = 0

• ϕ ∈ O∗X(U)

• ϕ is a unit in OX(Uλ).

(2) There is a relationship between ϕλ and ϕµ given by any of the following:

• divϕλ = divϕµ on Uλ ∩ Uµ
• divϕλ − divϕµ = 0 on Uλ ∩ Uµ
• div(ϕλ/ϕµ) = 0 on Uλ ∩ Uµ.

(Or, if we don’t assume X is normal, ϕi/ϕj ∈ O∗X(Ui ∩ Uj).)

18.4 Pulling back locally principal divisors

18.4.1 Case 1

Let Y f−→ X be a dominant regular map.
Given D ∈ CDiv(X) = set of all locally principal divisors on X, think of D as given by

{Uλ, ϕλ}. Then f ∗D is given by {f−1(Uλ), f
∗(ϕλ)}. Then we think of f ∗D as div(f ∗ϕλ) on

f−1(Uλ).

Note 18.9. Each f ∗ϕλ is a nonzero rational function on Y .

Note 18.10. Supp(f ∗D) = f−1(SuppD).
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Example 18.11. Let V = V(y − x2) ⊆ A2, and consider V → A1, (x, y) 7→ y. Consider the
divisor

D = 2p1 − 3p2 = div

(
(t− 1)2

(t− 2)3

)
∈ CDiv(A1),

where p1 = 1 and p2 = 2 in A1. Then

f ∗(D) = divV f
∗
(

(t− 1)2

(t− 2)3

)
= divV

f ∗(t− 1)2

f ∗(t− 2)3
= divV

(t ◦ f − 1)2

(t ◦ f − 2)3

= divV
(y − 1)2

(y − 2)3
= divV

(x2 − 1)
2

(x2 − 2)3 = 2q1 + 2q′1 − 3q2 − 3q′2,

where

q1 = (1, 1), q′1 = (−1, 1),

q2 = (
√

2, 2), q′2 = (−
√

2, 2).

Note 18.12. Y f−→ X is dominant ⇐⇒ on affine charts (say X, Y affine),

k[Y ] →k[X]

g ◦ f 7→g

is injective.
Think: Y f−→ X yields a map (OX

f∗−−→ OY ) = f ∗OY , and the kernel is an ideal sheaf If .
In the affine case, Y f−→ X induces a map

k[X]
f∗−−→ k[Y ]

with kernel I, and we have

k[Y ] k[X]
f∗
oo

����

k[X]/I

dd
⇐⇒ Y

f
//

  

X

W
?�

OO

Example 18.13.

P1 ν−→ P3

[s : t] 7→
[
s3 : s2t : st2 : t3

][s
t

: 1
]
7→
[(s

t

)3

:
(s
t

)2

:
(s
t

)
: 1

]
.

Let H = V(x0), corresponding to {
(U0, 1),

(
Ui,

x0

xi

)}
.

74



Can we pull back H under ν?
The pullback ν∗H is given by{(

ν−1U0, 1
)
,

(
ν∗U3, ν

∗
(
x0

x3

)
=
(s
t

)3
)}

,

so
ν∗H = 3 · P,

where P = [0 : 1] ∈ P1.

18.4.2 Case 2

Proposition 18.14. If Y f−→ X is a regular map, and D ∈ CDiv(X) such that f(Y ) *
SuppD, then f ∗D is defined exactly as before: If D is given by {Uλ, ϕλ}, then f ∗D is given
by {

f−1(Uλ), f
∗ϕλ
}
,

where the f ∗ϕλ are nonzero rational functions.

Proof. We have f(Y ) * Supp(D) ⇐⇒ Y * f−1(SuppD). Since SuppD consists of the
zeros and poles of hλ

gλ
= ϕλ on Uλ, i.e., (zeros of hλ)∪ (zeros of gλ). Then f−1(SuppD) is the

set of zeros of (hλ ◦ f) and (gλ ◦ f).

Example 18.15. Let V = V(y − x2)
f

⊆ A2 and D = X − Y = V(x)− V(y) = div
(
x
y

)
on A2.

Then
f ∗D = div

f ∗(x)

f ∗(y)
= div

x

y
= div

x

x2
= div

1

x
.

We have f ∗D = f ∗X − f ∗Y .

18.5 The Picard group functor

Theorem 18.16. Let X ϕ−→ Y be a regular map of varieties. There is a naturally induced
(functorial) group homomorphism PicY

ϕ∗−−→ PicX.
In other words, there is a contravariant functor

{varieties over k} → Ab

X 7→ PicX.

Example 18.17. The morphism

P1 ν−→ P3

[s : t] 7→
[
s3 : s2t : st2 : t3

]
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yields a commutative diagram
Pic(P1) Pic(P3)oo

Z · [p]
OO

'
��

Z · [H]
OO

'
��

Z Z
3 7→1oo

Example 18.18. The d-th Veronese map νd : Pm → PN induces

Z ∼= Pic(Pm) →Pic(PN) = Z
d 7→1.

18.6 Moving lemma

Lemma 18.19. Given any X, a Cartier divisor D on X, and a point x ∈ X, there exists a
Cartier divisor D′ such that D ∼ D′ and x /∈ SuppD.

Example 18.20. On P2, take x = [1 : 0 : 0] and D = H = V(y). Note that x ∈ SuppD.
By the moving lemma, there exists a divisor D′ ∼ H such that [1 : 0 : 0] /∈ D′. We can

take D′ = V(x). Here: D′ = D + div
(
x
y

)
.

Proof of moving lemma. Say D is given by data {Ui, ϕi}. Say x ∈ U1.
Let D′ be the divisor corresponding to data

{
Ui, ϕ

−1
1 · ϕi

}
. [Note: D′ ∩ U1 = divU1(1) is

empty, so x /∈ SuppD′.] Hence
D′ = D + divx ϕ

−1.

Proof of Theorem 18.16. Let X ϕ−→ Y be a morphism and D a locally principal divisor. We
can define ϕ∗D whenever SuppD + ϕ(X). Then we need to check also:

(1) D1 ∼ D2 =⇒ ϕ∗D1 ∼ ϕ∗D2

(2) ϕ∗(D1) + ϕ∗(D2) = ϕ∗(D1 +D2)

when we can define ϕ∗.
So: if we try to define ϕ∗[D] where SuppD ⊇ imϕ, simply use the moving lemma to

replace D by D′, where x /∈ SuppD′ (for any x we pick in ϕ).

19 Riemann–Roch spaces and linear systems

19.1 Riemann–Roch spaces

Fix X normal, D any divisor. Consider the set

L (D) =
{
f ∈ k(X)∗

∣∣ divX f +D ≥ 0
}
∪ {0} ⊆ k(X).
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Example 19.1. If X = A1 and D = 2 · p0 (where p0 = 0 is the origin), then

L (D) =
{
f ∈ k(t)∗

∣∣ div f + 2p0 ≥ 0
}
∪ {0} =

{
1

t2
g(t)

∣∣ g(t) ∈ k[t]

}
.

A function f ∈ L (D) can have zeros anywhere, but can’t have any poles except at p0, where
a pole can be order 2 or less.

Definition 19.2. L (D) is the Riemann–Roch space of (X,D).

Remark 19.3. (I) L (D) is a vector space over k.

(II) Even better, L (D) is a module over OX(X).
The proof follows from a basic fact about “order of vanishing” along prime divisors.

If Di is a prime divisor on normal X, then

νDi : k(X)∗ → Z

is a valuation, i.e.:

(I) νDi(f + g) ≥ min {νDi(f), νDi(g)}

(II) νDi(fg) = νDi(f) + νDi(g).

To prove L (D) is a vector subspace of k(X), observe that

f, g ∈ L (D) =⇒ f + g ∈ L (D),

and

div f +D ≥ 0

D +
∑
Di

νDi(g) ·Di = div g +D ≥ 0,

hence divX(f + g) ≥ −D, so if
D =

∑
Di⊆X
prime

kiDi,

then for any Di prime divisor,

νDi(f) ≥ −ki
νDi(g) ≥ −ki.

Thus
νDi(f + g) ≥ min {νDi(f), νDi(g)} ≥ −ki ∀i,

whence
divX(f + g) ≥ −D,

so f + g ∈ L (D).

77



Theorem 19.4. If X is projective, then L (D) is a finite-dimensional vector space over k.

Example 19.5. Say D = 0 and

L (D) =
{
f ∈ k(x)

∣∣ div f ≥ 0
}

= OX(X).

If X is projective, then L (0) has dimension 1.
Denote p0 = [0 : 1] and p∞ = [1 : 0]. Let X = P1 and D = p0 + p∞. We have

k(P1) = k
(
x
y

)
, and then

L (D) =

{
f

(
x

y

) ∣∣∣∣ div f + p0 + p∞ ≥ 0

}
=

{
F2(x, y)

xy

∣∣∣∣ F2 degree 2 homogeneous
}
.

A basis for this is {
x2

xy
,
xy

xy
,
y2

xy

}
=

{
x

y
, 1,

y

x

}
,

so dim L (D) = 3.

19.2 Riemann–Roch spaces, continued

Let X be a normal variety, D =
∑
kiDi a divisor. The Riemann–Roch space

L (D) =
{
f ∈ k(X)∗

∣∣ div f +D ≥ 0
}
∪ {0} ⊆ k(X)

consists of rational functions f such that

(1) f has no poles except possibly along Di if ki > 0 (order of pole up to −ki), and

(2) f must have zeros along Di if ki < 0 (order of zero at least −ki).

Remark 19.6. • L (D) can be infinite-dimensional or finite-dimensional, though it is al-
ways finite-dimensional if X is projective.

• L (D) is a module over OX(X).

Proposition 19.7. If D ∼ D′, then L (D) ∼= L (D′) (natural isomorphism, not equality).

Proof. We have D −D′ = div f for some f ∈ k(X)∗. Consider{
g
∣∣ div g +D ≥ 0

}
= L (D)

·f−→ L (D′) =
{
h
∣∣ div h+D′ ≥ 0

}
g 7→ gf.

Is gf ∈ L (D′)? Indeed, if g ∈ L (D), then div g +D ≥ 0, so

div(gf) +D′ = div g + div f +D′ = div g +D ≥ 0.

The inverse map is multiplication by 1
f
. Thus, this is an isomorphism of k-vector spaces. (It

is also a OX(X)-module isomorphism.)
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Note 19.8. Each nonempty open set U ⊆ X is a normal variety. Each divisor D =
∑
kiDi

on X induces a divisor
D
∣∣
U =

∑
i

ki(Di ∩ U) = “Di ∩ U ”.

Look at the Riemann–Roch space of (U,D|U).

Definition 19.9 (sheaf associated to D). The sheaf OX(D) associated to D is the sheaf
assigning to each nonempty open set U ⊆ X the Riemann–Roch space

OX(D)(U) = the Riemann–Roch space of
(
U,D

∣∣
U

)
,

which is an OX(U)-module.

• This is a subsheaf of the constant sheaf k(X).

• OX(D) is a sheaf of OX-modules.

• If D ∼ D′, then there is an isomorphism

OX(D)
·f−→ OX(D′)

of OX-modules.

Example 19.10. If D = 0, then OX(D) = OX .
Example 19.11. Let X = P1 and D = 2p0 − p∞ (where p0 = [0 : 1] and p∞ = [1 : 0]). Then

OX(D)(P1) =
{
f ∈ k(P1)

∣∣ div f + 2p0 − p∞ ≥ 0
}

=

{
y(ax+ by)

x2

∣∣∣∣ a, b ∈ k} .
If we restrict to U∞ = P1 \ {[1 : 0]}, then using coordinates t = x

y
,

OX(D)(U∞) =
{
f ∈ k(P1)

∣∣ divU∞ f + 2p0 ≥ 0
}

=

{
g

t2

∣∣∣∣ g ∈ k[t]

}
.

Similarly, letting s = y
x

= t−1,

OX(D)(U0) =
{
f ∈ k(P1)

∣∣ div f − p∞ ≥ 0
}

=
{
f ∈ k(s)

∣∣ f ∈ s · k[s]
}

=
{
t−1 · k[t−1]

} ∼= OX(U0),

and

OX(D)(U∞ ∩ U0) = OX(U∞ ∩ U0) = k[t, t−1].

Fact 19.12. If D is a Cartier divisor, then OX(D) is a locally free, rank 1 OX-module (a
submodule of k(X)).

Hint: If D is given by data {Ui, ϕi}, then

OX(D)(Ui) = ϕ−1
i · OX(Ui) ⊆ k(X).
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19.3 Complete linear systems

Let X be a normal variety, D =
∑
kiDi a divisor.

Definition 19.13. The complete linear system |D| is the set of all effective divisors D′ on
X such that D ∼ D′.

Example 19.14. On P2 (char k 6= 3), let

D = 3V(x3 + y3 + z3)− 7V(x).

Then |D| = the set of all conics on P2.

Proposition 19.15. There is a natural map

L (D)− {0} → |D|
f 7→ div f +D

which induces a surjective map P(L (D)) � |D| which is bijective if X is projective.

Proof. Why surjective? If D′ ∈ |D|, then D′ ≥ 0 and D′ ∼ D, i.e., D′ = D + div f for some
f ∈ k(X)∗. So

f 7→ div f +D = D′.

Why injective for projective X? Say D1, D2 ∈ |D| such that

f, g 7→ div f +D.

Then div(f/g) = 0, so f
g
is regular on X and hence is constant.

19.4 Some examples

Example 19.16 (Case where the map is not injective). Consider X = A1−{0} , D = p = [1].
Then

L (D) =
{
f ∈ k(t)

∣∣ div f + p ≥ 0
}

=
1

(t− 1)
· k[t, t−1],

and the natural map P(L (D))→ |D| is not injective.
Example 19.17. Let L ⊆ P2 be a line. Say L = V(x0) ⊆ P2. Then

|L| =
{
lines on P2

}
= P(L (L)) = P

{
f ∈ k(P2)

∣∣ div f + L ≥ 0
}

= P
{
a0x0 + a1x1 + a2x2

x0

∣∣∣∣ ai ∈ k} .
Note that |L| is geometric, independent of choices, while L (L) depends on choice of line; if
we choose a different line, we get a different (but isomorphic) subset of k(P2).
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Example 19.18. Let C ⊆ P2 be the conic V(F ), where F = x2 + y2 − z2. Then

L (C) =
{
f ∈ k(P2)

∣∣ div f + C ≥ 0
}

=

{
G(x, y, z)

(x2 + y2 − z2)

∣∣∣∣ G ∈ [k[x, y, z]]2

}
.

This is a dimension 6 vector space. Basis:{
x2

F
,
xy

F
,
y2

F
,
xz

F
,
z2

F
,
yz

F

}
.

Map this to the linear system:

L (C)→ |C| =
{
conics on P2

}
G

F
7→ div

G

F
+ C = V(G) (as a scheme)

The linear system |C| of conics on P2 corresponds to a map to projective space (up to
choice of coordinates on that target):

P2 P5

[x : y : z] 7→
[
x2

F
:
xy

F
:
y2

F
:
xz

F
:
z2

F
:
yz

F

]
.

This is the Veronese 2-map.
Note that if we denote L = V(x), then |C| = |2L|, and the corresponding Riemann–Roch

space is

L (2L) =

{
G

x2

∣∣∣∣ G ∈ [k[x, y, z]]2

}
,

which has a basis {
1,
y

x
,
(y
x

)2

, . . . ,
y2

x2

}
,

which is also dimension 6.
Note 19.19. The elements of the linear system |C| = |2L| are the pullbacks of the hyperplanes
in P5.

Multiplying by F , we can also describe this map as

P2 ν2−−→ P5

[x : y : z] 7→
[
x2 : xy : y2 : xz : z2 : yz

]
.

Look at the linear system |H| on P5 of hyperplanes. Say

H = V(a0x0 + · · ·+ a5x5).

Then

ν∗2H = V(a0x
2 + a1xy + · · ·+ a5yz).
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19.5 Linear systems

Definition 19.20. A linear system on X is a set of divisors (all effective, all linearly equiv-
alent to each other) which corresponds to some (projective) linear space in some complete
linear system |D|.

In other words: Fix D, and consider a subspace

V ⊆ L (D) � |D| .

Then we have a map V � P(V ) ⊆ |D|. The image of P(V ) is a linear system.

Example 19.21. In Pn, take the set of lines through a point p = [0 : · · · : 0 : 1] ∈ Pn. Fix
H = V(xn). Call this set

V = P(V ) =
{
f
∣∣ div f +H ≥ 0

}
.

Then
V =

〈
span of

x0

xn
, . . . ,

xn−1

xn

〉
⊆ L (H) =

〈
x0

xn
,
x1

xn
, . . . ,

xn−1

xn
, 1

〉
.

Definition 19.22. The base locus of a linear system V is the set

BsV =
{
x ∈ X

∣∣ x ∈ SuppD ∀D ∈ V
}
.

A linear system is base point free if BsV = ∅.
The fixed components of a linear system are prime divisors D such that D appears in the

support of every D ∈ V (i.e., divisors in the base locus).

Example 19.23. Fix L1 = V(x) ⊆ P2. Take the linear system V of conics in P2 which contain
L1. This consists of the unions of L1 with another line, and the double line consisting of L1

with multiplicity 2.
We have

|2L2| ⊇ V ←→ |L|
L1 + L2 ←→ L2.

A conic C ⊆ P2 contains L1 = V(x) iff

IC = (F ) = (ax+ by + cz)x ⊆ IL1 = (x).

A basis for F is given by
x2

F
,
xy

F
,
zx

F
.

Map to projective space by

P2 P2

[x : y : z] 7→
[
x2

F
:
xy

F
:
xz

F

]
= [x : y : z],

i.e., the identity map.
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19.6 Linear systems and rational maps

Theorem 19.24. Let X be normal (in practice, projective). There is a one-to-one corre-
spondence

{rational maps X Pn}
(projective change of coordinates)

←→
{
n-dimensional linear systems of divisors

on X with no fixed component

}
[
X

ϕ Pn
]
7→ {pullback of hyperplane linear systems on Pn} .

Example 19.25. Consider the map

P1 ν−→ P3

[s : t] 7→
[
s3 : s2t : st2 : t3

]
and the linear system

|H| =
{
hyperplanes on P3

}
=
{
V(ax+ by + cz + dw)

∣∣ [a : b : c : d] ∈ P3
}
.

Then

ν∗ |H| =
{
ν∗
(
V(ax+ by + cz + dw)

) ∣∣ [a : b : c : d] ∈ P3
}

=
{
V(as3 + bs2t+ cst2 + dt3)

}
=
{
complete linear system on P1 of degree 3 divisors

}
= |3P | .

Going back to the theorem, for any n-dimensional linear system V of divisors on X with
no fixed component, let |D| be a complete linear system such that V ⊆ |D|. Then V = P(V ),
where V ⊆ L (D) is (n+ 1)-dimensional. Send

V 7→

[
X Pn

x 7→ [ϕ0(x) : · · · : ϕn(x)]

]
,

where the ϕi are a basis for V .
Furthermore: the locus of indeterminacy of ϕ is the base locus of V .

Example 19.26. In P2, fix a line L. Look at the linear system WL ⊆ |C3| (where |C3| is the
9-dimensional complete linear system of cubics in P2) of cubics that contain L. We have

L ⊆ C3 ⇐⇒ F3 = x · F2,

where F2(x, y, z) is degree 2. So

L (C3) =

〈
x3

F3

:
x2y

F3

: · · · : z
3

F3

〉
⊇
{
x · x2

F3

:
x · xy
F3

:
x · xz
F3

:
x · y2

F3

:
x · yz
F3

:
x · z2

F3

}
.

What is the map ϕWL
corresponding to WL? It is

P2 P5

[x : y : z] 7→
[
x3

F3

:
x2y

F3

: · · · : xz
2

F3

]
=
[
x2 : xy : · · · : z2

]
.

Note that WL gives the same map as |C2|.
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Note 19.27. Let X ϕPn and D ∈ Div(Pn). What is ϕ∗D? We have

X
ϕ
// Pn

U

⊆ ϕU

>>

and X \ U has codimension ≥ 2. Then

ϕ∗D
def
= ϕ∗UD,

the unique divisor D′ on X such that D′|U = (ϕ∗nD).

Example 19.28. In general, the Veronese map Pn νd−−→ P(n+dd )−1 corresponds to the complete
linear system |dH| on Pn.

Definition 19.29. A divisor D is very ample if the map ϕ|D| : X Pn corresponding to
the complete linear system |D| is an embedding.

A divisor D is ample if ∃m ∈ N such that mD is very ample.

Example 19.30. Consider the projection

P3 ϕ P2

[x : y : z : w] 7→ [x : y : z]

from p = [0 : 0 : 0 : 1]. Let H = V(ax + by + cz) ∈ |H|. Then hyperplanes H correspond to
hyperplanes on P3 which contain p, i.e.,

|Hp| = linear system on P3 of hyperplanes through p.

This is fixed component free, since the base locus is {p}, the locus of indeterminacy of ϕ.

Example 19.31. Let P̃2 π−→ P2 be the blowup at a point p ∈ P2.
This corresponds to the linear system π∗ |L| (where |L| is the complete linear system of

lines on P2), which includes “lines” L which don’t meet the exceptional divisor E.
This is base point free, but not very ample.

20 Differential forms

20.1 Sections

Recall from the homework: The tautological bundle is

T =
{

(x, `)
∣∣ x ∈ `} ⊆ kn+1 × Pn

with the projection map T π−→ Pn. The fiber

π−1(`) =
{

(x, `)
∣∣ x ∈ `}
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is the set of points in the line which is `.
A section is a morphism Pn s−→ T such that π ◦ s = id|Pn . A section of the tautological

bundle is given by a choice of representative of each line, i.e., for all ` ∈ Pn, s(`) ∈ π−1(`).
We can add two sections s1, s2 : Pn → T by adding outputs:

s1 + s2 : Pn → T

` 7→ s1(`) + s2(`).

We can also multiply a section s : Pn → T by any function f : Pn → k:

fs : Pn → T

fs(`) = f(`)s(`) ∈ π−1(`).

20.2 Differential forms

Definition 20.1. A differential form ψ on X is an assignment associating to each x ∈ X
some ψ(x) ∈ (TxX)∗.

Put differently, a differential form is a section of the cotangent bundle of X.

Example 20.2. If f is a regular function on X, then df is a differential form:

df(x) = dxf =
n∑
i=1

∂fi
∂xi

∣∣∣∣
x

(
x− xi(x)

)∣∣
TxX⊆TxAn .

We can add two differential forms:

(ψ1 + ψ2)(x) = ψ1(x) + ψ2(x).

Can also multiply ψ by any k-valued function ϕ:

(ϕψ)(x) = ϕ(x) · ψ(x).

In other words, the set of all differential forms Ψ[x] on X forms a module over F(x), the
ring of all functions on X.

Example 20.3. Consider An with coordinates x1, . . . , xn. The cotangent space at x is spanned
by dxx1, . . . , dxxn.

Example 20.4. In R2, sinx dy + cosx dx ∈ Ψ[x] is a differential form.

20.3 Regular differential forms

Definition 20.5. A differential form ψ on X is regular if ∀x ∈ X, there is an open neigh-
borhood U 3 x such that ψ|U agrees with

∑t
i=1 gidfi, where fi, gi ∈ OX(U).

In other words, viewing ψ as a section of the cotangent bundle of X, the section map is
regular.
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Example 20.6. The differential form

ψ = 2x d(xy) = 2x (x dy + y dx) = 2x2 dy + 2xy dx

is a regular differential form in A2.
Notation 20.7. For U ⊆ X open, let ΩX(U) be the set of regular differential forms on the
variety U .
Note 20.8. ΩX(U) is a module over OX(U). In fact, ΩX is a sheaf of OX-modules.
Example 20.9. On An, ΩX is the free OX-module generated by dx1, . . . , dxn.

Theorem 20.10. If X is smooth, then ΩX is a locally free OX-module of rank dimX.

Proof sketch. Take x ∈ X, and take local parameters x1, . . . , xn at x. Show that dx1, . . . , dxn
are a free basis for ΩX in some neighborhood of x. (Use Nakayama’s lemma.)

Proposition 20.11. Let V ⊆ An be an affine variety with ideal I(V ) = (g1, . . . , gt) ⊆ k[An].
Then ΩV (V ) is the OV (V )-module

k[V ] dx1|V + · · ·+ k[V ] dxn|V
k[V ]-submodule generated by (dg1, . . . , dgt)

.

Note that if g vanishes on V , then dg = 0 on V .
Example 20.12. Let V = V(t− s2) ⊆ A2. Then

ΩV =
k[V ] dt+ k[V ] ds

(dt− 2s ds)
.

This is free, since dt = 2s ds in ΩV , so the generator dt is redundant, and ΩV = k[V ] ds.
Example 20.13. Consider P1 with homogeneous coordinates x, y, and with t = x

y
, s = y

x
. Say

ψ is a global regular differential form on P1. Then

ψ
∣∣
Uy ∈ ΩP1(Uy) = k[t] dt

ψ
∣∣
Ux ∈ ΩP1(Ux) = k[s] ds.

If we have p(t) dt ∈ k[t] dt and q(s) ds ∈ k[t] dt, then

p(t) dt = q(1/t) d(1/t)

on Ux ∩ Uy. Then

p(t) dt = −q(1/t)dt
t2
,

so

t2p(t) = −q(1/t)

in k[t, t−1]. Thus p = q = 0, i.e., there are no nontrivial global regular differential forms on
P1.

However, on X = V(x3 + y3 + z3) ⊆ P2, there is a 1-dimensional k-vector space of global
differential forms. And, on X = V(x4 + y4 + z4) ⊆ P2, the space ΩX(X) is 3-dimensional
over k.

Definition 20.14. If X is a smooth projective curve, then the genus of X is the dimension
of ΩX(X) as a k-vector space.
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20.4 Rational differential forms and canonical divisors

A rational differential form on X is intuitively f1dg1 + · · ·+frdgr, where fi and gi are rational
functions on X. Formally:

Definition 20.15. A rational differential form on X is an equivalence class of pairs (U,ϕ)
where U ⊆ X is open and ϕ ∈ ΩX(U). [As with rational functions, (U,ϕ) ∼ (U ′, ϕ′) means
ϕ|U∩U ′ = ϕ′|U∩U ′ .]

We can define the divisor of a rational differential form.

Definition 20.16. If ω is a rational differential form on a smooth curve X, then div(ω) ∈
Div(X) is called a canonical divisor .

The canonical divisors form a linear equivalence class on X, denoted KX . Also,

dim L (KX) = genus(X).

Example 20.17. On P1, the canonical divisor KP1 is the class of degree −2 divisors.

20.5 Canonical divisors, continued

Let X be smooth (or, X normal, and work on Xsm ⊆ X; since codim(X \Xsm) ≥ 2, we won’t
miss any divisors).

Consider the sheaf ΩX of regular differential forms on X. [In U , ΩX(U) is the set of
differential forms ϕ on U such that ∀x ∈ U , there exists an open neighborhood where ϕ
agrees with

∑
fidgi, where fi, gi are regular functions.]

The sheaf ΩX is a locally free OX-module of rank d = dimX.
Fact 20.18. The set of rational differential forms10 forms a vector space over k(X).

Definition 20.19. A separating transcendence basis for k(X) over k is a set of algebraically
independent elements {ui} over which k(X) is separable algebraic [i.e., k(u1, . . . , un) ↪→ k(X)
is separable algebraic].

Example 20.20. Consider X = P2. Then

k

(
x

y
,
z

y

)
'−→ k(P2),

so x
y
, z
y
is a separating transcendence basis. In characteristic 6= 2, 3,

k

((
x

y

)2

,

(
z

y

)3
)
↪→ k

(
x

y
,
z

y

)
is also a separating transcendence basis.

Theorem 20.21. If u1, . . . , un is a separating transcendence base for k(X), then du1, . . . , dun
is a basis for the space of rational differential forms on X over k(X).

10Shafarevich denotes this Θ(X).
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Proof sketch. We have k(u1, . . . , un) ↪→ k(X). Given
∑
fidgi with fi, gi ∈ k(X), it suffices

for each g = gi ∈ k(X) that we can write

dg = r1du1 + · · ·+ rndun

for ri ∈ k(X).
Then g satisfies a minimal polynomial

gm + a1g
m−1 + · · ·+ am = 0

with ai ∈ k(u1, . . . , un). Apply “d”:

mgm−1dg + gmda1 + a1 · (m− 1)gm−2dg + · · ·+ dam = 0. (*)

Solve for dgi:
(rational function) dg ∈ k(X)-span of du1, . . . , dun.

(Check the coefficient on dg is not zero if (*) is separable.) So dg ∈ k(X)-span of du1, . . . , dun.

20.6 The canonical bundle on X

For each p ∈ N, look at the sheaf
∧p ΩX of p-differentiable forms on X, which assigns to

open U ⊆ X the set of all regular p-forms: ∀x ∈ U , ϕ(x) :
∧p TxX → k. Locally these look

like
∑
fidgi1 ∧ · · · ∧ dgip .

Rational p-forms are defined analogously.

Corollary 20.22. The set of rational p-forms on X is a k(X)-vector space of dimension(
n
p

)
.

Proof. If u1, . . . , un is a separating transcendence basis, then
{
dui1 ∧ · · · ∧ duip

}
is a basis

for rational p-forms over k(X).

Definition 20.23. The canonical sheaf (or dualizing sheaf ) of X (where X is smooth,
dimX = n) is

ωX =
n∧

ΩX .

Note 20.24. (1) ωX is locally free of rank 1.

(2) The set of rational canonical (n-)forms is a vector space of dimension 1 over k(X).

Example 20.25. On P2, let s = x
y
and t = z

y
, and consider

fd
(x
z

)
∧ d
(y
z

)
.
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We have

d
(x
z

)
∧ d
(y
z

)
= d

(s
t

)
∧ d
(

1

t

)
=

(
t ds− s dt

t2

)
∧ (−dt)

t2

=
−t ds ∧ dt

t4
=
−ds ∧ dt

t3
.

On Uz, there are no zeros or poles. On Uy, we have a pole of order 3 along t = 0 (the divisor
V(z) ⊂ P2).

So:
div
(
d
(x
z

)
∧ d
(y
z

))
= −3L∞,

where L∞ = V(z) ⊂ P2.

Definition 20.26. The divisor of a rational canonical form ϕ on X is the divisor

div(ϕ) =
∑

D prime
divisor

νD(ϕ)D,

where νD(ϕ) is computed as follows: Pick any u1, . . . , un parameters for a point x ∈ D. Write

ϕ = f · du1 ∧ · · · ∧ dun,

where f ∈ k(X). Then νD(ϕ) = νD(f).

Note 20.27. The divisor div(ω) is not necessarily principal.

Proposition 20.28. For all f ∈ k(X), ω a rational canonical form,

div(fω) = div(f) + div(ω).

In particular, any two rational canonical forms define the same divisor class.

Definition 20.29. The divisor div(ω) is called a canonical divisor . By Proposition 20.28,
they form a class, called the canonical class KX .

Example 20.30. On P2, KP2 is the class of divisors of degree −3.

We can use the canonical class (or multiples of it) to classify varieties.
If we embed

X �
� |dKX |// Pn

Y
. � |dKY |

>>

then X ∼= Y ⇐⇒ there is a projective change of coordinates taking X to Y .
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base point free, 82
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birational map, 61
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along a subvariety, 63
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at a point, 61

canonical class, 89
canonical sheaf, 88
closed sets, 6
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complete linear system, 80
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coordinate ring, 10
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differential form, 85

rational, 87
regular, 85
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discrete valuation ring, 68
divisor, 64

ample, 84
canonical, 87, 89
Cartier, 72
effective, 64
locally principal, 72
of zeros and poles, 68
prime, 64
principal, 65, 69
support of, 64
trivial, 64
very ample, 84
Weil, 72

divisor class group, 65, 69, 73
domain of definition, 16

of a rational map, 56
dualizing sheaf, 88

embedding dimension, 51

family, 40
finite map, 37
fixed components, 82
function field, 15

of a projective variety, 36
of a quasi-projective variety, 36
of an affine variety, 35

genus, 86
graph, 33

of a rational map, 60

height of a prime, 70
homogeneous ideal, 19

of a projective algebraic set, 19
homogenization, 20
hyperplane, 19
hyperplane section, 39
hypersurface, 27

ideal of an algebraic set, 8
ideal sheaf, 54
image of a rational map, 60
intersection multiplicity, 44
irreducible algebraic set, 10
irreducible components, 10
irreducible space, 9
irrelevant ideal, 20
isomorphism

of affine algebraic sets, 12
of varieties, 26

linear system, 82
local parameters, 51
local ring of a variety, 48
locus of indeterminacy, 56

members of a family, 40

Noetherian, 6
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normal
ring, 70
variety, 70

normalization, 70

order of vanishing, 66

parameter space, 40
Picard group, 73
prime ideal, 9
projection, 23
projective algebraic subset, 19
projective closure, 20
projective map, 63
projective space, 17
proper map, 62

quasi-projective variety, 23

radical, 7
radical ideal, 8
rational function, 15
rational map, 56
reduced algebra, 11
regular function, 10

on a quasi-projective variety, 24
regular local ring, 49

of a variety, 49
regular map

of quasi-projective varieties, 26
regular mapping, 11
regular parameters, 51
regular point

of a rational function, 16
of a rational map, 56

Riemann–Roch space, 77

section, 85
Segre map, 28
separating transcendence basis, 87
sheaf, 25

associated to a divisor, 79
singular locus, 49
smooth point, 45, 49
standard charts, 18

tangent line, 44

tangent space, 44
tautological bundle, 84
topology, 6
transcendence basis, 35
transcendence degree, 35
twisted d-ic, 26

Veronese map, 21, 26

Zariski tangent space, 48
of a local ring, 49

Zariski topology, 6
projective, 19
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